Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 159565 dokumen yang sesuai dengan query
cover
Furida Lusi S.
"Salah satu media sosial yang berkembang saat ini adalah twitter, twitter menjadi salah satu tempat bagi masyarakat untuk memberikan opini atau pendapat terhadap hal-hal yang menarik bagi masyarakat, sehingga opini-opini dan pendapat yang tertuang di dalam twitter dapat menjadi acuan bagi orang yang membutuhkan. Sehingga dibutuhkan metode otomatis untuk menganalisis hal tersebut yaitu dengan analisis sentiment sentiment analysis. Secara umum, masalah sentimen analisis merupakan suatu masalah klasifikasi, yaitu bagaimana mengklasifikasikan suatu data tekstual ke dalam kelas sentimen positif atau negatif.
Salah satu metode klasifikasi yang dapat digunakan adalah Support vector machine SVM. Pada proses klasifikasi sentimen dari data tekstual, data tekstual tersebut umunya direpresentasikan dalam vektor dengan fitur atau dimensi berupa kata. Disamping fitur kata, saat ini ada metode untuk mendeteksi topik pada suatu data tekstual yaitu dengan Nonnegative Matrix Factorization NMF.
Pada penelitian yang dianalisis adalah menggunakan fitur topik untuk analisis sentimen dengan cara menggabungkan metode Nonnegative Matrix Factorization NMF dan Support vector machine SVM . Nilai akurasi dari metode penggabungan ini menunjukkan hasil yang lebih baik.

One social media developed at this time is twitter, twitter became one of the places for the public to give opinions or views on matters of interest to the public, so that the opinions and views expressed in twitter can be a reference for people in need. So it takes an automatic method for analyzing it is by analysis of sentiment sentiment analysis. In general, sentiment analysis problem is a problem of classification., Namely how to classify a class of textual data into a positive or negative sentiment.
One method of classification that can be used is Support vector machine SVM. In the process of sentiment classification of textual data, textual data are generally represented by a vector with a feature or dimension in the form of words. Besides the features of the word, at this time there is a method for detecting a topic in a textual data that is with nonnegative Matrix Factorization NMF.
In the study are analyzed using the feature topic for sentiment analysis by combining methods nonnegative Matrix Factorization NMF and Support vector machine SVM. Rated accuracy of this incorporation method showed better results.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47000
UI - Tesis Membership  Universitas Indonesia Library
cover
Kartika Syskya Wydya
"Analisis sentimen merupakan proses memahami, mengekstrak dan mengolah data tekstual secara otomatis untuk mendapatkan informasi. Pada penelitian ini, analisis sentimen diterapkan pada media sosial, yaitu Twitter. Pada dasarnya analisis sentimen merupakan masalah klasifikasi. Support Vector Machine SVM adalah salah satu metode machine learning untuk menyelesaikan masalah klasifikasi. Pada pendekatan SVM model dibangun dengan data dari domain yang sama. Namun, ketika terjadi perubahan domain, maka model machine learning harus dibangun kembali dari awal dengan menggunakan data pelatihan yang baru. Data pelatihan yang baru membutuhkan proses pelabelan yang dilakukan secara manual.
Dalam kasus ini, akan lebih efektif dan efisien jika dilakukan transfer learning agar dapat menggunakan data pelatihan dari domain yang sudah tersedia untuk menangani masalah klasifikasi pada domain yang berbeda. Data pelatihan dari sebuah domain digunakan untuk melakukan klasifikasi pada domain yang berbeda. Dalam penelitian masalah analisis sentimen untuk tweets berbahasa Indonesia ini, nilai akurasi transfer learning masih lebih rendah dari pada metode SVM tanpa transfer learning. Penggunaan fitur bi-gram dapat meningkatkan kinerja transfer learning.

Sentiment analysis is the process of understanding, extracting and processing textual data automatically to obtain information. In this experiment, sentiment analysis applied to social media, Twitter. Basically, sentiment analysis is a classification problem. Support Vector Machine SVM is one of machine learning method to solve two class classification problem. In the SVM approach the model is built with data from the same domain. However, when domain changes occur, the machine learning model must be rebuilt from scratch using new training data. New training data requires manual labeling process.
In this case, it would be more effective and efficient to transfer learning to use the training data from an already available domain to deal with classification problems on different domains. Training data from a domain will be used to classify on different domains. In the research problem of sentiment analysis for tweets in Bahasa, the value of transfer learning accuracy is still lower than the SVM method without transfer learning. Use of bi gram feature can improve the performance of transfer learning.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47815
UI - Tesis Membership  Universitas Indonesia Library
cover
Amanda Nydia Augustizhafira
"Analisis sentimen merupakan bagian dari data mining text mining , yaitu proses memahami, mengekstrak, dan mengolah data tekstual secara otomatis untuk mendapatkan informasi. Pada penelitian ini, analisis sentimen diterapkan pada salah satu media sosial, yaitu Twitter. Analisis sentimen tergolong sebagai masalah klasifikasi yang dapat diselesaikan menggunakan salah satu metode machine learning, yaitu Neural Network. Pada machine learning, data dibagi menjadi data pelatihan dan data pengujian yang berasal dari domain yang sama.
Permasalahan utama pada penelitian ini adalah data pelatihan dan data pengujian berasal dari dua domain yang berbeda, sehingga perlu diterapkan pembelajaran lain selain machine learning. Masalah tersebut dapat diselesaikan dengan menggunakan transfer learning. Transfer learning merupakan suatu pembelajaran model yang dibangun oleh suatu data pelatihan dari suatu domain dan diuji oleh suatu data pengujian dari domain yang berbeda dari domain data pelatihan. Simulasi dalam penelitian ini menghasilkan suatu akurasi transfer learning dengan metode Neural Network yang nantinya akan diuji dengan fitur n-gram bi-gram dan tri-gram serta satu metode seleksi fitur, yaitu Extra-Trees Classifier.
Dalam penelitian ini, nilai akurasi transfer learning tertinggi didapat saat hidden layer berjumlah satu. Sebagian besar nilai akurasi tertinggi didapat saat penggunaan 250 neuron pada hidden layer. Fungsi aktivasi ReLU dan tanh menghasilkan nilai akurasi yang lebih tinggi dibandingkan fungsi aktivasi logistic sigmoid. Penggunakan metode seleksi fitur dapat meningkatkan kinerja transfer learning sehingga nilai akurasinya lebih tinggi dibandingkan simulasi tanpa penggunaan metode seleksi fitur.

Sentiment analysis is a part of data mining text mining , which is the process of understanding, extracting, and processing textual data automatically to obtain information. In this research, sentiment analysis is applied to one social media called Twitter. Sentiment analysis is categorized as a classification problem that can be solved using one of machine learning methods, namely Neural Network. In machine learning, data is divided into training data and test data from the same domain.
The main problem in this research is training data and test data come from two different domains, so it is necessary to apply other learning beside machine learning. The problem can be solved by using transfer learning. Transfer learning is a model learning constructed by a training data from a domain and tested by a test data from a different domain from the training data domain. The simulation in this research resulted in an accuracy of learning transfer with Neural Network method which will be tested using n grams bi grams and tri grams and one feature selection method called Extra Trees Classifier.
In this research, the highest value of transfer learning accuracy is obtained when one hidden layer is used. Most of the highest accuracy values are obtained from the use of 250 neurons on the hidden layer. The activation function of ReLU and tanh yield a higher accuracy value than the logical activation function sigmoid . The use of feature selection method can improve the transfer learning performance so that the accuracy value is higher than simulation without the use of feature selection method.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anindito Izdihardian Wibisono
"Pada tahun 2020, nilai customer satisfaction index (CSI) PT XYZ yang mempresentasi- kan kepuasan konsumen XYZ berjumlah 83.9. Angka ini gagal mencapai target PT XYZ di tahun tersebut yaitu 87, dan turun dari tahun sebelumnya yaitu 86,5 di tahun 2019. Berdasarkan pengambilan data, diketahui bahwa XYZ mengelola aduan konsumen hanya melalui Twitter. Dari ribuan tweet yang diterima akun resmi customer care PT XYZ (@XYZCares) tiap bulan di Twitter, diperkirakan hanya 1-2% yang dideteksi sebagai aduan dengan proses pengawasan manual. Penelitian ini merancang solusi dua langkah berupa implementasi social media listening dalam bentuk sentiment analysis dan topic modelling, untuk mengetahui isu dalam tweet aduan kepada XYZ. Dataset berupa kum- pulan tweet yang menyebutkan @XYZCares pada kurun waktu 1 Januari 2020 - 31 Desember 2020. Data di-scrape dari Twitter menggunakan script Python. Hasil evaluasi secara cross-validation menunjukkan akurasi rerata sentiment analysis dengan algoritme SVM lebih akurat (77%) untuk kasus ini dibandingkan algoritme RF (75%). Untuk task pemodelan topik, algoritme LDA menghasilkan klaster topik sejumlah 4 dengan rerata TPC sebesar 80%. Diketahui bahwa topik yang dominan adalah isu korupsi dan suap di badan PT XYZ. Dengan mempertimbangkan penemuan tersebut, saran yang dapat diberi- kan berdasarkan penelitian ini adalah memberhentikan staf yang diduga terlibat dalam isu-isu tersebut, serta menerapkan good corporate governance berupa aspek pengawasan dan pencegahan korupsi.

The customer satisfaction index (CSI) for the year 2020 is calculated at 83.9. This value fails to reach the company’s target for the year at 87 and is lower than the CSI value for 2019 at 86.5. Data acquired from the company shows that consumer complaints are ac- cepted and processed only through Twitter. It is estimated that of the thousands of tweets processed by PT XYZ’s official customer care account (@XYZCares) each month, only 1-2% of the tweets are considered complaints based on manual searching and classifica- tion. This research proposes a two-step solution by implementing social media listening in the form of sentiment analysis and topic modelling, to detect the most frequent issues addressed to XYZ. The dataset consists of tweets created from January 1st, 2020, to De- cember 31st, 2020 which mentioned @XYZCares. The tweets were scraped from Twitter using Python scripts. The results of cross-validation show that for the task of sentiment analysis, SVM is a more accurate algorithm on average (77%) compared to Random For- est (75%). For the following task of topic modelling, the LDA algorithm model produced 4 topic clusters with an average TPC of 80%. The most dominant topic detected relate to allegations of bribery and corruption within PT XYZ. Taking these finds into considera- tion, this research suggests that PT XYZ immediately dismiss all staff implicated in the aforementioned cases, as well as implementing good corporate governance in the form of tighter supervision and prevention of corrupt dealings."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Chris Solontio
"Analisis sentimen merupakan permasalahan klasifikasi data mining dengan proses memahami, mengekstrak dan mengolah data teks secara otomatis untuk mendapatkan informasi. Dalam menganalisis pendapat di media sosial digunakan machine learning untuk mendapatkan hasil klasifikasi. Banyak metode machine learning untuk melakukan klasifikasi, dalam penelitian ini akan digunakan convolutional neural network. Dalam machine learning, data dibagi menjadi data training dan data test dengan domain data yang sama.
Permasalahan utama skripsi ini adalah data yang digunakan memiliki dua domain berbeda, sehingga metode machine learning tradisional tidak dapat diterapkan. Sehingga agar dapat menerapkan convolutional neural network untuk dua data berbeda diperkenalkan suatu cara yaitu transfer learning. Transfer learning merupakan suatu proses pembelajaran model yang didapatkan dari training data A oleh data B dengan domain berbeda. Simulasi dalam penelitian ini menghasilkan suatu akurasi transfer learning dengan metode convolutional neural network.

Sentiment analysis is classification problem in data mining with process of understanding, extracting and processing text data to obtain information. Machine learning is needed in analyzing sentiment of the people to get the result of classification. There are many methods in machine learning to do classification, this research will use convolutional neural network. In machine learning, data is divided into train and test data with the same domain.
The main problem of this research is the data has a different domain, so the traditional machine learning method can not be applied. In order to apply convolutional neural network into data with different domain, it will be introduced transfer learning method. Transfer learning is learning model process obtained from training data A then tested by data B. In this research, the simulations result is accuracy of transfer learning with convolutional neural network.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dian Isnaeni Nurul Afra
"Komisi Pemberantasan Korupsi (KPK) memiliki kewenangan dalam melakukan pendaftaran dan pemeriksaan terhadap Laporan Harta Kekayaan Penyelenggara Negara (LHKPN). Pelaporan ini berfungsi untuk melakukan pengawasan kejujuran, integritas, dan deteksi kemungkinan adanya tindakan memperkaya diri secara melawan hukum oleh pejabat publik. Publikasi LHKPN sering menimbulkan prasangka negatif dan kecurigaan publik terhadap laporan harta kekayaan pejabat yang mengakibatkan kekhawatiran pejabat untuk melaporkan harta kekayaan secara lengkap dan benar. Persepsi ini menjadi kontraproduktif dengan upaya pencegahan korupsi yang dilakukan oleh KPK apabila tidak direspon dengan cepat. Penelitian ini bertujuan untuk membuat model analisis sentimen dan pemodelan topik yang dapat mengeksplorasi topik dari data media sosial Twitter. Indonesia memiliki jumlah pengguna aktif terbesar keenam di dunia dengan 15,7 juta pengguna yang didominasi kelompok usia 25-34 tahun. Dataset sejumlah 881 data diambil dari Twitter dengan kata kunci "lhkpn" dan "harta kekayaan pejabat" pada periode 1 Agustus sampai 5 November 2021. Penelitian ini mengekplorasi beberapa algoritma klasifikasi, representasi fitur unigram, bigram, dan trigram dengan CountVectorizer dan TFIDF, serta metode oversampling SMOTE. Algoritma klasifikasi dengan performa paling baik pada penelitian ini adalah Multilayer Perceptron dengan fitur unigram CountVectorizer dan metode oversampling dengan accuracy 76,60%, precision 78,19%, recall 76,60%, dan F1 score 76,95%. Hasil pemodelan topik menggunakan Latent Dirichlet Allocation pada kategori ‘negatif’ didominasi ekspresi kekecewaan dan kemarahan masyarakat terhadap meningkatnya harta kekayaan pejabat selama masa pandemi Covid-19 yang berbanding terbalik dengan meningkatnya utang negara dan kesulitan yang dihadapi masyarakat selama pandemi. Topik yang dihasilkan pada kategori ‘positif’ cukup beragam mulai dari aturan untuk melakukan pembuktian terbalik, usulan mengenai kewajiban pelaporan dan sanksi, permintaan untuk membuka laporan kekayaan kepada publik, serta pembahasan mengenai kewajaran penambahan harta kekayaan yang disebabkan oleh meningkatnya nilai aset tidak bergerak.

The Corruption Eradication Commission (KPK) has the authority to register and examine Public Officials Wealth Reports (LHKPN). This report serves to monitor honesty, integrity, and detect the possibility of illegal enrichment by public officials. Publication of LHKPN often creates negative prejudice and public suspicion of official wealth reports, which causes officials to worry about reporting assets completely and correctly. This perception is counterproductive to the efforts to prevent corruption carried out by the KPK if it is not responded to quickly. This study aims to create a sentiment analysis model and topic modelling that can explore topics from Twitter social media data. Indonesia has the sixth-largest number of active users in the world with 15.7 million users, dominated by the 25-34 year age group. A dataset of 881 data was taken from Twitter with the keywords "lhkpn" and "official assets" in the period August 1 to November 5, 2021. This study explores several classification algorithms, representation of unigram, bigram, and trigram features with CountVectorizer and TFIDF, as well as SMOTE oversampling methods. The classification algorithm with the best performance is the Multilayer Perceptron with the unigram CountVectorizer feature and the oversampling method with 76.60% accuracy, 78.19% precision, 76.60% recall, and 76.95% F1 score. The results of topic modelling using Latent Dirichlet Allocation in the 'negative' category are dominated by expressions of public disappointment and anger towards the increase in official wealth during the Covid-19 pandemic which is inversely proportional to the increase in state debt and the difficulties faced by the community during the pandemic. The topics generated in the 'positive' category are quite diverse, starting from the rules for conducting reverse verification, proposals on reporting obligations and sanctions, requests to disclose wealth reports to the public, as well as discussions on the reasonableness of adding to assets caused by the increase in the value of immovable assets."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Restu Eka Firdaus
"Sistem pengenalan wajah telah banyak diaplikasikan dengan menggunakan berbagai metode, diantaranya: metode PCA, metode ICA, metode LDA, metode EP, metode EBGM, metode Kernel, metode 3-D Morphable, metode 3-D Face Recognition, metode Bayesian Framework, metode HMM, metode SVM, dan sebagainya.
Pada penelitian ini digunakan metode Local Binary Pattern LBP untuk melakukan ekstraksi fitur citra wajah, serta metode SVM dan KNN untuk mengukur tingkat akurasi sistem pengenalan wajah. Data yang digunakan pada penelitian ini yaitu citra wajah 25 mahasiswa Matematika Universitas Indonesia, masing-masing individu diambil 10 citra wajah yang berbeda terdiri dari 5 citra wajah menggunakan kacamata dan 5 citra lainnya tidak menggunakan kacamata, serta diambil dari sudut yang berlainan.
Berdasarkan pengujian yang telah dilakukan, metode KNN dengan memperoleh tingkat akurasi terbaik yaitu sebesar 96.20 pada iterasi 100 dan 90 data training. Hal ini menunjukkan metode KNN lebih baik dibandingkan dengan metode SVM yang hanya memperoleh tingkat akurasi sebesar 94.80 pada iterasi 100 dan 90 data training.

Face recognition has been widely applied using various methods, that is PCA, ICA, LDA, EP, EBGM, Kernel, 3 D Morphable, 3 D Face Recognition, Bayesian Framework, HMM, SVM, etc.
In this research, the Local Binary Pattern LBP method is used to perform feature extraction of a facial image, and to measure the accuracy level of face recognition used SVM and knn method. The data used in this research are face images of 25 mathematics students of University of Indonesia, each individual took 10 different facial images consisting of 5 face images are using glasses with 5 different angles and 5 other images aren 39 t using glasses that also taken from the same 5 different angles.
Based on the tests, KNN method with K 1 obtained the best accuracy of 96.20 at 100 iterations and 90 training data. This result shows the KNN method is better than the SVM method which only obtained 94.80 at 100 iterations and 90 of training data.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Iqbal
"Penggunaan metode machine learning dalam memprediksi volatilitas data keuangan sering digunakan dan berhasil dalam beberapa penelitian akhir-akhir ini. Salah satu metode yang paling efektif pada machine learning adalah Support Vector Machine, dimana metode ini sudah terbukti oleh para peneliti-peneliti sebelumnya dapat menunjukkan performa yang sangat baik dalam melakukan prediksi volatilitas dibandingkan metode GARCH. Pada penelitian ini, metode machine learning akan digabungkan dengan metode tradisional (yaitu SVR-GARCH) dan akan dibandingkan dengan metode tanpa digabungkan (GARCH dan SVR), yang kemudian akan dibuktikan kemampuannya pada negara-negara berkembang. Hasil penelitian menunjukkan bahwa pada negara-negara berkembang, SVR-GARCH memiliki kemampuan prediksi volatilitas yang lebih baik dibandingkan dengan GARCH.

The use of machine learning methods in predicting the volatility of financial data is often used and has been successful in several studies recently. One of the most effective methods of machine learning is the Support Vector Machine, where this method has been proven by previous researchers to show excellent performance in predicting volatility compared to the GARCH method. In this study, machine learning methods will be combined with traditional methods (namely SVR-GARCH) and will be compared with uncomplicated methods (GARCH and SVR), which will then prove its capabilities in developing countries. The results showed that in developing countries, SVR-GARCH has better volatility prediction than GARCH."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Inke Nur Dewanti
"Tesis ini membahas mengenai evaluasi analisis sentimen tools vs human. Pada penelitiannya, tools yang digunakan adalah brand24 dan ripple10. Perlu diketahui brand24 merupakan digital listening tools yang berasal dari Polandia sedangkan ripple10 berasal dari Indonesia. Pada tools analisa sentimen dilakukan menggunakan algoritma. Sedangkan pada human analisa sentimen dilakukan secara tematik. Adapun metode yang digunakan pada penelitian ini adalah kuantitatif. Hasilnya, tools memang memudahkan kerja manusia. Namun, dalam menganalisis sentimen masih diperlukannya campur tangan manusia untuk memastikan validitasnya. Lainnya, variabel kategori topik dan lambang dapat mempengaruhi analisa suatu sentimen sedangkan bahasa dan karakter tidak terlalu berpengaruh.

This thesis discusses the evaluation of sentiment analysis tools vs human. In this research, the tools used are brand24 and ripple10. Brand24 is a digital listening tool from Poland, while ripple10 is from Indonesia. Sentiment analysis tools are carried out using an algorithm. While in human sentiment analysis is done thematically. The method used in this research is quantitative. As a result, tools help human work easier. But, in analyzing sentiment, human intervention is still needed to ensure the validity. On the other hand, topic and symbol category variables can influence the analysis of a sentiment, while language and character have little effect."
Depok: Fakultas Ilmu Sosial dan Ilmu Politik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Adani Osmardifa
"Tingginya tingkat penggunaan media sosial, membuat media sosial sering digunakan untuk menjadi salah satu sumber data pada banyak penelitian. Salah satu penelitian yang paling sering digunakan adalah analisis sentimen. Analisis sentimen adalah bidang studi yang menganalisis pendapat, sentimen, evaluasi, penilaian, sikap, dan emosi orang terhadap entitas seperti produk, layanan, organisasi, individu, isu, peristiwa, topik, dan atributnya. Pada penelitian ini, penulis menggunakan model Bidirectional Encoder Representation from Transformers (BERT) pada permasalahan analisis sentimen. Pada penelitian ini model BERT juga dibandingkan dengan dua model dasar lainnya, yaitu Convolutional Neural Network (CNN) dan Long-Short Term Memory (LSTM). Agar model dapat belajar secara berkelanjutan dari beberapa domain data, model tersebut juga diimplementasikan pada lifelong learning. Hasilnya, BERT mengalami penurunan akurasi sebanyak 8,21% dari 89,17% menjadi 80,96% pada uji loss of knowledge dan mengalami kenaikan sebesar 6,67% dari 82,93% menjadi 89,60% pada uji transfer of knowledge.

High level usage of social media makes this platform frequently used as one of the sources for educational studies such as sentiment analysis. Sentiment analysis is a field of study that analyzes people's opinions, sentiments, evaluations, judgments, attitudes, and emotions towards entities such as products, services, organizations, individuals, issues, events, topics, and their attributes. In this study, author will use Bidirectional Encoder Representation from Transformers (BERT) model for sentiment analysis problem. BERT will also be compared with two others basic model which is Convolutional Neural Network (CNN) and Long-Short Term Memory (LSTM). In order for the model to learn continuously from several data domains, lifelong learning is also implemented in the model. As a result, BERT accuracy decreased 8.21% from 89,17% to 80,96% in loss of knowledge test and increased 6.67% from 82,93% to 89,60% in transfer of knowledge test."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>