Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 171693 dokumen yang sesuai dengan query
cover
"Teluk Kelabat merupakan perairan semi terutup yang dapat dibagi ke dalam dua bagian yaitu
Teluk Kelabat bagian Luar (T Luar) yang berbatasan langsung dengan laut Natuna dan Teluk
Kelabat bagian Dalam (T Dalam) berhadapan pemukiman penduduk dan lima muara sungai.
Penelitian tentang kandungan logam dalam tiga komponen ekosistem Teluk Kelabat (air,
sedimen dan biota) dilakukan pada bulan Maret 2006 (musim barat) dan Juli 2006 (musim
tenggara). Analisis logam berat terlarut, di sedimen dan biota menggunakan Spektofotometer
Serapan Atom dengan nyala (Flame AAS). Hasil penelitian menunjukkan bahwa logam berat
terlarut umumnya relatif rendah dengan kisaran sebagai berikut, Pb (1,0 ? 26,0 µg L-1
), Cd
(<0,1? 3,0 µg L-1
), Cu (1?2,0 µg L-1
) dan Zn (1,0?4,0 µg L-1
). Konsentrasi rata-rata logam
berat dalam sedimen Pb (11.46 mg kg-1
), Cd (0,10 mg kg-1
), Cu (2,50 mg kg-1
) dan Zn (13,64
mg kg-1
). Konsentrasi logam Pb, Cu dan Zn di sedimen T Dalam dapat mencapai dua kali lipat
lebih tinggi dibanding T Luar, namun demikian ketiga konsentrasi logam tersebut tidak
dipengaruhi oleh musim. Sebaliknya, konsentrasi logam Cd cenderung merata di sedimen dan
sangat dipengaruhi musim. Konsentrasi logam Pb, Cd, Cu dan Zn pada ikan umumnya lebih
rendah dibanding pada jenis kerang-kerangan. Akumulasi Pb dan Cu tertinggi oleh siput
gonggong Strombus canarium, dan Cd dan Zn tertinggi oleh kerang darah Anadara sp."
620 JITK 3:1 (2011)
Artikel Jurnal  Universitas Indonesia Library
cover
Helen Pratiwi
"Logam berat yang mencemari badan tanah seperti Pb dan Cd tidak sedikit dihasilkan dari kegiatan manusia. Penelitian ini mencoba melakukan pengukuran bioavailabilitas logam berat Pb dan Cd dalam tanah terhadap sawi hijau (Brassica juncea L.) dengan teknik Diffusive Gradient In Thin Film (DGT), dimana ketersediaan Pb dan Cd dalam tanah juga dilihat dari fraksi-fraksi ekstraksi bertahap. DGT dapat mengukur keberadaan logam spesi labil. Spesi labil dapat mewakili jumlah logam yang mungkin terserap biota. DGT yang terdiri dari diffusive layer dan binding layer diuji kemampuannya dalam menyerap spesi logam labil Timbal (II). Pb terekstrak lebih banyak pada fraksi 3 (terikat dengan Mn-Oksida) dan 4 (terikat dengan Fe-Oksida), sedangkan untuk logam Cd terekstrak banyak pada fraksi 1 (fraksi tertukarkan) dan fraksi 2 ( terikat dengan karbonat).
Hasil destruksi tanaman sawi yang ditanam pada media tanah spike logam Pb maupun Cd memberikan peningkatan kadar Pb dan Cd seiring bertambahnya konsentrasi Pb dan Cd yang diberikan ke tanah, namun terdapat penurunan penyerapan logam oleh sawi saat konsentrasi logam Pb > 1000 mg/kg dan saat konsentrasi logam Cd > 100 mg/kg. Sedangkan untuk hasil penggelaran DGT terjadi peningkatan konsentrasi DGT (CDGT) seiring bertambahnya konsentrasi logam pada tanah, juga untuk konsentrasi efektif logam yang terdapat pada tanah (CE) mengalami peningkatan seiring bertambahnya konsentrasi logam pada tanah. CE juga mempengaruhi berat kering sawi, konsentrasi logam yang diserap sawi, dan CDGT.

Heavy metals that pollute the soil body such as Pb and Cd is not few resulting from human activities. This research tries to perform measurements of the heavy metals bioavailability (Pb and Cd) in soil to Brassica juncea L. with Diffusive Gradient in Thin Film (DGT) Technique, where the availability of Pb and Cd in soil also seen from the faction of sequential extraction. DGT can measure the presence of labile metal species. Labile species may represent the amount of metal which may be absorbed by biota. DGT that consisting of a binding layer and diffusive layer are tested for their capacity to absorb labile metal species in Plumbum (II). Pb was extracted more on the 3rd fraction (bound to Mn-Oxide) and 4th (bound to Fe-Oxides), while for Cd was extracted more on 1st fraction (exchangeable faction) and 2nd faction (bound to carbonate).
The destruction results of green mustard that planted on soil Pb and Cd contaminaton media provides increased levels of Pb and Cd along with the increased of Pb and Cd concentration which was given to soil, but there is a decrease in metal uptake by green mustard while [Pb] > 1000 mg/kg and [Cd] > 100 mg/kg. For the results of DGT deployment, there is an increase of DGT concentration (CDGT) along with the increased metal concentration in soil, also for the effective metal concentration in soil (CE). CE also affects the weight of dry green mustard, metal concentrations of green mustard, and absorbed CDGT.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S43706
UI - Skripsi Open  Universitas Indonesia Library
cover
Ganeshia Kristy Pratiwi
"Pencemaran perairan merupakan masalah kompleks yang belum terpecahkan, salah satunya adalah pencemaran perairan oleh CH3Hg+. Pencemaran tersebut membahayakan Perna viridis dan Anadara indica yang banyak dikonsumsi oleh masyarakat. Oleh karena itu, dilakukan suatu simulasi pencemaran CH3Hg+ melalui jalur air dan jalur pakan sehingga didapatkan pemodelan bioakumulasi CH3Hg+ pada Perna viridis dan Anadara indica. Untuk keperluan analisa bioakumulasi CH3Hg+ digunakan perunut radioaktif CH3203Hg+ yang digunakan sebagai alat untuk mendeteksi adanya konsentrasi CH3Hg+ dalam perairan.
Berdasarkan hasil penelitian, didapatkan nilai faktor konsentrasi (CF) pada Perna viridis besar berkisar antara 1122,098 hingga 3850,828. Nilai faktor konsentrasi (CF) pada Perna viridis kecil berkisar antara 3495,316 hingga 4737,34. Nilai faktor konsentrasi (CF) pada Anadara indica besar berkisar antara 3474,513 hingga 8998,277. Nilai faktor konsentrasi (CF) pada Anadara indica kecil berkisar antara 7899,7 hingga 8670,17. Nilai faktor konsentrasi tersebut didapatkan setelah kekerangan terpapar CH3Hg+ selama 12 hari.
Efisiensi asimilasi Perna viridis dan Anadara indica setelah 24 jam sebesar 1,147% dan 0,393%. Nilai faktor bioakumulasi (BAF) pada Perna viridis adalah 5760,737 sampai dengan 10877,491 dan nilai BAF pada Anadara indica adalah 6756,617 sampai dengan 10522,492. Nilai tersebut merupakan acuan untuk menentukan batas aman mengkonsumsi kerang dalam satu bulan sesuai dengan dosis referensi menurut EPA (Environmental Protection Agency).

Water pollution is a complex problem which has not been solved yet,for instance is water pollution by CH3Hg+. Pollution can endanger Perna viridis and Anadara indica that are widely consumed by humans. Therefore, in this research was made a simulation of CH3Hg+ pollution through the water and feed so that it results the modell of CH3Hg+ bioaccumulation in Perna viridis and Anadara indica. 203 CH3 Hg+ as a radioactive tracer is used as a tool to detect the concentration of CH3Hg+ in the waters.
Based on the results of the study, the value of concentration factor (CF) in a big Perna viridis is ranged from 1122,098 to 3850,828. The value of concentration factor (CF) in a small Perna viridis is ranged from 3495,316 to 4737,34. The value of concentration factor (CF) in a big Anadara indica is ranged from 3474,513 to 8998,277. The value of Concentration Factor (CF) in a small Anadara indica is ranged from 7899,7 to 8670,17. These concentration factor are obtained after exposuring of CH3Hg+ until 12 days.
Assimilation efficiency in Perna viridis and Anadara indica after 24 hours are 1,147% and 0,393%. Factor Bioaccumulation (BAF) in Perna viridis is from 5760,737 to 10877,491 and BAF in Anadara indica is 6756,617 to 10522,492. That amounts are references to determine the safety of consumption these mussels in a month which according to the EPA (Environmental Protection Agency) reference dose.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S749
UI - Skripsi Open  Universitas Indonesia Library
cover
Mohammad Afdhal Adidharma
"Logam Berat merupakan jenis pencemar di perairan yang berkaitan erat dengan Total Padatan Tersuspensi (TSS). Eratnya hubungan dari kedua parameter tersebut dapat menjadi potensi dalam menilai secara tidak langsung logam berat di perairan. Penelitian ini bertujuan untuk mengetahui hubungan antara TSS dan berat Nikel (Ni) dan Tembaga (Cu) yang terikat didalamnya, kemudian distribusi TSS di perairan diestimasi menggunakan teknik penginderaan jauh untuk menggambarkan secara tidak langsung distribusi kedua logam berat tersebut, dan mengetahui pengaruh dari parameter perairan terhadap distribusi kandungan TSS dan logam berat. Penelitian ini dimulai dengan pengambilan sampel yang dilakukan pada 31 Maret – 1 April 2023 di 36 titik sampling yang telah ditentukan. Sampel air dianalisis kandungan TSS-nya menggunakan metode gravimetri serta kandungan logam berat Ni dan Cu yang terikat dalam TSS tersebut dianalisis menggunakan metode Inductively Coupled Plasma - Optical Emission Spectrometry (ICP-OES). Parameter perairan yang mencakup kedalaman, arus, gelombang, pasang surut, suhu, pH dan salinitas diukur dan dianalisis untuk mengetahui pengaruhnya terhadap kandungan dan pola sebaran TSS maupun logam berat di perairan. Hasil penelitian menunjukkan bahwa kandungan TSS berkisar antara 6 hingga 45 mg/l, dimana kandungan tertinggi ditemukan di sekitar daerah pertambangan di Desa Tapuemea dan muara Sungai Lasolo. Kandungan logam berat Ni dan Cu masing masing berkisar antara 0,03 – 0,1 mg/kg dan 0,006 – 0,5 mg/kg. Secara spasial, kedua logam tersebut sama-sama ditemukan tertinggi pada perairan yang jauh dari area pertambangan yaitu di pesisir Kelurahan Molawe. Pola sebaran spasial parameter TSS dan logam berat yang tidak menunjukkan korelasi mengindikasikan bahwa sebaran TSS tidak dapat menggambarkan secara tidak langsung langsung pola sebaran logam berat di Teluk Lasolo. Berdasarkan hasil analisis statistik, distribusi TSS dipengaruhi oleh pH air, logam berat Ni dipengaruhi oleh arus dan Cu tidak dipengaruhi oleh seluruh parameter. Hasil pemodelan spasial menunjukkan dugaan bahwa gelombang dan pasang surut memiliki pengaruh dalam distribusi TSS dan logam berat.

Heavy metals are a type of pollutant in water closely related to Total Suspended Solids (TSS). The close relationship between these two parameters can be a potential indirect assessment of heavy metals in water. This research aims to determine the relationship between TSS and the weight of Nickel (Ni) and Copper (Cu) bound within it. Additionally, the distribution of TSS in water is estimated using remote sensing techniques to indirectly depict the distribution of these heavy metals. The study also aims to identify the influence of water parameters on the distribution of TSS and heavy metals. The research began with sampling on 31 March – 1 April 2023, at 36 predetermined sampling points. Water samples were analyzed for TSS content using gravimetric methods, and the content of Ni and Cu bound in TSS was analyzed using Inductively Coupled Plasma - Optical Emission Spectrometry (ICP-OES). Water parameters, including depth, current, waves, tides, temperature, pH, and salinity, were measured and analyzed to determine their influence on the content and distribution patterns of TSS and heavy metals in water. The results showed that TSS content ranged from 6 to 45 mg/l, with the highest content found around mining areas such as jetty in Tapuemea Village and the mouth of the Lasolo River. The content of heavy metals Ni and Cu ranged from 0.03 to 0.1 mg/kg and 0.006 to 0.5 mg/kg, respectively. Spatially, both metals were found highest in waters far from mining areas, specifically in the coastal area of Molawe Village. The spatial distribution pattern of TSS and heavy metals, which did not show correlation, indicates that the TSS distribution cannot directly depict the spatial distribution pattern of heavy metals in Teluk Lasolo. Based on statistical analysis, TSS distribution is influenced by water pH, Ni is influenced by currents, and Cu is not influenced by any parameter. Spatial modeling results suggest that waves and tides have an impact on the distribution of TSS and heavy metals."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Suwirma Sjafri
"ABSTRAK
Untuk meningkatkan kesejahteraan masyarakat, pemerintah mengembangkan pembangunan dalam segala bidang. Setiap pembangunan akan memberikan dampak terhadap lingkungan sekitarnya.
Pencemaran sungai merupakan salah satu dampak yang ditimbulkan oleh kegiatan industri, yang berkembang pesat terutama di Jakarta. Pencemaran tersebut dapat berupa logam berat, dan senyawa kimia lainnya yang dapat mengganggu ekosistem sungai, Di antara logam berat tersebut ada yang bersifat racun bagi manusia dan organisme lainnya seperti Hg, Pb, Cd, Cu, Cr, Ni dan Zn.
Masalah pencemaran sungai merupakan faktor penting yang harus di tangani dengan seksama, karena sebagian besar penduduk masih bergantung pada air sungai. Di samping itu sungai digunakan pula untuk perikanan dan pertanian. Dan yang penting lagi bahwa air sungai tersebut akan mengalir ke laut, sehingga mempengaruhi kehidupan organisme laut.
Sungai Cakung yang mengalir dari hulu ke hilir melewati daerah industri, yang diperkirakan industri tersebut membuang limbah logam berat yang akan mengalir ke sungai. Sedangkan sungai Cakung menurut Surat Keputusan Gubernur DKI diperuntukkan untuk pertanian perikanan dan buangan industri.
Logam berat yang masuk ke sungai sebagian akan mengendap dan bergabung dengan sedimen.
Untuk mengetahui pengaruh industri terhadap sungai Cakung, maka dilakukan analisis kandungan logam berat dalam air dan sedimen. Dari hasil kandungan logam berat dalam air dapat diketahui _apakah sungai Cakung masih memenuhi syarat untuk setiap peruntukkan atau tidak, setelah dibandingkan dengan standar kualitas air.
Dengan menghitung perbandingan kandungan logam berat dalam sedimen dan air, didapatkan suatu nilai Kd. Dari nilai Kd Logam berat tersebut diperoleh gambaran adanya kecenderungan pencemaran sungai oleh logam berat.
Penelitian ini dilakukan di sungai Cakung dari bulan Mei sampai dengan Agustus 1986 sebanyak 7 kali pengambilan.
Pengambilan contoh secara acak yang sistematis atau systematic random sampling, pada bagian kiri, tengah dan kanan dari sungai, kemudian dikomposit.
Untuk membedakan kandungan logam berat di daerah hulu, tengah dan hilir serta waktu pengambilan, digunakan metoda statistik dengan Rancangan Acak Kelompok (RAK)
Adapun hasil penelitian dapat disimpulkan sebagai berikut: Air
Kandungan logam berat yang terdeteksi dalam air hanya kandungan Hg
dan Zn. Bila dibandingkan dengan penelitian yang lalu, maka kandungan logam berat tersebut dalam air lebih rendah.
Kandungan logam berat Hg dalam air masih di bawah kandungan maksimum yang diperbolehkan untuk keperluan air minum, rumah tangga, perikanan dan pertanian. Sedangkan kandungan Zn masih di bawah kandungan maksimum yang diperbolehkan untuk air minum, rumah tangga, pertanian dan efluen, tetapi sudah melewati standar maksimum yang diperbolehkan untuk perikanan.
Berdasarkan kandungan DO dan BOD, maka hanya pada lokasi C1, C2
dan C3 yang masih memenuhi syarat digunakan untuk rumah tangga, perikanan dan pertanian. Sedangkan pada lokasi tengah dan hilir, air sungai Cakung tidak memenuhi syarat bagi peruntukkan tersebut.
Kandungan raksa dan seng pada lokasi tengah, hilir dan hulu tidak mempunyai perbedaan.
Sedimen
Logam berat Cd tidak terdeteksi, baik dalam air maupun dalam sedimen. Kandungan logam berat Hg dan Zn dalam sedimen lebih rendah dari hasil penelitian yang terdahulu. Sedangkan kandungan Pb, Cr, dan Ni lebih tinggi. Pada umumnya kandungan logam berat mengalami kenaikan pada daerah lokasi tengah dan hilir. Yang berarti bahwa industri mempunyai pengaruh besar terhadap kandungan logam berat di aliran sungai Cakung.
Dan Nilai Kd logam berat untuk setiap lokasi tidak konstan.
Daftar Kepustakaan : 64 (1962 - 1986 )
"
1988
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Pingkan Roeroe
"Perairan Teluk Buyat terletak di Desa Ratatotok, Kabupaten Minahasa, Sulawesi Utara. Desa ini terkenal dengan tambang emas yang dikelola oleh rakyat dengan metode tradisional. Pada tahun 1987 secara resmi Pemerintah Sulawesi Utara sudah menutup kegiatan pertambangan rakyat di desa ini. Pada tahun 1996 sebuah perusahaan PMA yaitu PT. Newmont Minahasa Raya (PT. NMR) memulai kegiatan pertambangan yang dikelola secara besar-besaran. Limbah tailing-nya dibuang ke perairan ini pada kedalaman 82 meter melalui sebuah pipa.
Selain itu beberapa desa yang berbatasan dengan Desa Ratatotok ini masih melakukan kegiatan pertambangan yang dikelola oleh rakyat. Dalam pengolahannya digunakan Iogam berat merkuri untuk mengikat emas. Limbah yang mengandung logam berat terutama merkuri dibuang langsung ke tanah dan sungai yang ada kemudian mengalir ke perairan di sekitar Teluk Buyat.
Merkuri merupakan salah satu logam berat yang banyak dimanfaatkan oleh manusia, tetapi berbahaya untuk lingkungan dan kesehatan. Hal ini terjadi karena salah sifat dari merkuri yang dapat terakumulasi dalam tubuh suatu organisme dalam jangka waktu yang lama. Daya racun merkuri terhadap organisme perairan terutama disebabkan terjadinya perubahan komponen merkuri anorganik menjadi merkuri organik (metil merkuri) oleh jasad renik dalam air. Senyawa metil merkuri bersifat mudah diabsorbsi dan terakumulasi dalam jaringan tubuh organisme dan tahan terhadap penguraian lebih lanjut (OECD dalam Laws, 1981).
Gambaran secara umum kadar bahan pencemar dalam suatu lingkungan dapat diketahui dengan menggunakan beberapa indikator yang dapat mengakumulasi bahan-bahan pencemar yang ada sehingga dapat mewakili keadaan lingkungan tersebut. Dalam lingkungan perairan ada 3 media yang dapat dipakai sebagai indikator pencemaran logam berat merkuri yaitu air, sedimen, dan organisme hidup.
Tujuan penelitian ini yaitu untuk mengetahui besamya kandungan logam berat merkuri dalam air laut, sedimen dan kerang sebagai indikator pencemaran di perairan Teluk Buyat dan sekitamya dan untuk mengetahui seberapa jauh pengaruh kegiatan pertambangan emas terhadap kualitas perairan Teluk Buyat dan sekitamya.
Pengambilan contoh dilakukan di 3 lokasi yaitu Pantai Kotabunan (lokasi A) dengan 10 stasiun, Teluk Buyat (lokasi B) dengan 10 stasiun dan Teluk Totok (lokasi C) dengan 5 stasiun.
Berdasarkan hasil analisis dan pembahasan dapat disimpulkan bahwa :
1) Kandungan merkuri dalam air laut, sedimen, dan kerang di lokasi A (Pantai Kotabunan) lebih tinggi dad lokasi B (Teluk Buyat) dan lokasi C (Teluk Totok). Hasil uii statistik menunjukkan adanya perbedaan secara nyata antara kandungan merkuri dalam air laut, sedimen, dan kerang di lokasi A dengan lokasi B dan C, sedangkan merkuri dalam air Taut di lokasi B tidak berbeda nyata dengan lokasi C.
2) Kandungan merkuri dalam sedimen dan kerang di lokasi C sebagai kontrol lebih tinggi daripada lokasi B. Hal ini menunjukkan bahwa sebagian besar merkuri dari pertambangan rakyat pada waktu lalu yang masuk dalam Iingkungan perairan mengendap di dasar perairan dan terakumulasi dalam tubuh kerang.
3) Kandungan merkuri dalam sedimen dan kerang di lokasi A (Pantai Kotabunan) lebih tinggi dibandingkan dengan lokasi B (Teluk Buyat), dan lokasi C (Teluk Totok) lebih tinggi dari lokasi B, ini menunjukkan bahwa proses pengolahan emas yang dikelola secara tradisional oleh rakyat adalah sumber utama pencemaran merkuri di daerah penelitian.
Untuk mengendalikan pencemaran merkuri perlu adanya pengolahan limbah secara terpadu dan perhatian khusus dari Pemerintah Daerah Sulawesi. Maka mengingat saat ini banyak kegiatan pertambangan rakyat di daerah ini.

Buyat Bay is located in Ratatotok Village, Minahasa Regency, North Sulawesi. This village is well known for gold mining and managed by people in traditional method. In 1987, the local government has been discontinued its activities. In 1996, PT. Newrnont Minahasa Raya (PT. NMR) as a foreign investment started the mining activity on a large scale. The tailing waste is thrown away to Buyat Bay at 82 meters depth through a pipe.
Beside this company, there are a few villages surrounding Ratatotok Village still doing the mining activity. It uses mercury to bind the gold. Mercury is one of heavy metal. The waste that contents mercury is thrown away to soil and river, and then flow to Buyat Bay.
Mercury is one of heavy metal that is dangerous for environment and human health but people often use it. One of the characteristics of mercury is it can be accumulated in organism body in long, term period. Mercury contents poison caused by component change from anorganic mercury to organic mercury (methyl mercury) by microorganism in water. Methyl mercury is easy to absorb and accumulate in organism body and resistant further to chemical processes (OECD in Laws, 1981).
General description about pollution degree in environment can be known by use of a few indicators that accumulate polluters in location. In waters environment, there are 3 media that can be used as environment indicators of mercury, those are water, sediment, and living organism.
The purposes of this research are as follows to know the content of mercury in seawater, sediment, and mollusk as pollution indicators in Buyat Bay and surroundings, and to know the impact of gold mining activity to water quality in Buyat Bay and surroundings.
Sample are taken in 3 locations; those are Kotabunan Beach (A location), with 10 station, Buyat Bay (B location) with 10 station, and Totok Bay ( C location) with 5 station.
According to analysis and discussions of this research are as follows
1) The content of mercury in seawater, sediment, and mollusk in location A (Kotabunan Beach) is higher than location B (Buyat Bay) and location C (Totok Bay). Statistic test indicates significant difference between mercury content in seawater, sediment, and mollusk in location A with location B and C, but mercury in sea water in location B indicates not significant with location C.
2) The content mercury in sediment and mollusk in location C as an indicator control higher than location B. This indicates that a large part of mercury in people mining has been settled in the bottom of waters environment and accumulate in mollusk.
3) The content of mercury in sediment and mollusk in location A (Kotabunan Beach) is higher than location B (Buyat Bay) and location C (Totok Bay) is higher than location B indicates that process of gold mining managed by the people traditionally is a major source of mercury pollution at study areas.
To control mercury pollution one needs integrated waste treatment and special attention from local government because of a lot of mining activity in this province.
"
Jakarta: Program Pascasarjana Universitas Indonesia, 2000
T14618
UI - Tesis Membership  Universitas Indonesia Library
cover
Lidya Fernanda
"Pencemaran perairan oleh logam berat didaerah peternakan kerang sangat membahayakan bagi Perna viridis yang banyak dikonsumsi oleh masyarakat. Oleh karena itu untuk melihat tingkat pencemaran, dilakukan penelitian kadar logam pada Perna viridis, air dan sedimen. Untuk melihat kontribusi sedimen dalam mencemari perairan maka dilakukan ekstraksi sedimen dengan fraksi pada pH 3, pH 5 dan pH 7 sebagai simulasi proses pelepasan logam dari sedimen ke perairan karena pengaruhan pH. Kadar logam pada Perna viridis, air dan sedimen dianalisis dengan menggunakan Spektrofotometer Serapan Atom (SSA). Berdasarkan hasil penelitian, didapatkan kandungan logam Pb pada Perna viridis besar berkisar antara 0,6868 mg/kg hingga 5,7090 mg/kg. Kandungan logam Ni pada Perna viridis berkisar antara 0,4161 mg/kg hingga 3,8218 mg/kg. Kandungan logam Cr pada Perna viridis berkisar antara 0,2245 mg/kg hingga 3,4446 mg/kg. Kandungan logam Cd pada Perna viridis berkisar antara 0,2019 mg/kg hingga1,3468 mg/kg. Kandungan logam Pb, Ni, Cr dan Cd pada air yaitu 0,1561 mg/L; 0,0255 mg/L; 0,0222 mg/L dan 0,0113 mg/L. Kandungan logam berat Pb, Ni, Cr dan Cd pada sedimen yaitu sebesar 41,2522 mg/kg; mg/kg; 36,5143 mg/kg; 17,2292 mg/kg dan 10,8192 mg/kg. Hasil penelitian menunjukkan bahwa logam-logam Pb, Ni, Cr dan Cd yang terdapat pada sedimen dapat terlepas dengan ekstraksi, hal ini menandakan bahwa sedimen berkontribusi terhadap akumulasi logam pada kerang dan air.

Heavy metal pollution of waters by shellfish farming area is very dangerous for Perna viridis that consumed by many people. Therefore to see the level of pollution, conducted research on the metal content of Perna viridis, water and sediment. To see the contribution of sediment in the polluted waters of the sediment extraction fraction at pH 3, pH 5 and pH 7 as a simulation of the process of metal release from sediment into the water because of the influence of pH. Metal content in the Perna viridis, water and sediments were analyzed using Atomic Absorption Spectrophotometer (AAS). Based on the results of the study, obtained the metal content of Pb in Perna viridis between 0.6868 mg / kg to 5.7090 mg / kg. Perna viridis Ni metal content in the range between 0.4161 mg / kg to 3.8218 mg / kg. Cr metal content in the Perna viridis ranged from 0.2245 mg / kg to 3.4446 mg / kg. Cd metal content in the Perna viridis ranged from 0.2019 mg/kg to 1, 3468mg/kg. Metal content of Pb, Ni, Cr and Cd in water is 0.1561 mg / L; 0.0255 mg / L; 0.0222 mg / L and 0.0113 mg / L. The content of heavy metals Pb, Ni, Cr and Cd in the sediment that is equal to 41.2522 mg / kg; mg / kg; 36.5143 mg / kg; 17,2292 mg/kg and 10.8192 mg / kg. The results showed that the metals Pb, Ni, Cr and Cd are found in sediments can be separated by extraction, it indicates that the sediments contribute to the accumulation of metals in shellfish and water."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S42684
UI - Skripsi Open  Universitas Indonesia Library
cover
Diana Hendrawan
"DKI Jakarta dilintasi oleh 13 sungai besar dan beberapa sungai kecil serta 40 situ tersebar di 5 wilayah kota yang sangat potensial sebagai air permukaan untuk menunjang kehidupan manusia. Dengan pertumbuhan penduduk DKI yang pesat dan perkembangan pemanfaatannya, ada kecenderungan terjadinya perubahan pada kondisi dan kualitas air sungai dan situ di DKI Jakarta.
Kepadatan penduduk dapat mempengaruhi pencemaran lingkungan sungai dan situ. Hal ini dikaitkan dengan tingkat kesadaran penduduk dalam memelihara lingkungan yang sehat dan bersih. Pendugaan pencemaran perairan dapat dilakukan dengan melihat pengaruh polutan terhadap kehidupan organisme perairan dan lingkungannya. Unit penduga adanya pencemar tersebut diklasifikasikan dalam parameter fisika, kimia dan biologi. Dalam menetapkan kualitas air, parameter-parameter tersebut sebaiknya tidak berdiri sendiri tapi dapat ditrasformasikan dalam suatu nilai tunggal yang mewakili disebut sebagai Indeks Kualitas Air.
Hasil perhitungan terhadap nilai IKA menunjukkan bahwa 83 % sungai dan 79 % situ yang ada di DKI Jakarta ada dalam kategori buruk. Hal ini disebabkan tidak terpeliharanya sungai dan situ dengan baik, kurangnya kesadaran masyarakat dan pemerintah dalam upaya memelihara sungai dan situ.

Water Quality of Rivers and Ponds on DKI Jakarta. Thirteen big rivers, some small rivers, and 40 ponds spread over districts at Jakarta city are potential to support human being life. As the population is growing and the usage of stream water is increasing, the condition and quality of rivers and ponds are changing.
Crowd housing can affect rivers and ponds pollution, as the people awareness about clean and healthy environment is less. Stream water pollution assessment can be done by counting the effect of pollutant to life of stream water organisms. This assessment unit could be classified into physics, chemical, and biological parameter. To know the water quality, those parameters are transformed into one single value, that is Water Quality Index.
The calculation result of Water Quality Index value shows that 83 % of rivers and 79 % of ponds are bad. This condition is caused by less people and government awareness to maintain rivers and ponds."
Depok: Lembaga Penelitian Universitas Indonesia, 2005
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Firman Laili Sahwan
"Untuk meningkatkan bilangan oktan pada bensin dan mengurangi letupan di dalam mesin kendaraan bermotor, maka ke dalam bensin ditambahkan TEL (tetra ethyl lead), yang jumlahnya berbeda-beda untuk setiap negara. Di Indonesia, jumlah TEL yang ditambahkan ke dalam bensin Premium SB ataupun Premix sebanyak 1,5 ml per gallon. Penggunaan TEL dalam bensin ternyata menimbulkan dampak negatif terhadap lingkungan. Gas buang dari kendaraan bermotor merupakan sumber utama Pb di lingkungan.
Penggunaan bensin untuk 1,5 juta kendaraan bermotor di Jakarta mencapai 5,3 juta liter per hari dengan TEL yang ditambahkan sebanyak 2.088 liter (3.403 kg). Di dalam TEL tersebut, terdapat 2.182 kg Pb. Dari Pb yang dibakar, 75% akan dikeluarkan kembali, sehingga diperkirakan ada sejumlah 1.636 kg Pb per harinya akan diemisikan dari keseluruhan kendaraan bermotor di Jakarta.
Tingginya emisi Pb menyebabkan udara, pakan hijauan dan air minum ternak sapi perah, rawan untuk tercemar Pb. Jika hal tersebut benar, maka di dalam tubuh ternak akan terjadi akumulasi Pb, yang pada akhirnya sebagian dari Pb tersebut dikeluarkan kembali melalui air susu. Apabila kandungan Pb di air susu sapi perah melebihi ambang batas aman, maka air susu tersebut akan berpengaruh negatif bagi manusia yang mengkonsumsinya.
Untuk kota Jakarta, kandungan Pb di udara pernah terdeteksi di atas ambang batas (0,06 mg/m3). Kandungan Pb di rumput dan dedaunan yang pernah dianalisa, nilainya di atas normal (2,5 ppm). Rata-rata kandungan Pb di air tanah sebesar 0,04 ppm. Sedangkan kandungan Pb di lingkungan peternakan sapi perah (udara, pakan hijauan dan air minum) serta di air susu sapi perah belum diketahui jumlahnya.
Sehubungan dengan permasalahan tersebut di atas, maka penelitian ini dilakukan dengan tujuan:
1. Mengetahui kandungan Pb di udara, pakan hijauan, air minum dan air susu sapi perah.
2. Mengetahui pengaruh perbedaan lokasi peternakan terhadap kandungan Pb di udara, pakan hijauan, air minum dan air susu sapi perah.
3. Mengetahui hubungan antara kandungan Pb di udara, pakan hijauan dan air minum dengan kandungan Pb pada air susu sapi perah.
Penelitian ini dilakukan selama 3 (tiga) bulan, mulai tanggal 13 Mei sampai dengan tanggal 15 Agustus 1991 di 4 (empat) lokasi yaitu:
1. Jalan Industri, Kelurahan Gunung Sahari (lokasi I).
2. Kelurahan Kuningan Timur (lokasi II)
3. Sekitar Jalan Buncit Raya (lokasi III)
4. Kecamatan Jagakarsa (lokasi IV)
Pada setiap lokasi, dipilih secara acak 5 (lima) peternakan yang memiliki ternak sapi perah minimal 20 ekor, sehingga secara keseluruhan diperoleh 20 sampel peternakan. Terhadap 20 sampel tersebut, dilakukan pengukuran kandungan Pb di udara, pakan hijauan, air minum dan air susu sapi perah. Data yang diperoleh dilakukan analisis statistik menggunakan analisis varian dan regresi berganda.
Hasil penelitian menyimpulkan:
1. Rata-rata kandungan Pb di udara, pakan hijauan, air minum dan air susu sapi perah sudah cukup tinggi. Rata-rata kandungan Pb di udara terdeteksi sebesar 34,2 mikrogram/m3 (lokasi I), 45,8 mikrogram/m3 (lokasi II), 26,4 mikrogram/m3 (lokasi III) dan 16,8 mikrogram/m3 (lokasi IV). Rata-rata kandungan Pb di pakan hijauan terukur sebesar 20,49 ppm (lokasi I), 21,14 ppm (lokasi II), 17,75 ppm (lokasi III) dan 12,85 ppm (lokasi IV). Untuk air minum sapi perah rata-rata kandungan Pb-nya sebesar 0,09 ppm (lokasi I), 0,10 ppm (lokasi II), 0,08 ppm (lokasi III) dan 0,07 ppm (lokasi IV). Sedangkan di air susu sapi perah rata-rata kandungan Pb-nya tercatat 0,77 ppm (lokasi I), 1,03 ppm (lokasi II), 0,74 ppm (lokasi III) dan 0,37 ppm (lokasi IV).
2. Lokasi peternakan berpengaruh sangat nyata (P<0,01) terhadap kandungan Pb di udara, pakan hijauan, air minum dan air susu sapi perah. Hal ini berarti bahwa perbedaan lokasi peternakan dapat menyebabkan perbedaan pada kandungan Pb di udara, pakan hijauan, air minum dan air susu sapi perah dengan kecenderungan bahwa apabila lokasi peternakan semakin ke pusat kota, maka kandungan Pb-nya semakin tinggi.
3. Antara kandungan Pb di air minum dengan kandungan Pb pada air susu sapi perah tidak ada hubungan yang nyata karena adanya multicollinearity, sedangkan kandungan Pb di udara dan pakan hijauan berhubungan nyata dengan kandungan Pb pada air susu sapi perah. Besarnya hubungan tersebut terlihat dari persamaan:
Y = - 0,698 + 0,018X1 + 0,041X2 + 0,221D3 + 0,232D4 (Y = kandungan Pb di air susu; X1 = kandungan Pb di udara; X2 kandungan Pb di pakan hijauan; D3 = variabel dummy lokasi III dan D4 = variabel dummy lokasi IV).
Mengingat sudah cukup tingginya kandungan Pb pada air susu sapi perah, maka upaya yang paling penting dilakukan untuk menurunkan kandungan Pb tersebut adalah menghilangkan kandungan TEL dalam bensin. Apabila upaya tersebut belum dapat dilakukan, maka upaya lainnya yang dapat dilakukan adalah:
1. Lokasi peternakan sapi perah sebaiknya jauh dari jalan raya atau pusat kota.
2. Pakan hijauan sebaiknya diambil dari lokasi yang jauh dari jalan raya atau pusat kota.
3. Melakukan pencucian dengan air terhadap pakan hijauan yang diduga mengandung Pb tinggi.
4. Melakukan penambahan mineral Ca atau Mg pada makanan ternak, karena mineral tersebut dapat menekan penyerapan Pb oleh alat pencernakan.
5. Menggantikan sebagian pakan hijauan dengan makanan konsentrat."
Jakarta: Program Pascasarjana Universitas Indonesia, 1992
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Deni Mulyana
"Hasil Survei Sosial Ekonomi Nasional tahun 2001 menunjukkan bahwa sumber air bersih yang banyak digunakan oleh masyarakat, khususnya masyarakat pedesaan adalah air tanah dangkal berupa sumur gali (47,40%). Hal ini karena pembuatan sumur gali mudah, murah, dan sederhana. Sumur gali yang baik harus memenuhi syarat kesehatan baik dari segi konstruksi maupun kualitas airnya. Hanya 35,50% sumur gali yang digunakan masyarakat terlindung dalam arti dilengkapi konstruksi, dan hanya 47,75% berjarak lebih dari 10 meter dari jamban.
Untuk mengetahui tingkat risiko pencemaran pada sumur gali, dilakukan surveilans kualitas air melalui kegiatan Inspeksi Sanitasi (IS). Sedangkan untuk mengetahui kualitas bakteriologik air dilakukan pemeriksaan sampel air di laboratorium. Permasalahannya adalah apakah tingkat risiko pencemaran hasil IS sesuai dengan kualitas bakteriologik air sumur gali. Penelitian ini dilakukan untuk mengetahui kesesuaian antara hasil pengukuran tingkat risiko pencemaran dengan IS dan hasil pemeriksaan bakteriologik pada sumur gali.
Rancangan penelitian yang digunakan adalah studi diagnostik, yaitu untuk mengetahui kesesuaian antara hasil pengukuran tingkat risiko pencemaran dengan IS dan hasil pemeriksaan kualitas bakteriologik pada bersih sumur gali. Diharapkan adanya kesesuaian yang baik dengan nilai Kappa antara 0,40 sampai dengan 0,75. Populasi penelitian adalah sumur gali yang ada di wilayah kerja Puskesmas Rancabungur, Kabupaten Bogor pada tahun 2003 dengan sampel sebanyak 88 yang diambil secara bertingkat di 3 desa (21 RW) di Rancabungur. Data yang dikumpulkan dengan melakukan pengamatan menggunakan formulir IS dan pemeriksaan bakteriologik sampel air sumur gali.
Hasil analisis, menunjukkan bahwa dari 10 variabel IS ada 1 variabel yang tidak reliable, dan tidak berhubungan bermakna secara statistik dengan tingkat risiko pencemaran, yaitu dinding sumur sedalam 3 meter tidak diplester. Seluruh variabel tidak berhubungan bermakna secara statistik dengan kelas kualitas bakteriologik. Kesesuaian antara tingkat risiko pencemaran dan kualitas bakteriologik, sangat rendah (Kappa 0,009 untuk 2 katagorik dan Kappa 0.006 untuk 4 katagorik).
Dapat disimpulkan bahwa formulir IS tidak seluruhnya reliable untuk mengukur tingkat risiko pencemaran. Tingkat risiko pencemaran dengan mempergunakan IS tidak dapat dipergunakan untuk dapat menduga kualitas bakteriologik air. Disarankan perlu evaluasi kembali formulir IS dengan memperhatikan variabel apa saja. yang berhubungan dengan kelas kualitas bakteriologhik air, pembobotan yang berbeda untuk masing-masing dan penetapan titik potong untuk menetapkan tingkat risiko dan/atau kualitas bakteriologik air sumur gali. Instrumen IS harus dikembangkan sedemikian rupa sehingga dapat digunakan dalam diteksi dini kualitas air oleh masyarakat.
Daftar Pustaka, 30 (1983 - 2002)

Compatibility Between Measurement Results of Pollution Risk Level from Sanitary Inspection and Bacteriological Assessment Results of Dug-Wells at Puskesmas Rancabungur, Bogor District, 2003The results of National Socio-Economy Survey 2001 indicated that most rural community (47,40%) utilized dug-wells as clean water source, due to low cost, simplicity and not complicated in the construction. A good dug-wells should meet health standard, both in its construction and water quality as well. From 47,40% of dug-wells, it was found that only 35,50% of those possessed complete construction or met health standard. In addition, only 47,75% of those had a 10-meter distance from latrine.
In order to find out pollution risk level of dug-wells, water quality surveillance was conducted through sanitary inspection (SI). Whereas, to find out bacteriological water quality, this study also carried out water sample analysis in the laboratory. The problem of this research tried to find an answer whether pollution risk level from the SI results was compatible with bacteriological quality of dug-wells based on colrfarm number. This research was implemented to find out the compatibility between the measurement results of pollution risk level from the SI and the results of bacteriological analysis of dug-wells.
In the effort to assess compatibility between measurement results of pollution risk level from the SI and the results of bacteriological analysis of dug-wells, research design used diagnostic study with expected Kappa compatibility from 0,40 up to 0,75 and classified as a good grade. The research population was dug-wells which existed in the working area of Puskesmas (health center) Rancabungur, Bogor District in the year 2003. This research used stratified sampling method with a total of 88 samples, taken from 3 villages (21 RW) in Rancabungur. Data were compiled through observation and using the SI forms. In addition to data collection, it also took water samples of dug-wells for bacteriological quality analysis.
Statistical results showed that from 10 variables of the SI only 1 variable was statistically unreliable and not significant with pollution level risk. This variable was the line/wall of dug-wells without 3-meter ring of Ferro-cement. All of the SI variables statistically revealed no significant association with bacteriological quality level. The research also revealed that the compatibility between pollution risk level and water quality class was very low, where Kappa 0,009 for 2 categories and Kappa 0,006 for 4 categories.
Based on the results, it may be concluded that not all of SI forms were reliable to measure pollution risk level. The SI forms could not be used to predict and assess class of bacteriological water quality. Eventually, it is recommended that the utilization of SI forms should be reevaluate with taking into account on certain variables which may potentially influence on bacteriological water quality class. Moreover, every variable should be treated with different weight (score) and a cutting point should be determined to measure pollution risk Level and/or bacteriological water quality of dug-wells. Finally it is expected that the SI can be used as early warning method, particularly for water quality control in the community.
Bibliography, 30 (1983 - 2002)
"
Depok: Universitas Indonesia, 2003
T13006
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>