Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 61258 dokumen yang sesuai dengan query
cover
Finny Chrisnardy
"ABSTRACT
Karbon mesopori berhasil disintesis menggunakan metode soft template dengan Pluronic F-127 sebagai agen pembentuk struktur; phloroglucinol dan formaldehida sebagai prekursor karbon. Karbon mesopori hasil sintesis dikarakterisasi dengan XRD, BET, SEM-EDX, dan FTIR. Aktifasi karbon mesopori hasil sintesis dilakukan dengan menggunakan HCl 1M dengan tujuan untuk meningkatkan loading trietilentetraamina TETA sebagai senyawa bergugus amina dalam karbon mesopori. Karbon mesopori dan karbon mesopori teraktifasi dimodifikasi menggunakan TETA dengan variasi konsentrasi di bawah 50 wt. Karbon mesopori termodifikasi kemudian dikarakterisasi dengan SEM-EDX dan FTIR. Uji adsorpsi CO2 dengan adsorben karbon mesopori, karbon mesopori teraktifasi, karbon mesopori termodifikasi TETA, dan karbon mesopori teraktifasi termodifikasi TETA dengan variasi waktu pengaliran CO2 selama 5, 10, 15, 20, 25, dan 30 menit dengan waktu kontak 15 menit dan laju alir gas CO2 20 mL/menit. Sebagai perbandingan, uji adsorpsi dilakukan juga dengan karbon aktif komersial. Uji adsorpsi juga dilakukan pada laju alir 60 mL/menit selama 2,5, 5, 7,5, 10, 12,5, dan 15 menit untuk melihat pengaruh laju alir terhadap kemampuan adsorpsi CO2. Gas CO2 yang teradsorpsi dilkuantisasi dengan metode titrasi asam basa. Berdasarkan uji adsorpsi CO2, aktifasi asam berhasil meningkatkan loading TETA ke dalam karbon mesopori sehingga meningkatkan kemampuan adsorpsi CO 2.

ABSTRACT
Mesoporous carbon was successfully synthesized using soft templated method with Pluronic F 127 as structure directing agent phloroglucinol and formaldehyde as carbon precursor. The as synthesized mesoporous carbon was characterized using XRD, BET, SEM EDX, and FTIR. Activation of as synthesized mesoporous carbon was done using HCl 1 M to increase triethylenetetraamine TETA as amine group compound loading within mesoporous carbon. Mesoporous carbon and activated mesoporous carbon was modified using TETA with concentration varation under 50 wt. The modified mesoporous carbon was then characterized with SEM EDX and FTIR. Adsorption test was performed using adsorbent mesoporous carbon, activated mesoporous carbon, mesoporous carbon modified by TETA, and activated mesoporous carbon modified by TETA with flow time CO2 gas variation 5, 10, 15, 20, 25, and 30 minutes, contact time 15 minutes, and flow rate 20 mL minute. As comparison, adsorption test was performed with activated carbon. Adsorption test was also performed with flow rate 60 mL minute for 2,5, 5, 7,5, 10, 12,5, and 15 minutes to observe the effect of flow rate on adsorption ability of CO2. Adsorbed CO2 gases was quantified with acid base titration method. From CO2 adsorption test, acid activation was successfully increased TETA loading within mesoporous carbon which increased CO2 adsorption ability."
2016
S66243
UI - Skripsi Membership  Universitas Indonesia Library
cover
Awaludin Martin
"Penelitian ini terdiri atas dua bagian penelitian, yaitu proses produksi karbon aktif berbahan dasar batubara sub bituminus Indonesia yang berasal dari Kalimantan Timur dan Riau dan adsorpsi isotermal karbon dioksida dan metana pada karbon aktif hasil penelitian bagian pertama. Karbon aktif diproduksi di laboratorium dengan menggunakan aktivasi fisika dimana gas CO2 digunakan sebagai activating agent pada temperatur aktivasi sampai dengan 950oC. Karbon aktif yang diproduksi selanjutnya dilakukan pengujian untuk mengetahui kualitas karbon aktif berupa angka Iodine dan luas permukaan. Dari penelitian yang dilakukan didapat bahwa karbon aktif berbahan dasar batubara Kalimantan Timur lebih baik dibanding dengan karbon aktif berbahan dasar batubara Riau. Hal tersebut dikarenakan oleh perbandingan unsur oksigen dan karbon pada batubara Kalimantan Timur lebih tinggi daripada batubara Riau. Angka Iodine maksimum pada karbon aktif berbahan dasar batubara Riau adalah 589,1 ml/g, sementara karbon aktif berbahan dasar batubara Kalimantan sampai dengan 879 ml/g.
Adsorpsi isotermal karbon dioksida dan metana pada karbon aktif Kalimantan Timur dan Riau serta satu jenis karbon aktif komersial dilakukan di laboratorium Teknik Pendingin dan Pengkondisian Udara Teknik Mesin FTUI. Adsorpsi isotermal dilakukan dengan menggunakan metode volumetrik dengan variasi temperatur isotermal 27, 35, 45, dan 65oC serta tekanan sampai dengan 3,5 MPa. Data adsorpsi isotermal yang didapat adalah data kapasitas penyerapan karbon dioksida dan metana pada karbon aktif pada variasi tekanan dan temperatur isotermal yang kemudian di plot dalam grafik hubungan tekanan dan kapasitas penyerapan. Dari hasil penelitian didapat bahwa kapasitas penyerapan karbon aktif komersial lebih baik dibandingkan dengan karbon aktif Kalimantan Timur dan Riau, hal tersebut dikarenakan luas permukaan dan volume pori karbon aktif komersial lebih tinggi dibanding yang lain. Kapasitas penyerapan CO2 pada karbon aktif komersial (CB) maksimum adalah 0,349 kg/kg pada temperatur 27oC dan tekanan 3384,69 kPa, sementara untuk karbon aktif Kalimantan Timur (KT) adalah 0,227 kg/kg pada temperatur 27oC dan tekanan 3469,27 kPa dan untuk karbon aktif Riau (RU) adalah 0,115 kg/kg pada temperatur 27oC dan tekanan 3418,87 kPa. Kapasitas penyerapan CH4 pada karbon aktif CB maksimum adalah 0,0589 kg/kg pada temperatur isotermal 27oC dan tekanan 3457,2 kPa, sementara untuk karbon aktif KT adalah 0,0532 kg/kg pada temperatur 27oC dan tekanan 3495,75 kPa dan untuk karbon aktif RU adalah 0,0189 kg/kg pada temperatur 27oC dan tekanan 3439,96 kPa.
Data adsorpsi isotermal yang didapat selanjutnya dikorelasi dengan menggunakan persamaan model Langmuir, Toth, dan Dubinin-Astakhov. Dari hasil perhitungan korelasi persamaan didapat bahwa persamaan model Toth adalah persamaan model yang paling akurat, dimana nilai simpangan antara data eksperimen adsorpsi isotermal CO2 dengan korelasi persamaan model Toth adalah 3,886% (CB), 3,008% (KT) dan 2,96% (RU). Sementara untuk adsorpsi isotermal CH4 adalah 2,86% (CB), 2,817 (KT), dan 5,257% (RU). Dikarenakan persamaan model Toth adalah persamaan yang paling akurat, maka perhitungan panas adsorpsi isosterik dan adsorpsi isosterik dilakukan dengan menyelesaikan persamaan model Toth tersebut. Data panas adsorpsi dibutuhkan untuk mengetahui berapa besar panas yang dilepaskan ketika adsorben menyerap karbon dioksida dan metana, sementara data adsorpsi isosterik diperlukan untuk dapat memprediksi berapa besar tekanan yang dibutuhkan dan temperatur isotermal yang harus dikondisikan untuk menyerap gas karbon dioksida dan metana dalam jumlah yang telah diketahui.

This research is consists of two main topics, first is production of activated carbon from Indonesian sub bituminous coal as raw material. The raw material is from East of Kalimantan and Riau sub bituminous coal. And secondly is adsorption isotherms carbon dioxide and methane on activated carbon. Activated carbon was produced in laboratory with physical activation method by carbon dioxide as activating agent up to 950oC. Iodine number and surface area was used to characterize of activated carbon quality. From the research, the quality of activated carbon from East of Kalimantan sub bituminous coal is better than Riau sub bituminous coal. It caused the ratio of oxygen and carbon in from East of Kalimantan sub bituminous coal is higher than Riau sub bituminous coal. The maximum iodine number of activated carbon from Riau sub bituminous coal is 589.1 ml/g and activated carbon from East of Kalimantan sub bituminous coal is 879 ml/g.
Adsorption isotherms carbon dioxide and methane on activated carbon from East of Kalimantan and Riau sub bituminous coal and commercial activated carbon was done in Refrigeration and Air Conditioning Laboratory, Mechanical Engineering Department, Faculty of Engineering, University of Indonesia. Adsorption isotherms were done by volumetric method with variation of temperature is 27, 35, 45, and 65oC and the pressure of adsorption up to 3.5 MPa. Data of adsorption isotherm is adsorption capacity of carbon dioxide and methane on activated carbon with pressure and isotherms temperature variation. Data of adsorption capacity was plotted on pressure and adsorption capacity. From the research, adsorption capacity of commercial activated carbon is higher than Activated carbon from East of Kalimantan and Riau coal. It is caused; the surface area and pore volume of commercial activated carbon is higher than East of Kalimantan and Riau coal. The maximum adsorption capacity of CO2 on commercial activated carbon is 0.349 kg/kg at isotherm temperature 27oC and the pressure is 3384.69 kPa. For activated carbon from East of Kalimantan, the maximum adsorption capacity of CO2 is 0.227 kg/kg at isotherm temperature 27oC and the pressure is 3469.27 kPa. For activated carbon from Riau, the maximum adsorption capacity of CO2 is 0.115 kg/kg at isotherm temperature 27oC and the pressure is 3418.87 kPa. The maximum adsorption capacity of CH4 on commercial activated carbon is 0.0589 kg/kg at isotherm temperature 27oC and the pressure is 3457.2 kPa. For activated carbon from East of Kalimantan, the maximum adsorption capacity of CH4 is 0.0532 kg/kg at isotherm temperature 27oC and the pressure is 3495.75 kPa. For activated carbon from Riau, the maximum adsorption capacity of CH4 is 0.0189 kg/kg at isotherm temperature 27oC and the pressure is 3439.96 kPa.
Adsorption isotherms data was correlated with Langmuir, Toth, and Dubinin- Astakhov equation models. From the calculation, Toth equation model more accurate than Langmuir and Dubinin-Astakhov. The deviation between experiment data of adsorption isotherm CO2 and calculation by using Toth equation model is 3.886% for commercial activated carbon data, 3.008% for East of Kalimantan activated carbon, and 2.96% for Riau activated carbon. The deviation between experiment data of adsorption isotherm CH4 and calculation by using Toth equation model is 2.86% for commercial activated carbon data, 2.817% for East of Kalimantan activated carbon, and 5.257% for Riau activated carbon.Isosteric heat of adsorption and adsorption isostere was calculated by using Toth equation model, caused the Toth equation model more accurate than Langmuir and Dubinin-Astakhov models. Isosteric heat of adsorption is needed to know the amount of heat of adsorption released when activated carbon adsorpt the adsorbate. The adsorption isostere data is needed to predict the pressure and isotherm temperature for adsorp the amount of adsorbate.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
D998
UI - Disertasi Open  Universitas Indonesia Library
cover
Aulia Andika Putri
"Kini telah dikembangkan teknologi membran dengan kontaktor serat berongga yang dapat mengatasi permasalahan-permasalahan yang terjadi akibat pemisahan CO2 menggunakan kolom konvensional. Prinsip dari kontaktor membran ini menggunakan gaya penggerak berupa perbedaan konsentrasi. Namun terdapat kelemahan dari teknologi ini yaitu terjadi pembasahan membran oleh pelarut.
Oleh karena itu penelitian ini menguji pengaruh laju alir pelarut PEG, konsentrasi pelarut, dan jumlah serat membran dalam kinerja penyerapan gas CO2 melalui kontaktor membran serat berongga superhidrofobik. Efektivitas kinerja membran diukur berdasarkan parameter hidrodinamikanya.
Proses absorpsi ini merupakan absorpsi fisika, dimana gas CO2 sebagai zat terlarut dan polietilen glikol sebagai pelarut. Dengan variabel bebas dari penelitian ini yaitu laju alir pelarut PEG 100-500 cm3/menit, konsentrasi pelarut 5-20%, dan jumlah serat membran yaitu 1000, 3000, 5000.
Pada penelitian ini hasil optimum diperoleh pada laju alir pelarut 500 ml/menit dan jumlah serat 5000, untuk koefisien perpindahan massa (KL) sebesar 3,7x10-4 cm/s, efisiensi penyerapan (%R) sebesar 14,6%, fluks (J) sebesar 1,4x10-5 mol/cm2.s, dan acid loading sebesar 4x10-3. Sedangkan besar konsentrasi pelarut optimum 10%.

Now has developed technology hollow fiber membrane contactor that can overcome the problems caused by CO2 separation using conventional columns. The principle of this membrane contactor is using the driving force as different concentrations. But a weakness of this technology is going wetting membrane by the solvent.
Therefore, this study examined the effect of PEG solvent flow rate, the concentration of the solvent, and the amount of fiber membranes in CO2 gas absorption performance through the hollow fiber membrane contactor superhydrophobic. Effectiveness of membrane performance is measured based on the parameters their hydrodinamics.
This absorption process is a physical absorption, where CO2 as a solutes and polyethylene glycol as a solvent. With the independent variables of this research that PEG solvent flow rate of 100-500 cm3/min, the solvent concentration of 5-20%, and the number of membrane fibers, namely 1000, 3000, 5000.
In this study, the results obtained in the optimum solvent flow rate of 500 ml/min and the amount of fiber 5000, for the mass transfer coefficient (KL) of 3,7x10-4 cm/s, the efficiency of absorption (%R) at 14,6%, the flux (J) of 1,4x10-5 mol/cm2.s, and acid loading of 4x10-3. Whereas, the optimum solvent concentration is 0%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66344
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Faisal
"Karbon mesopori telah berhasil disintesis melalui metode soft template dengan Pluronic F-127 sebagai agen pembentuk pori; phloroglucinol dan formaldehida sebagai sumber karbon. Karbon mesopori kemudian dimodifikasi permukaannya dengan trietilentetraamina (TETA) untuk meningkatkan kemampuan adsorpsi gas CO2, dan dilakukan juga modifikasi permukaan karbon aktif komersial dengan TETA sebagai pembanding. Karbon mesopori dan karbon aktif komersial termodifikasi TETA dikarakterisasi dengan instrumen FTIR, SEM, EDS dan surface area analyzer-BET untuk melihat pengaruh modifikasi terhadap struktur dan sifat kedua material tersebut. Analisis komposisi unsur dari karbon mesopori termodifikasi dan karbon aktif termodifikasi 30% TETA (w/w) menunjukkan peningkatan kandungan unsur nitrogen berurutan sebesar 21,190% wt dan 1,897% wt. Spektrum FTIR karbon mesopori dan karbon aktif termodifikasi TETA 30% wt memiliki puncak serapan pada bilangan gelombang 3100~3600 cm-1, 1485~1579 cm-1 dan 2924 cm-1 yang merupakan puncak serapan vibrasi stretching N-H, vibrasi stretching simetris dan asimetris CH2 dan vibrasi bending N-H dari TETA, yang menunjukkan kedua material karbon telah berhasil dimodifikasi. Hasil analisis luas permukaan dan ukuran pori menunjukkan modifikasi karbon aktif dengan TETA menurunkan luas permukaan karbon aktif komersial secara signifikan, dari 518,9 m2/g menjadi 17,83 m2/g untuk modifikasi TETA 30% wt, sementara luas permukaan karbon mesopori hanya turun dari 391 m2/g menjadi 161,3 m2/g. Hasil uji adsorpsi CO2 menunjukkan karbon mesopori termodifikasi TETA memiliki kemampuan adsorpsi CO2 lebih baik dibandingkan karbon mesopori tanpa modifikasi, yang mengadsorpsi 7,166 mmol CO2/g adsorben dibandingkan dengan 6,100 mmol CO2/g adsorben untuk karbon mesopori tanpa modifikasi selama 30 menit. Hasil ini lebih baik dibandingkan dengan kemampuan adsorpsi CO2 karbon aktif termodifikasi TETA (30% wt dan 50% wt) yang mengadsorpsi 1,200 mmol CO2/g adsorben dan 1,230 mmol CO2/g adsorben. Kemampuan adsorpsi karbon aktif komersial termodifikasi TETA turun drastis bila dibandingkan dengan sebelum modifikasi (sebesar 9,070 mmol CO2/g adsorben), yang merupakan kemampuan adsorpsi CO2 paling baik diantara adsorben-adsorben lainnya pada penelitian ini. Hasil ini menunjukkan modifikasi karbon mesopori dengan TETA berhasil meningkatkan kemampuan adsorpsi CO2, namun sebaliknya modifikasi karbon aktif dengan TETA menurunkan kemampuan adsorpsi CO2, yang diakibatkan oleh tertutupnya pori.
Mesoporous carbon has been successfully synthesized through soft templating method with Pluronic F-127 as pore directing agent; phloroglucinol and formaldehyde as carbon sources. Furthermore, the surface of mesoporous carbon was modified with triethylenetetraamine (TETA) to enhance the CO2 adsorption capability. As comparison, activated carbon was also modified with TETA and tested for CO2 adsorption. TETA modified mesoporous and activated carbon were characterized with FTIR, SEM-EDS and SAA-BET instruments to see the effect of modification to the structure and characteristic of both materials. Analysis of the elemental composition of mesoporous carbon and activated carbon modified TETA 30% wt indicates the enhancement of nitrogen to the amount of 21,190 % wt and 1,897 % wt for mesoporous and activated carbon respectively. FTIR spectrum of both materials show peaks at 3100~3600 cm-1, 1485~1579 cm-1 and 2924 cm-1 which are assigned for N-H stretching, symmetric and asymmetric CH2 and N-H bending peaks from TETA, which indicates that both materials has been succesfully modified. The result of surface area and pore size measurement indicate that modification of activated carbon with TETA decreases its surface area, from 518,9 m2/g to 17,83 m2/g for 30% wt TETA modification. On the other hand, the surface area of modified mesoporous carbon only decreased from 391 m2/g to 161,3 m2/g. The CO2 adsorption results indicate that modified mesoporous carbon have higher CO2 adsorption capability than non-modified mesoporous carbon, in which adsorbing 7,166 mmol CO2/g adsorbent for 30% wt loading compared to 6,100 mmol CO2/g adsorbent for non-modified mesoporous carbon through 30 minutes running. This result is higher than TETA modified activated carbon (30% wt and 50% wt) adsorption capability which are 1,200 mmol CO2/g adsorbent and 1,230 mmol CO2/g adsorbent, respectively. The adsorption capability of modified activated carbon decreases significantly compared to non-modified activated carbon (about 9,070 mmol CO2/g adsorbent), which is the highest amongst all tested adsorbents in this work. In conclusion, the surface of mesoporous carbon modification with TETA enhance the CO2 adsorption capability. On the other hand, modification of activated carbon with TETA lower the CO2 adsorption capability, due to the blocking of the pores."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
S61155
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yohanes Raymond Lawang
"Deep Eutectic Solvent (DES) merupakan gabungan Hydrogen Bond Acceptor (HBA) dan Hydrogen Bond Donor (HBD) yang memiliki potensi sebagai alternatif absorben CO2 pada pemrosesan natural gas dibandingkan dengan pelarut konvensional, seperti alkanoamin dan ionic liquid. Berdasarkan eksperimen, DES terbukti memiliki kemampuan menangkap CO2 yang sangat baik. DES dapat diklasifikasikan menjadi DES hidrofobik dan hidrofilik berdasarkan ketertarikannya terhadap air. Penelitian ini menggunakan DES hidrofobik untuk meminimalisasi penyerapan air yang dapat menurunkan kemampuan DES dalam menyerap CO2 sehingga mempermudah proses regenerasi DES berbasis pemisahan flash. Modeling dilakukan untuk membuktikan kemampuan DES dalam menyerap CO2 berdasarkan prediksi oleh model termodinamika modified Peng-Robinson EOS dengan pembuatan model kesetimbangan gas-cair (VLE) DES-CO2. Selain itu, dilakukan juga simulasi menggunakan Aspen Plus yang berbasis absorpsi fisika model ekuilibrium serta regenerasi DES berbasis flash system yang dioptimasi dan divalidasi berdasarkan data eksperimental dengan nilai % rata-rata relatif deviasi absolut (AARD) berkisar antara 0,993% hingga 1,151%. Kemudian, diperoleh profil kelarutan CO2 dalam DES saat absorpsi yang menurun dan profil recovery CO2 dalam DES saat regenerasi yang meningkat seiring terjadinya peningkatan laju alir umpan DES. Hasil menunjukan DES yang mengandung CO2 dapat diregenerasi hingga mencapai kemurnian 99,9%.

Deep Eutectic Solvent (DES) is a combination of a Hydrogen Bond Acceptor (HBA) and a Hydrogen Bond Donor (HBD), showing potential as an alternative CO2 absorbent in natural gas processing compared to conventional solvents such as alkanolamines and ionic liquids. Experimental studies have demonstrated that DES possesses an excellent CO2 capture capability. DES can be classified into hydrophobic and hydrophilic DES based on their affinity for water. This research utilizes hydrophobic DES to minimize water absorption into DES, which can reduce the CO2 absorption efficiency of DES, thus facilitating the regeneration process of DES based on flash separation. Modelling is conducted to verify the CO2 absorption capability of DES, as predicted by the modified Peng-Robinson EOS thermodynamic model. This involves creating a VLE (Vapor-Liquid Equilibrium) model for DES-CO2. In addition, simulation is also conducted using Aspen Plus based on a physical absorption equilibrium model. The regeneration of DES is based on an optimized flash system, validated against experimental data with an average absolute relative deviation ranging from 0.993% to 1.151%. The results indicate that the CO2 solubility profile in DES during absorption decreases, and the CO2 recovery profile in DES during regeneration increases with the increasing feed flow rate of DES. The findings show that DES containing CO2 can be regenerated to achieve a purity of 99.9%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hamzah
"Teknologi Carbon Capture Storage merupakan teknologi yang menawarkan pemecahan atas masalah pemanasan global melalui pemisahan gas karbondioksida dari gas buang. Salah satu upaya dalam pengurangan biaya teknologi Carbon Capture Storage adalah penggunaan jenis isian kolom/packing yang memiliki efektivitas perpindahan massa lebih baik pada proses absorpsi karbondioksida sehingga dapat mengurangi biaya kapital kolom. Penelitian ini melakukan simulasi terhadap proses absorpsi karbon dioksida gas buang pada geometri satu unit packing jenis super mini ring menggunakan larutan MEA sebagai absorben pada perangkat lunak Computational Fluid Dynamic (CFD) yaitu COMSOL Multiphysics. Simulasi ini mempertimbangkan pengaruh perpindahan momentum terhadap laju perpindahan massa dan dilakukan dengan menggambarkan geometri super mini ring.
Hasil simulasi menunjukkan bahwa absorpsi yang disertai reaksi memiliki laju perpindahan CO2 yang lebih tinggi. Faktor lain yang meningkatkan laju perpindahan CO2 adalah kecepatan aliran gas yang lebih tinggi, suhu operasi yang lebih tinggi, tekanan operasi yang lebih tinggi, dan diameter Super Mini Ring yang lebih kecil Modifikasi geometri dari Super Mini Ring dengan bentuk dua buah sobekan memberikan fluks absorpsi yang lebih baik.

Carbon Capture Storage provide alternative to reduce global warming. One of the ways to reduce the cost of Carbon Capture Storage is using packing’s type which gives high mass transfer efficiency on CO2 absorption process from flue gas. This research will simulate CO2 absorption process using MEA solution at Super Mini Ring. This simulation will consider the effect of momentum transfer to mass transfer rate and this simulation is also consider the effect of Super Mini Ring geometry. This simulation is held on CFD Software, COMSOL Multiphysics.
The result of simulation shows that reactive absorption give higher mass transfer efficiency than physical absorption. The other factors that increase mass transfer efficiency are higher gas velocity, higher operating temperature, although not significant, and higher operating pressure. Smaller diameter of Super Mini Ring gives higher mass transfer efficiency because of its higher surface area. Modification of Super Mini Ring’s geometry which has two tears give higher mass transfer efficiency.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54850
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maryam Afifah
"ABSTRAK
Zat warna merupakan polutan dalam limbah industri tekstil yang berdampak terhadap estetika, kesehatan, dan lingkungan, salah satunya adalah zat warna anionik Congo Red yang bersifat karsinogen. Tujuan penelitian ini adalah untuk mengetahui kondisi optimum dalam menyisihkan zat warna anionik Congo Red dengan metode adsorpsi menggunakan karbon aktif batu bara dan tempurung kelapa serta regenerasi dan perencanaan aplikasinya di lapangan. Metode penelitian yang digunakan adalah shaked batch dengan variasi kondisi pH, dosis adsorben, dan waktu kontak menggunakan Two Level Factorial Design. Hasil penelitian memperlihatkan efisiensi penghilangan zat warna optimum oleh karbon aktif tempurung kelapa pada kondisi pH 2,2, dosis adsorben 5,5 gram, dan waktu kontak 45 menit dan batu bara pada kondisi pH 3,8, dosis adsorben 5,5 gram, dan waktu kontak 100 menit sama, yaitu sebesar 74,67%. Efisiensi regenerasi dengan larutan aseton 60% adalah sebesar 58,06% untuk karbon aktif tempurung kelapa, dan 77,42% untuk karbon aktif batu bara. Adsorpsi Congo Red menggunakan kedua jenis karbon aktif ini dapat mencapai efisiensi optimum yang sama dengan variasi kombinasi yang berbeda, namun efisiensi regenerasi kedua karbon aktif ini berbeda satu sama lain. Perencanaan aplikasi metode ini di lapangan berdasarkan hasil penelitian dapat berupa unit adsorpsi dengan metode mixing dalam instalasi dua susunan seri menggunakan karbon aktif batu bara.

ABSTRACT
The dye is a pollutant in the textile industry wastewater that adversely affect the aesthetic, health, and environmental qualities, one of which is anionic dyes Congo Red which is a carcinogen. The purpose of this study is to determine the optimum conditions designated to remove anionic dye Congo Red by adsorption with coconut shell and coal activated carbon, along with its regeneration and application. The method used is a shaked batch with variations for conditions of pH, adsorbent dosage and contact time using Two Level Factorial Design. The results showed the optimum efficiency of the dye removal by both coconut shell with condition of pH 2,2, 5,5 gram of adsorbent dosage and 45 minutes of contact time and by coal based activated carbon with condition of pH 3,8, 5,5 gram of adsorbent dosage, and 100 minutes of contact time were the same by 74.67%. The regeneration efficiencies with acetone 60% are achieved by 58.06% for coconut shell based activated carbon, and 77.42% for the coal one. Adsorption of Congo Red using both types of activated carbon can achieve the same optimum efficiency with different variations combination. However, the efficiency of both activated carbon regenerations are different one from another. This method could be applied based on this research results with a mixing adsorption unit in a double series plant using coal based activated carbon. "
Fakultas Teknik Universitas Indonesia, 2014
S54896
UI - Skripsi Membership  Universitas Indonesia Library
cover
Beatrix Gloria
"ABSTRAK
Hasil pembakaran kendaraan berenergi fosil serta emisi dari aktivitas industri mengakibatkan meningkatnya kadar CO2 di udara. Gas CO2 dikenal sebagai salah satu gas rumah kaca yang dapat mengikis lapisan ozon serta meningkatkan resiko terjadinya pemanasan global. Berbagai teknologi CO2 Capture yang telah ada saat ini kurang efisien dari segi biaya maupun energi yang dibutuhkan. Teknologi adsorpsi CO2 dari udara dengan menggunakan karbon aktif merupakan metode yang efektif karena karbon aktif dapat diproduksi dari berbagai sumber agrikultur, teknologinya sederhana serta membutuhkan biaya yang tidak besar. Penelitian ini bertujuan untuk mendapatkan data kemampuan adsorpsi karbon aktif yang berasal dari Bambu Petung yang diaktivasi dengan metode aktivasi fisika dan metode aktivasi kimia. Kemampuan adsorpsi kedua jenis karbon aktif ini diuji melalui kolom adsorpsi fixed bed yang dialiri campuran gas CO2/Udara dengan memvariasikan konsentrasi CO2 pada suhu dan tekanan ambien. Keluaran fixed bed dianalisis dengan menggunakan Gas Analyzer. Data adsorpsi CO2 pada karbon aktif akan direpresentasikan dalam kurva Langmuir dan kurva breakthrough. Data-data yang didapatkan pada penelitian ini dapat dimanfaatkan untuk keperluan desain alat adsorpsi CO2 misalnya untuk mengetahui berapa lama waktu yang dibutuhkan sampai karbon aktif jenuh dan harus diganti, juga dibutuhkan sebagai input untuk pemodelan simulasi adsorpsi. Hasilnya menunjukkan bahwa peningkatan konsentrasi awal CO2 dalam udara mempercepat waktu breakthrough dan kapasitas adsorpsinya juga semakin besar.

ABSTRAK
Combustion gas produced from fossil fuel for vehicles as well as emissions from industrial activity resulted in increased levels of CO2 in the air. CO2 is known as one of the greenhouse gases that may erode the ozone layer and increased risk of global warming. Various CO2 Capture technologies that already exist today is less efficient in terms of cost and energy required. Adsorption technology to eliminate CO2 in air using activated carbon is an effective method since activated carbon can be produced from a variety of agricultural sources, the technology is simple and need no high cost. This study aimed to obtain the adsorption capacity of CO2 in air on activated carbon derived from Petung Bamboo both with physical and chemical activation method. The adsorption ability of both types of activated carbon was tested through a fixed bed adsorption column by flowing gas mixtures of CO2 / air with varying concentrations of CO2 in ambient temperature and pressure. The gas stream leaving fixed bed were analyzed using Extech CO2 Monitor. CO2 adsorption data on activated carbon will be represented in the Langmuir curve and breakthrough curves. The data obtained in this study could be used for CO2 adsorption equipment design, for instance to know how long it takes until the activated carbon is saturated and must be replaced, also needed as input to simulation modeling of adsorption. The results shows the increasing of inlet concentration makes quicken the breakthrough time and also increase the adsorption capacity.."
2016
S63141
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maharani Dwi Setyaningrum
"Periodic Mesoporous Organosilica atau PMO yang mengandung jembatan organik berupa bifenilena (Bph-PMO) telah berhasil disintesis melalui metode sol-gel dengan pendekatan Evaporation Induced Self-Assembly (EISA). Variasi jumlah surfaktan yang ditambahkan memberikan pengaruh terhadap karakteristik Bph-PMO yang terbentuk berupa peningkatan luas permukaan seiring meningkatnya jumlah surfaktan yang ditambahkan. Pengembanan Bph-PMO dengan nanopartikel nikel melalui metode impregnasi menggunakan NiCl2 sebagai prekursor nikel dan direduksi menggunakan NaBH4 berhasil dilakukan yang dibuktikan dengan karakterisasi TEM-EDX dan adanya penurunan luas permukaan berdasarkan perhitungan BET setelah dilakukannya impregnasi. Uji adsorpsi 15% gas CO2 menggunakan instrumentasi GC-TCD membuktikan pengaruh luas permukaan terhadap kapasitas adsorpsi. Kapasitas adsorpsi pada suhu ruang meningkat seiring bertambahnya jumlah surfaktan dimana selaras dengan luas permukaan yang cenderung meningkat pula. Setelah dilakukannya impregnasi dengan logam nikel, kapasitas adsorpsi menurun dikarenakan adanya penurunan luas permukaan. Namun, penurunan kapasitas adsorpsi tidak sesignifikan penurunan luas permukaan. Hal ini menunjukkan adanya pengaruh dari aktivitas nanopartikel nikel itu sendiri.

The focus of this research was evaluate the CO2 adsorption activity of PMO synthesized from biphenylene-bridged organosilane with non-ionic surfactant Pluronic F127 and then the material (called Bph-PMO) was impregnated with nickel metal to increase the active site of the adsorbent and the interaction with CO2. Increasing amount of surfactant has an effect on its surface area. The impregnation method was used NiCl2 as nickel precursor and NaBH4 as reducing agent was succesfully carried out by TEM-EDX and decreased in surface area based on BET calculation. GC-TCD instrumentation was used to evaluate the adsorption of 15% CO2. It shows the effect of surface area on the adsorption capacity of the material. After impregnation with nickel metal, the adsorption capacity decreased due to its surface area. However, the decrease in adsorption capacity was not as significant as the decrease in surface area. This shows the influence of the nickel nanoparticles activitiy itself."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gabriela Putri Natalia
"Limbah kulit aren (Arenga pinnata) berpotensi digunakan sebagai bioadsorben dari pembuatan karbon berukuran 75 mikron dan 150 mikron. Karbon tersebut diaktivasi dengan pemberian KOH 1 M dan H3PO4 sebesar 15%. Masing ? masing karbon aktif akan dilapisi dengan kitosan sebesar 0,5%. Bioadsorben yang sudah siap akan digunakan untuk adsorpsi biogas. Biogas diperoleh dari proses digesting anaerob Palm Oil Mill Effluent (POME) atau limbah cair kelapa sawit. Biogas awal mengandung CH4 sebanyak 67% dan CO2 sebanyak 6,496%. Biogas ini kemudian dilalui melewati kolom adsorpsi yang memiliki ukuran tinggi 15 cm dan berdiameter 0,8 cm yang berisi bioadsorben. Pengambilan sampel dilakukan setelah 3 menit dan kemudian dianalisis menggunakan Gas Chromatography (GC). Sedangkan, profil kapasitas adsorpsi pada biomasa dapat diuji menggunakan BET dan FTIR. Setelah melewati tahap pengujian, didapati adsorben terbaik yang berupa bioadsorben berukuran 75 mikron yang diaktivasi dengan menggunakan H3PO4 15% dan dilapisi dengan kitosan 0,5%. Performa bioadsorben menunjukkan bahwa limbah kulit aren berpotensi digunakan untuk adsorpsi karbondioksida hingga 2,96% sehingga bisa meningkatkan kandungan gas metana menjadi 82,77%.

Sugar palm (Arenga pinnata) shell waste can be used as bioadsorbent from carbonization in 75 micron and 150 micron. Those carbon are activated with 1 M of KOH and 15% of H3PO4. Each of active carbon will be coated with 0.5% of chitosan. Bioadsorbent will be used as biogas adsorbent. Biogas is generated from anaerob digesting Palm Oil Mill Effluent (POME). The initial biogas contains 67% of CH4 and 6.496% of CO2. Then, the biogas is passed through 15 cm of height and 0.8 cm of diameter of adsorption column with bioadsorbent inside. The datas are taken after 3 minutes of running and are analysed using Gas Chromatography (GC). Meanwhile, the adsorption capacity of the biomass profile can be analysed using BET and FTIR. After sampling, it is found that the best adsorbent is 15% of H3PO4 activated carbon in 75 micron of size coated by 0.5% of chitosan. Performance of bioadsorbent shows that the sugar palm shell waste could be used for adsorption that reduces Carbondioxide until 2.96% and improve Methane content until 82.77%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63292
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>