Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 21505 dokumen yang sesuai dengan query
cover
Rarasmaya Indraswari
"SVM (Support Vector Machine) with RBF (Radial Basis Function) kernel is a frequently used classification method because usually it provides accurate results. The focus of most SVMoptimization research is the optimization of the input data, whereas the parameter of the kernel function (RBF), the sigma, which is used in SVM also has the potential to improve the performance of SVM when optimized. In this research, we proposed a new method of RBF kernel optimization with Particle Swarm Optimization (PSO) on SVM using the analysis of input data?s movement. This method performed the optimization of the weight of the input data and RBF kernel?s parameter at once based on the analysis of the movement of the input data which was separated from the process of determining the margin on SVM. The steps of this method were the parameter initialization, optimal particle search, kernel?s parameter computation, and classification with SVM. In the optimal particle?s search, the cost of each particle was computed using RBF function. The value of kernel?s parameter was computed based on the particle?s movement in PSO. Experimental result on Breast Cancer Wisconsin (Original) dataset showed that this RBF kernel optimization method could improve the accuracy of SVM significantly. This method of RBF kernel optimization had a lower complexity compared to another SVM optimization methods that resulted in a faster running time.
Metode klasifikasi SVM (Support Vector Machine) dengan RBF (Radial Basis Function) kernel merupakan metode yang sering digunakan karena memberikan hasil klasifikasi yang cukup akurat. Penelitian mengenai optimasi pada SVM sementara ini masih banyak berfokus pada optimasi dari nilai data masukan padahal parameter fungsi kernel (RBF), yaitu parameter sigma, yang digunakan pada SVM juga memiliki potensi untuk meningkatkan performa dari SVM apabila dioptimasi. Pada penelitian ini diajukan metode baru optimasi RBF kernel dengan Particle Swarm Optimization (PSO) pada SVM berdasar analisis persebaran data masukan. Metode ini melakukan optimasi terhadap bobot data masukan sekaligus parameter RBF kernel berdasarkan analisis persebaran data masukan sehingga terpisah dari proses penentuan margin pada SVM. Tahapan darimetode ini adalah inisialisasi parameter, pencarian partikel optimal, perhitungan nilai parameter kernel, dan klasifikasi dengan SVM. Pada proses pencarian partikel optimal, nilai cost dari tiap partikel dihitung berdasar fungsi RBF. Nilai parameter kernel dihitung berdasar pergerakan partikel data masukan pada PSO. Hasil uji coba pada dataset Breast Cancer Wisconsin (Original) menunjukkan bahwa metode optimasi RBF kernel mampu meningkatkan akurasi klasifikasi SVM secara cukup signifikan. Metode optimasi parameter RBF kernel ini memiliki kompleksitas yang lebih rendah dibandingkan dengan metode optimasi SVM lainnya sehingga menghasilkan running time yang lebih cepat."
Surabaya: Faculty of Information Technology, Department of Informa Institut Teknologi Sepuluh Nopember, 2017
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
"Nowadays, the pursuance of sustainability obligates manufacturers to redesign products in order to reduce negative environmental impacts. However, only a few studies have simultaneously considered environmental sustainability and assemblability. To bridge this research gap, this study aimed to develop a redesign method based on modular product architecture. This method manages to support a sustainable product considering its materials, assembly sequence and line balance at initial design phase. This method begins with a current product analysis based on economic and environmental performances (i.e., total cost and CO2 emissions). Additionally, new materials and assembly methods are incorporated into redesigning a more sustainable product without compromising production performance. To ensure assemblability, the line balance of 60% is served as one of the constraints. This study applies the particle swarm optimization algorithm to calculate an optimal module organization along with assembly methods and assembly sequences. An air purifier case study is presented to demonstrate the benefits of the proposed method. As a result, the redesigned product can be more easily maintained during product usage and be recycled at the end of product life."
London: Taylor and Francis, 2016
658 JIPE 33:2 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Aqila Zahra Vanisa
"Perkembangan platform transportasi online mengubah perilaku masyarakat, khususnya dalam layanan pesan-antar makanan online. Tingginya penggunaan layanan ini menimbulkan masalah terkait tingginya jumlah kurir plaform transportasi online yang harus beroperasi untuk memenuhi semua permintaan layanan. Salah satu solusi untuk mengatasi hal tersebut yaitu dengan menggabungkan dua permintaan pesanan (order) dari pelanggan yang lokasinya berdekatan, cukup dilayani oleh satu kurir dengan memperhatikan beberapa kendala sehingga tetap menguntungkan semua pihak. Pelanggan dalam penelitian ini mengacu pada merchant dan customer. Penggabungan dua pelanggan yang dilayani oleh satu kurir di sini disebut sebagai fitur double orders. Penelitian ini melakukan optimasi rute pesan-antar makanan pada layanan transportasi online yang mengimplempentasikan penggunaan fitur double orders dengan mempertimbangkan kepuasan pelanggan dan bertujuan meminimumkan biaya operasional. Kepuasan pelanggan yang dimaksud terkait dengan rentang waktu (time windows) pengambilan dan pengantaran makanan agar kualitasnya tetap terjaga. Kurir yang melewati rentang waktu yang telah ditetapkan akan dikenakan biaya penalti. Masalah optimasi rute layanan pesan-antar makanan ini dimodelkan dalam bentuk Vehicle Routing Problem Pickup Delivery with Time Windows (VRPPDTW), untuk penyelesaiannya digunakan metode Particle Swarm Optimization (PSO). Metode PSO adalah metode metaheuristik yang terinspirasi dari perilaku kawanan organisme (swarm) yang menyimpan informasi mengenai posisi (solusi) terbaik. Pada penelitian ini digunakan data yang terdiri dari 50 permintaan layanan pesan-antar makanan. Hasil yang diperoleh dari penerapan metode PSO untuk mengoptimasi rute kurir layanan pesan-antar dengan fitur double orders tersebut mampu mengurangi jumlah kurir yang beroperasi hingga 50% dan menghemat total biaya operasional yang harus dikeluarkan hingga 36.65%.

The development of online transportation platforms has changed public behavior, especially in online food takeaway-delivery services. The high demand for these services has led to issues related to the large number of online transportation platforms drivers needed in fulfilling all service requests. One solution to this problem is by combining two orders from clients located nearby which can be served by a single driver while considering several constraints to ensure it benefits all parties involved. In this study, clients refer to both merchant and customer. The process of combining two clients served by a driver is referred to as the double orders feature. This study focuses on optimizing food takeaway-delivery routes in online transportation services by implementing the double orders feature, considering clients satisfaction and aiming to minimize operational costs. Clients’ satisfaction here relates to the time windows for picking up and delivering food to ensure its quality is maintained. Drivers who exceed the designated time windows will incur penalty costs. The problem of optimizing food takeaway-delivery service routes is modeled as a Vehicle Routing Problem with Pickup and Delivery and Time Windows (VRPPDTW), and it is solved using the Particle Swarm Optimization (PSO) method. PSO is a metaheuristic method inspired by the behavior of swarms of organisms, which store information about the best positions (solutions). In this study, data consisting of 50 food takeaway-delivery requests is used. The results obtained from applying the PSO method to optimize drivers routes with the double orders feature show that it can reduce the number of operating drivers by up to 50% and save total operational costs by 36.65%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Olivera Siti Nataza
"Intrusion Detection System adalah suatu sistem yang berfungsi untuk mendeteksi serangan berbahaya dan kerentanan pada jaringan komputer. Beberapa teknik data mining telah diajukan dalam menyelesaikan persoalan deteksi intrusi pada jaringan. Pada skripsi ini, akan diajukan klasifikasi data Intrusion Detection System menggunakan Na ve Bayes Classifier dan Particle Swarm Optimization sebagai pemilihan fitur. Pertama, Particle Swarm Optimization melakukan pemilihan fitur untuk mendapatkan fitur yang optimal. Lalu, hasil dari pemilihan fitur tersebut akan diklasifikasikan menggunakan Na ve Bayes Classifier dengan harapan dapat memberikan hasil yang lebih akurat. Data yang digunakan adalah dataset KDD CUP 1999. Hasil akhir dari penelitian ini adalah berupa perbandingan hasil akurasi antara klasifikasi menggunakan Na ve Bayes Classifier tanpa pemilihan fitur dan klasifikasi menggunakan Na ve Bayes Classifier dengan pemilihan fitur Particle Swarm Optimization. Hasil empiris menunjukkan bahwa klasifikasi menggunakan Na ve Bayes Classifier tanpa pemilihan fitur memperoleh akurasi tertinggi sebesar 99.16 . Sementara klasifikasi menggunakan Na ve Bayes Classifier dengan pemilihan fitur Particle Swarm Optimization memperoleh akurasi tertinggi sebesar 99.12 . Hasil dari penelitian ini menunjukkan bahwa metode pemilihan fitur Particle Swarm Optimization dapat diterapkan pada proses klasifikasi menggunakan Na ve Bayes Classifier. Akan tetapi dengan menambahkan metode ini tidak menjamin bahwa hasil yang diperoleh akan lebih baik daripada proses klasifikasi menggunakan Na ve Bayes Classifier tanpa pemilihan fitur.

Intrusion Detection System is a system that has a function to detect malicious attacks and vulnerabilities on computer networks. Several data mining techniques have been proposed in solving the problem of intrusion detection on the network. In this research, data classification of Intrusion Detection System will be filed using Na ve Bayes Classifier and Particle Swarm Optimization as feature selection. First, Particle Swarm Optimization will perform the feature selection to get the optimal features. Then, the results of the feature selection will be classified using Na ve Bayes Classifier in hopes of getting more accurate results. The data used in this study is KDD CUP 1999 dataset. The end result of this study is a comparison of accurate results between the classification using Na ve Bayes Classifier without feature selection and classification using Na ve Bayes Classifier with Particle Swarm Optimization as feature selection. The empirical results indicate that the classification using Na ve Bayes Classifier without feature selection obtains the highest accuracy of 99.16 . While the classification using Na ve Bayes Classifier with Particle Swarm Optimization as feature selection obtained the highest accuracy of 99.12 . The results of this study indicate that the Particle Swarm Optimization feature selection method can be applied to the classification process using Na ve Bayes Classifier. However, adding this method does not guarantee that the results obtained will be better than the classification process using Na ve Bayes Classifier without feature selection.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sianipar, Nadia Sukesi
"Microarray data ekspresi gen merupakan data yang berisi hasil proses transformasi genetik dari DNA atau RNA menjadi protein yang disajikan dalam bentuk matriks. Data ekspresi gen yaitu data yang dihasilkan dari eksperimen microarray yang sering kali mengalami missing values akibat keterbatasan teknis dalam proses pengukuran. Permasalahan missing values pada data ekspresi gen memerlukan penanganan yang tepat melalui penerapan metode imputasi guna memperoleh estimasi nilai yang akurat. Pada penelitian ini digunakan metode imputasi dengan penerapan konsep biclustering pada metode Fuzzy Clustering Means (FCM) dengan bahasa pemrograman Python. Hasil imputasi data yang diperoleh menggunakan metode Fuzzy Biclustering Means (FuBiCM) masih memiliki potensi untuk ditingkatkan akurasinya. Oleh karena itu, diusulkan algoritma Particle Swarm Optimization (PSO) untuk memperoleh estimasi nilai yang lebih akurat pada titik-titik data yang hilang. Penggabungan metode ini diusulkan sebagai metode Fuzzy Biclustering Means Particle Swarm Optimization (FuBiCMPSO). Percobaan imputasi data diterapkan pada missing rate yang berbeda, yaitu 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, dan 50% serta pada jumlah cluster yang berbeda, yaitu cluster berjumlah 2, 3, 4, dan 5. Selanjutnya, dibandingkan performa metode FCM, FuBiCM, dan FuBiCMPSO dalam mengimputasi missing values berdasarkan nilai NRMSE (Normalized Root Means Square Error) dan Mean Absolute Error (MAE). Berdasarkan hasil dari nilai NRMSE dan MAE, didapatkan bahwa rata-rata dari metode FuBiCMPSO menghasilkan nilai yang lebih rendah dibandingkan dengan metode FCM dan FuBiCM. Oleh karena itu, dapat dikatakan bahwa metode FuBiCMPSO menghasilkan performa yang lebih baik dibandingkan metode FCM dan FuBiCM dalam mengimputasi missing values.

Microarray gene expression data represent the results of the genetic transformation process from DNA or RNA into proteins, presented in the form of a matrix. Gene expression data, which are derived from microarray experiments, often contain missing values due to technical limitations during the measurement process. The issue of missing values in gene expression data requires appropriate handling through imputation methods to obtain accurate value estimates. This study employs an imputation approach by applying a biclustering concept to the Fuzzy Clustering Means (FCM) method, implemented using the Python programming language. The imputed results obtained from the Fuzzy Biclustering Means (FuBiCM) method still have room for improvement in terms of accuracy. Therefore, this study proposes the use of the Particle Swarm Optimization (PSO) algorithm to obtain more accurate estimations of the missing data points. This integrated method is proposed as the Fuzzy Biclustering Means Particle Swarm Optimization (FuBiCMPSO) method. Data imputation experiments were conducted under varying missing rates 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, and 50% and different numbers of clusters 2, 3, 4, and 5. Subsequently, the performance of the FCM, FuBiCM, and FuBiCMPSO methods in imputing missing values was compared based on the Normalized Root Mean Square Error (NRMSE) and Mean Absolute Error (MAE). Based on the NRMSE and MAE results, the FuBiCMPSO method achieved lower average error values compared to FCM and FuBiCM. Therefore, it can be concluded that the FuBiCMPSO method outperforms both FCM and FuBiCM in imputing missing values."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Irham Muslim
"Sistem tenaga listrik merupakan sistem yang dapat mengalirkan daya listrik dari pusat pembangkit ke konsumen melalui 3 subsistem (pembangkit listrik, sistem transmisi, dan sistem distribusi). Ketika daya listrik melewati saluran transmisi yang panjang maka akan terjadi tegangan jatuh pada saluran transmisi. Namun, saat kondisi beban rendah seperti Perayaan Hari Raya Idul Fitri, tegangan di sisi penerima pada saluran transmisi masih tetap tinggi sehingga menimbulkan permasalahan, yaitu tegangan lebih. Hal tersebut disebabkan karena arus beban lebih kecil daripada arus pengisian (arus kapasitor) pada saluran transmisi. Tegangan lebih dapat diselesaikan dengan menggunakan static var compensator (SVC) karena SVC dapat menyerap daya reaktif dari bus pada sistem menggunakan thyristor controlled reactor (TCR). Penelitian ini menggunakan algoritma particle swarm optimization (PSO) dalam menentukan kapasitas SVC yang optimal untuk tujuh skenario yang telah ditentukan berdasarkan lokasi peletakan. Penelitian ini menghasilkan dua keluaran, yaitu profil tegangan di seluruh bus dan total rugi-rugi daya aktif pada saluran transmisi. Seluruh skenario berhasil memperbaiki profil tegangan di seluruh bus pada Subsistem Mandirancan. Total rugi-rugi daya aktif di saluran transmisi pada Subsistem Mandirancan mengalami peningkatan dari kondisi awal sebesar 4.97% saat mengatur kapasitas SVC 1, 4.97% saat mengatur kapasitas SVC 2, 5.20% saat mengatur kapasitas SVC 3, 4.98% saat mengatur kapasitas SVC 1 dan SVC 2, 3.54% saat mengatur kapasitas SVC 1 dan SVC 3, 3.62% saat mengatur kapasitas SVC 2 dan SVC 3, dan 3.02% saat mengatur kapasitas SVC 1, SVC 2, dan SVC 3.

The power system is a system that can deliver electrical power from the generating center to consumers through 3 subsystems (power plant, transmission system, and distribution system). When electric power passes through a long transmission line, there will be a voltage drop on the transmission line. However, during low load conditions such as the Eid Celebration, the voltage on the receiving side of the transmission line is still high, causing problem, namely overvoltage. This is because the load current is smaller than the charging current (capacitor current) on the transmission line. Overvoltage can be solved by using a static var compensator (SVC) because SVC can absorb reactive power from the bus in the system using a thyristor controlled reactor (TCR). This study uses the particle swarm optimization (PSO) algorithm to determine the optimal SVC capacity for seven scenarios that have been determined based on the location of the placement. This study produces two outputs, which are voltage profiles at all buses and total active power losses on transmission lines. All scenarios succeeded in improving the voltage profile at all buses in the Mandirancan Subsystem. The total active power losses on the transmission line in the Mandirancan Subsystem increased from the initial condition of 4.97% when setting the sizing of SVC 1, 4.97% when setting the sizing of SVC 2, 5.20% when setting the sizing of SVC 3, 4.98% when setting the sizing of SVC 1 and SVC 2, 3.54% when setting the sizing of SVC 1 and SVC 3, 3.62% when setting the sizing of SVC 2 and SVC 3, and 3.02% when setting the sizing of SVC 1, SVC 2, and SVC 3."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ferdian Razak
"Baterai menjadi komponen kunci dalam sistem penyimpanan energi, maka dari itu sangat penting untuk mengestimasi nilai State of Charge secara akurat untuk mengelola dan memanfaatkan daya baterai secara optimal. Ketidakakuratan estimasi SoC dapat menyebabkan performa yang tidak optimal dan kerusakan baterai. Pendekatan tradisional dalam estimasi SoC cenderung kurang presisi, terutama di bawah kondisi dinamis. Oleh karena itu, untuk meningkatkan akurasi estimasi SoC, pada penelitian ini diusulkan model estimasi SoC menggunakan metode Support Vector Machine dengan Particle Swarm Optimization pada baterai Lithium-Ion dan Lithium-Polymer karena keduanya banyak digunakan dalam berbagai aplikasi, termasuk kendaraan listrik, perangkat seluler, dan peralatan elektronik. Hasil penelitian ini akan menunjukkan algoritma SVM dan PSO-SVM yang dapat digunakan untuk memprediksi estimasi pada baterai Lithium-Ion dan Lithium-Polymer. Berdasarkan penelitian yang telah dilakukan diperoleh hasil skor R-Squared menggunakan SVM pada Lithium-Ion sebesar 96,1% dan Lithium-Polymer sebesar 92,8%, serta menggunakan PSO-SVM pada Lithium-Ion 97,8% sebesar dan Lithium-Polymer sebesar 93,6%. hasil skor Mean Absolute Error diperoleh dengan menggunakan SVM pada Lithium-Ion sebesar 4,9% dan Lithium-Polymer sebesar 6,0%, serta menggunakan PSO-SVM pada Lithium-Ion sebesar 3,8% dan Lithium-Polymer sebesar 5,7%. hasil skor Root Mean Squeared Error diperoleh dengan menggunakan SVM pada Lithium-Ion sebesar 6,3% dan Lithium-Polymer sebesar 8,1%, serta menggunakan PSO-SVM pada Lithium-Ion sebesar 4,8% dan Lithium-Polymer sebesar 7,7%. Hasil analisis menunjukkan bahwa algoritma PSO-SVM dan SVM lebih cocok diaplikasikan pada baterai Lithium-Ion dibandingkan Baterai Lithium-Polymer, khusunya PSO-SVM.

Batteries become a key component in the energy storage system; therefore, it is crucial to accurately estimate the State of Charge to manage and utilise the battery power optimally. Inaccuracy in SoC estimation can lead to suboptimal performance and battery damage. Traditional approaches in SoC estimation tend to lack precision, especially under dynamic conditions. Therefore, to improve the accuracy of SoC estimation, this study proposes a SoC estimation model using Support Vector Machine with Particle Swarm Optimization method for Lithium-Ion and Lithium-Polymer batteries as they are widely used in various applications, including electric vehicles, mobile devices, and electronic equipment. The results of this research will show the PSO-SVM and SVM algorithms that can be used to predict estimates for Lithium-Ion and Lithium-Polymer batteries. Based on research that has been carried out, the R-Squared score results obtained using SVM on Lithium-Ion were 96.1% and Lithium-Polymer was 92.8%, and using PSO-SVM on Lithium-Ion was 97.8% and Lithium-Polymer was 93 .6%. The Mean Absolute Error score results were obtained using SVM on Lithium-Ion of 4.9% and Lithium-Polymer of 6.0%, and using PSO-SVM on Lithium-Ion of 3.8% and Lithium-Polymer of 5.7%. The Root Mean Squeared Error score results obtained using SVM on Lithium-Ion were 6.3% and Lithium-Polymer were 8.1%, and using PSO-SVM on Lithium-Ion was 4.8% and Lithium-Polymer was 7.7%. The analysis results show that the PSO-SVM and SVM algorithms are more suitable for application to Lithium-Ion batteries compared to Lithium-Polymer Batteries, especially PSO-SVM."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
" PSS (Power system stabilizer) telah digunakan secara luas untuk memperbaiki stabilitas sistem tenaga listrik modern. Dalam makalah ini diusulkan perancangan sistematik PSS dengan Particle Swarm Optimization (PSO) sebagai metode optimasi penalaan parameter PSS. Penalaan parameter PSS dilakukan untuk mendapatkan sistem tenaga listrik yang stabil dan teredam secara optimal. Kriteria optimal yang digunakan dalam proses penalaan parameter adalah indeks performansi Integral of Time multiplied by Absolute Error (ITAE). Performansi dari
PSS ini diujikan pada sistem tenaga listrik mesin tunggal dibawah gangguan kecil, kondisi beban dan parameter tertentu. Hasil analisa nilaieigen dan simulasi menunjukkan bahwa osilasi sistem tenaga listrik dapat teredam secara optimal melalui penalaan PSS berbasis PSO ini. Hasil simulasi juga menunjukkan bahwa performansi dinamik PSS berbasis PSO lebih baik dibandingkan PSS yang ditala secara konvensional.

Abstract
Power system stabilizer (PSS) have been extensively used in modern power system for enhancing stability of the system. This paper presents a new systematic approach for the design of power system
stabilizer using PSO (Particle Swarm Optimization). The proposed approach employs PSO search for optimal setting of PSS parameters. The optimal criteria of the Integral of Time multiplied by Absolute
Error (ITAE) is used to search optimal setting. The performance of the proposed PSS under small disturbances, loading conditions and system parameters is tested. The eigenvalue analysis and simulation
results show the effectiveness of the PSO based PSS to damp out the system oscillations. It is found that the dynamic performance with the PSO based PSS shows improved results, over conventionally tuned
PSS."
[Fakultas Teknik UI, Institut Teknologi Sepuluh Nopember. Fakultas Teknologi Industri], 2007
pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Faisa Maulidina
"Kanker merupakan pertumbuhan sel abnormal di dalam tubuh yang tidak terkendali. Ketika kanker dimulai di paru-paru, hal ini dinamakan sebagai kanker paru-paru. Terdapat faktor-faktor tertentu yang meningkatkan risiko seseorang yang mengidap penyakit ini, yaitu dengan merokok (termasuk perokok pasif), riwayat kanker paru-paru dalam keluarga, terpapar radiasi, dan infeksi HIV. Penyakit ini dapat didiagnosis melalui image tests, diantaranya yaitu chest x-ray, CT scan, MRI scan, PET scan, dan bone scan. Meskipun diagnosa telah dilakukan dengan banyak cara, namun masih terdapat banyak kesalahan dalam mendiagnosa penyakit tersebut. Untuk mengatasi dan membantu hal tersebut, klasifikasi penyakit kanker paru-paru dapat dilakukan dengan menggunakan metode machine learning. Dataset yang akan digunakan untuk mengklasifikasikan penyakit ini berupa CT Scan yang didapatkan dari Rumah Sakit Cipto Mangunkusumo, Jakarta, Indonesia. Metode klasifikasi yang digunakan adalah Particle Swarm Optimization-Genetic Algorithm-Support Vector Machine (PSO-GA-SVM), dimana Particle Swarm Optimization-Genetic Algorithm (PSO-GA) digunakan untuk mengoptimisasi parameter pada Support Vector Machine (SVM). Untuk mengevaluasi hasil kinerja metode tersebut, akan dilihat nilai akurasi, presisi, recall, dan f1-score dan dibandingkan dengan metode SVM tanpa optimisasi. Dari hasil yang didapat, klasifikasi dengan menggunakan Particle Swarm Optimization-Genetic Algorithm-Support Vector Machine (PSO-GA-SVM) menghasilkan performa yang lebih baik jika dibandingkan dengan Support Vector Machine (SVM) tanpa optimisasi parameter.

Cancer is an uncontrolled growth of abnormal cells in the body. When cancer starts in the lungs, it is referred as lung cancer. There are certain factors that increase a person's risk of this disease, such as smoking (including passive smoker), a family history of lung cancer, exposure to radiation, and HIV infection. This disease can be diagnosed through image tests, including chest x-ray, CT scan, MRI scan, PET scan, and bone scan. Although diagnosis has been made in many ways, there are still many errors in diagnosing the disease. To overcome and help this problem, the classification of lung cancer can be done by using machine learning method. The dataset that used to classify this disease is CT Scan obtained from Cipto Mangunkusumo Hospital, Jakarta, Indonesia. The classification method that will be used is Particle Swarm Optimization-Genetic Algorithm-Support Vector Machine (PSO-GA-SVM), where Particle Swarm Optimization-Genetic Algorithm (PSO-GA) was used to optimize the parameters of the Support Vector Machine (SVM). To evaluate the results of the performance of the method, values of accuracy, precision, recall, and f1-score will be seen and it will be compared with SVM without the optimization. From the results obtained, classification using Particle Swarm Optimization-Genetic Algorithm-Support Vector Machine (PSO- GA-SVM) produces better performance compared to Support Vector Machine (SVM) without parameter optimization."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>