Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 102207 dokumen yang sesuai dengan query
cover
Fachrurrazie
"ABSTRAK
Glukosa oksidase pada permukaan elektroda BDD yang termodifikasi
AuNP telah dibuat untuk aplikasi sel bahan bakar enzimatik (SBE). AuNP-BDD
dibuat dengan cara merendam BDD termodifikasi nitrogen (N-BDD)
menggunakan AuNP, sedangkan N-BDD disusun dengan menggunakan metode
fotokimia pada larutan amonia dan disinari UV 254 nm. respon elektrokimia dari transfer elektron dan oksidasi glukosa pada elektroda termodifikasi telah diamati dengan tujuan untuk memfabrikasi sebuah SBE. Voltametri siklik (CV)
mengamati puncak reduksi oksigen di 0,14 V pada konsentrasi glukosa yang
berbeda (0,1-0,9 M) pada larutan penyangga fosfat (PBS) pada pH 7. Selanjutnya, variasi scan rate menunjukkan arus puncak memiliki nilai linear (R2 = 0.99) terhadap scan rate1/2 bahwa puncak ini dikendalikan oleh proses kontrol difusi. Sebuah SBE Model laboratorium dibangun dengan menggunakan elektroda AuNP-BDD-GOks sebagai anoda dan kalium ferrosanida-ferrisianida sebagai katoda dengan sistem terbuka. Dari studi discharge, elektroda itu ditemukan juga bekerja pada potensial optimal. Oleh karena itu, penelitian ini menyimpulkan bahwa modifikasi elektroda pada penelitian ini menjanjikan untuk aplikasi SBE

ABSTRACT
Glucose oxidase immobilized in gold nanoparticles-modified boron-doped
diamond was prepared for an application in enzymatic fuel cells (EFCs). AuNPs- BDD was prepared by immersing nitrogen-modified BDD (N-BDD) in a colloidal AuNPs, whereas N-BDD was prepared using photochemical method in an ammonia solution under UV light. The electroanalytical responses of the electron transfer and the oxidation discharge of glucose at the electrode were studied in order to build an EFC. Cyclic voltammetry observed an oxygen reduction peak at 0.14 V. The current of this peak was linear (R2= 0.99) with different glucose concentrations (0.1-0.9 M) and phosphate buffer solution (PBS) at pH of 7. Furthermore, the scan rate dependency showed that this peak was controlled by diffusion control process. A laboratory model EFC was built by mounting the anode with a potassium ferrocyanide-ferricyanide cathode in open system. From these discharge studies, the electrode was found to be well working at the optimum potential. Hence, the current study concluded that the modified electrode is a promising electrode for EFC."
2016
T46210
UI - Tesis Membership  Universitas Indonesia Library
cover
Arya Maulana Ichsan
"ABSTRAK
Fuel cell menjadi sorotan utama sebagai sumber energi alternatif karena mampu mengubah energi kimia menjadi listrik, panas, dan air. Urea, sebagai salah satu komponen utama dalam urin, merupakan salah satu bahan bakar yang dapat digunakan dalam sistem fuel cell karena memiliki densitas energi paling besar dibanding dengan molekul pembawa hidrogen umum lainnya. Pada penelitian ini, boron-doped diamond BDD dimodifikasi dengan paduan logam nikel-kobalt untuk digunakan sebagai elektroda dalam sistem fuel cell. Modifikasi BDD dilakukan dengan metode pembibitan serta elektrodeposisi Ni NO3 2 dan CoCl2 dengan variasi perbandingan mol Ni dan Co sebesar 9:1; 7:3; 6:4; 5:5. Elektroda yang terbentuk dikarakterisasi menggunakan SEM-EDX dan XPS. Karakterisasi dengan SEM-EDX menunjukkan bahwa elektroda telah berhasil dimodifikasi dengan persen berat nikel sebesar 0,15 w/w pada Ni-BDD, kobalt sebesar 0,25 w/w pada Co-BDD. Kemudian pada elektroda NiCo-BDD 9:1; 7:3; 6:4; dan 5:5 berturut-turut, teramati nikel:kobalt sebesar 0,64 :0,04 w/w ; 0,47 :0,19 w/w ; 0,48 :0,01 w/w ; 0,44 :0,22 w/w. Sementara dengan XPS didapat nikel sebanyak 3,48 pada Ni-BDD, kobalt sebanyak 0,405 sebanyak Co-BDD, nikel:kobalt sebanyak 1,55 :0,428 ; 0,49 :0,226 ; 0,864 :0,594 ; dan 0,491 :0,364 untuk NiCo-BDD 9:1; 7:3; 6:4; dan 5:5 berturut-turut. Didapatkan densitas daya terbesar untuk elektroda NiCo-BDD 7:3 sebesar 0,12001 mW/cm2 ketika digunakan urea 0,33 M dan 0,12257 mW/cm2 ketika digunakan sampel urin.

ABSTRACT
Fuel cell becomes the main highlight for the alternative energy because it converts chemical energies into electricity, heat, and water. Urea, as one of the main components in urine, can be used as a fuel in the fuel cell system because it has the highest energy density compared to other common hydrogen carriers. In this study, boron doped diamond BDD was modified with nickel cobalt then used as electrode in the fuel cell system. The modification was done by seeding and electrodeposition methods with Ni NO3 2 and CoCl2 with Ni and Co mol ratios of 9 1 7 3 6 4 and 5 5. The modified electrodes, were characterized with SEM EDX and XPS. SEM EDX characterization showed that the electrodes were modified successfully with nickel mass percentage of 0,15 w w on Ni BDD, cobalt of 0,25 w w on Co BDD, nickel cobalt of 0,64 0,04 w w 0,47 0,19 w w 0,48 0,01 w w 0,44 0,22 w w on NiCo BDD 9 1 7 3 6 4 and 5 5 respectively. Further characterization with XPS showed nickel percentage of 3,48 on Ni BDD, cobalt of 0,405 on Co BDD, nickel cobalt of 1,55 0,428 0,49 0,226 0,864 0,594 dan 0,491 0,364 on NiCo BDD 9 1 7 3 6 4 and 5 5 respectively. Highest power density of 0,12001 mW cm2 was obtained with NiCo BDD 7 3 electrode using 0,33 M urea and 0,12257 mW cm2 using urine sample."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Evan Fairuz Hadi
"SARS-CoV-2 merupakan virus RNA penyebab COVID-19 yang telah menjadi pandemi dunia selama dua tahun terakhir. Hingga saat ini, metode deteksi RT-PCR menjadi metode terbaik dalam deteksi COVID-19. Namun mahalnya biaya reagen dan instrumentasi menyebabkan diperlukannya metode lain yang lebih murah dan praktis. Sementara itu Umifenovir (arbidol) merupakan senyawa elektroaktif yang dapat berinteraksi dengan spike glikoprotein SARS-CoV-2. Pada penelitian ini interaksi umifenovir dan glikoprotein S2 dipelajari dengan studi elektrokimia di permukaan elektroda boron-doped diamond (BDD). Sebelum dilakukan studi elektrokimia, dilakukan studi penambatan molekul dengan Homology Modelling dan Molecular Docking menggunakan umifenovir. Studi interaksi umivenofir terhadap glikoprotein S2 SARS CoV-2 menghasilkan affinity binding sebesar -6,1 kcal/mol. Sedangkan studi elektrokimia umifenovir menggunakan elektroda BDD pada rentang potensial dari (-0,8 V) hingga (+0,8 V) dan scan rate 50 mV/s menunjukkan korelasi linear pada rentang konsentrasi 10- 100 μM. Selanjutnya deteksi spike glikoprotein S2 SARS CoV-2 menggunakan kondisi optimum dengan 100 μM umifenovir dan 0,0025 μg/mL spike glikoprotein melalui perbandingan 20:1 menunjukkan nilai limit deteksi (LoD) dan limit kuantifikasi (LoQ) berturut-turut sebesar 0,001497 μg/mL dan 0,004991 μg/mL. Hasil studi menunjukkan bahwa ode deteksi yang dikembangkan dengan elektroda BDD dapat digunakan untuk sampel klinis SARS-CoV-2.

SARS-CoV-2 is RNA virus causing Covid-19 which has become the global pandemic in the last two years. To date, RT-PCR is the best method for Covid-19 detection. However, the costly chemical reagents and instruments for this method suggesting another cheaper and practical method is necessary. Meanwhile, umifenovir (arbidol) is an electroactive compound which can interact with the SARS-CoV-2 glicoprotein spike. In this research, umifenovir interaction with glicoprotein S2 is investigated through the electrochemical study on the electrode surface of boron-doped diamond (BDD). Prior to the electrochemical study, computational study using Homology Modelling dan Molecular Docking was performed for umifenovir. Affinity binding of -6.1 kcal/mol was obtained from the umivenofir against glicoprotein S2 SARS CoV-2. On the other hand, the electrochemical study on umifenovir using BDD electrode in the potential range of -0.8 V to +0.8 Vand scan rate of 50 mV/s shows a linear correltaion in the concentration range of 10-100 μM. Moreover, the detection of S2 SARS CoV-2 glicoprotein spike using the optimum condition of 100 μM umifenovir and 0.0025 μg/mL glicoprotein spike with 20:1 ratio shows the limit of detection (LoD) and limit of quantification (LoQ) are 0.001497 μg/mL and 0.004991 μg/mL, respectively. The results of this study reveal that the detection method developed with BDD electorde can be applied for the real samples of SARS-CoV-2."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Heru Kuntoro Ashadi
"Dengan kemajuan teknologi, peningkatan penggunaan penyimpanan energi yang begerak juga semakin bertambah. Salah satu bahan aktif yang digunakan dalam katoda baterai ion litium adalah LiFePO4. Dalam penelitian ini, telah dilakukan sintesis dan proses pemberian doping Na pada material katoda LiFePO4/C menjadi material komposit Li1-xNaxFePO4/C dengan (x = 0, 0,01, 0,02, 0,03, 0,04 dan 0,05) dilakukan dengan kombinasi proses reaksi kimia basah (wet chemical) dan padatan (solid state) pada temperatur kalsinasi 350oC selama 1 jam proses sintering 750oC selama 4 jam. Karakterisasi morfologi, struktur mikro dan komposisi dilakukan dengan menggunakan difraksi sinar-X (XRD) dan mikroskop elektron yang dilengkapi dengan pemindai komposisi (SEM/EDX), sedangkan karakterisasi elektrokimia dalam bentuk sel koin R2032 dilakukan dengan menggunakan voltametri siklik (CV), spektroskopi impedansi elektrokimia (EIS) dan pengisian dan pengosongan (Charge-Discharge). Hasil XRD menunjukkan bahwa semua sampel sesuai dengan LiFePO4/C standar dengan struktur olivine pada kondisi x = 0, sedangkan hasil SEM menunjukan bahwa ukuran partikel semua sampel adalah berkisar antara sekitar 1 sampai dengan 3 µm. Hasil uji CV menunjukkan bahwa doping Na jelas meningkatkan reversibilitas dan perilaku dinamis interkalasi dan deinterkalasi ion lithium. Hasil EIS menunjukkan bahwa doping Na mengurangi resistensi transfer pada material katoda LiFePO4/C dengan meningkatkan koefisien difusi ion lithium. Dapat disimpulkan dari semua karakteriasi material sampel dan sel koin bahwa doping Na dapat meningkatkan kinerja elektrokimia material katoda dengan hasil yang optimal pada x = 0,02 sampai 0,03.

With the advancement of technology, there is an increase use of mobile energy storage. One of the active materials used in lithium ion battery cathode is LiFePO4. In this work, synthesis and characterization of Li1-xNaxFePO4/C (x = 0, 0.01, 0.02, 0.03, 0.04 dan 0.05) composite has been carried out. The synthesis was performed via combination of wet chemical reaction processes to obtain FePO4 and continued with the process of mixing through solid state reaction method to form Li1-xNaxFePO4/C. In this work, nominal x ratio of sodium to lithium was varied from 0 to 5 wt.%. The calcination was carried out for 1 hour at 350 °C and continued with sintering at 750 °C for 4 hours under nitrogen environment. Morphological characterization and microstructure observation were performed using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD), respectively. The XRD results showed that the obtained active material has uniformity in comparison to the LiFePO4 standard with olivine structure for x = 0. With the addition of sodium, there is an indication that the peak shifted to the lower at the optimum angle. Observation on the morphology showed that the particle size of the obtained active material ranges from about 1 to 3 µm, whereas analysis on the composition showed consistent results. This is as an indication that the synthesis of Li1-xNaxFePO4/C composite has been carried out successfully. The CV test results show that Na doping increases the reversibility and dynamic behavior of lithium ion intercalation and deintercalation. The EIS results show that Na doping reduces transfer resistance in the LiFePO4/C cathode material by increasing the diffusion coefficient of lithium ions. It can be concluded from all the characteristics of the sample material and coin cell that Na doping can improve the electrochemical performance of the cathode material with optimal results at x = 0.02 to 0.03."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Yulia Mariana Tesa Ayudia Putri
"Fuel cell urea menarik dikembangkan karena karakteristik dari urea, seperti non-toxic, tidak mudah terbakar, serta merupakan salah satu penyusun limbah terbesar, yaitu urin. Untuk meningkatkan efisiensi dari fuel cell urea/H2O2, diperlukannya suatu katalis anoda. Nikel dikenal sebagai katalis yang baik serta memiliki energi aktivasi yang baik pula pada medium basa. Umumnya paduan antara nikel dengan metal lain dilakukan untuk meningkatkan stabilitas serta meningkatkan aktivitas katalitiknya. Pada penelitian ini, bimetal nikel-kobalt, nikel-mangan, nikel-tembaga, dan nikel-zinc dideposisi pada permukaan boron-doped diamond (BDD) untuk dijadikan sebagai katalis anoda pada fuel cell urea/H2O2. Karakterisasi dengan menggunakan SEM dan XPS menunjukkan bahwa partikel bimetal tersebut telah terdeposisi secara merata di atas permukaan BDD. Optimasi membran penukar ion, konsentrasi KOH sebagai medium basa pada urea, serta variasi komposisi perbandingan bimetal menunjukkan hasil terbaik pada penggunaan NiMn-BDD sebagai katalis anoda dengan densitas daya sebesar 0,712 mW cm-2 pada potensial sebesar 0,339 V vs SHE dan densitas arus sebesar 2,107 mA cm-2. Membran yang digunakan adalah penukar anion dengan elekrolit KOH 3 M dan perbandingan antara nikel dan mangan sebesar 4:1. Stabilitas yang baik diperoleh pada pengaplikasian selama tiga jam dengan rata-rata potensial diperoleh sebesar 0,5461 V vs SHE.

Urea fuel cell is very interesting to be developed because of the characteristics of urea, such as non-toxic, non-flammable, and it is one of the biggest waste compilers, urine. To increase the efficiency of the urea/H2O2 fuel cell, an anode catalyst is needed. Nickel is known as a good catalyst and has a good activation energy in alkaline medium. Generally, the alloy or bimetal of nickel and other metals are done to increase the stability and the catalytic activity of nickel. In this study, bimetallic nickel-cobalt, nickel-manganese, nickel-copper and nickel-zinc deposited on the surface of boron-doped diamond (BDD) are investigated as an anode catalyst in urea/H2O2 fuel cells. Characterization using SEM-EDX and XPS shows that the bimetal particles have been deposited quite homogenously on the surface of BDD. Optimation of the ion exchange membrane, KOH concentration as a base medium on urea, and composition's ratio of bimetal showed the best result can be obtained using NiMn-BDD as an anode catalyst with a power density of 0.712 mW cm-2 at a potential of 0.339 V vs SHE and a current density of 2.107 mA cm-2. The membrane used is an anion exchange membrane using 3 M KOH and a 4: 1 ratio between nickel and manganese. Good stability was obtained for three hours of application with an average potential obtained of 0.5461 V vs SHE."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T54721
UI - Tesis Membership  Universitas Indonesia Library
cover
Aliyah
"Penelitian ini melakukan pengembangan sistem microbial fuel cell (MFC) dengan menggunakan elektroda busa karbon termodifikasi AuNP dan terfungsionalisasi mercapto benzoic acid (MBA). Elektroda busa karbon termodifikasi AuNP berhasil disintesis melalui metode hidrotermal. Hasil ini dikonfirmasi oleh analisis UV-Visible Spectrometer (UV-Vis), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) dan Scanning Electron Microscope (SEM). Hasil analisis menggunakan Particle Size Analyzer (PSA) menunjukkan ukuran AuNP yang didapat yaitu sekitar 50 nm dengan distribusi yang bersifat polydisperse dan memiliki bentuk nanopartikel sphere yang dikonfirmasi melalui Transmission Electron Microscopy (TEM). Studi awal elektrokimia dengan metode Cyclic Voltammetry (CV) dengan rentang potensial -1,5 sampai 1,8 dengan scan rate 10 mV/s dilakukan untuk mengkonfirmasi bahwa elektroda busa karbon termodifikasi memiliki sifat elektro aktif terhadap glukosa, yang merupakan substrat atau bahan bakar pada sistem MFC ini. Kinerja MFC dievaluasi dengan menggunakan kurva polarisasi dan didapatkan hasil bahwa elektroda busa karbon termodifikasi AuNP terfungsionalisasi MBA memiliki nilai densitas arus dan daya yang lebih tinggi yaitu 1226, 93 mA/m2 dan 223,91 mW/m2 dibandingkan dengan elektroda tanpa fungsionalisasi yaitu  392,29 mA/ m2 dan 109,14 mW/ m2. Selain itu, studi Electrochemical Impedance Spectroscopy (EIS) dilakukan untuk mengetahui besarnya hambatan pada sistem MFC sehingga peyimpangan produksi daya dapat diketahui. 

This study developed a microbial fuel cell (MFC) system using carbon foam electrodes modified with AuNP and mercapto benzoic acid (MBA) functionalization. AuNP modified carbon foam electrodes were successfully synthesized by hydrothermal method. These results were confirmed by analysis of UV-Vis, XRD, FTIR, and SEM. The results of the analysis using the Particle Size Analyzer (PSA) show that the AuNP size obtained is around 50 nm with a polydisperse distribution and has a sphere nanoparticle shape confirmed by TEM. Initial electrochemical studies were conducted with the Cyclic Voltammetry (CV) method with a potential range of -1.5 to 1.8 and a scan rate of 10 mV/s were carried out to confirm that the modified carbon foam electrodes have electro-active properties against glucose, the substrate or fuel in this MFC system. MFC performance was evaluated using polarization curves and the results showed that the MBA functionalized AuNP modified carbon foam electrode had higher current density and power values, 1226, 93 mA/m2 and 223.91 mW/m2 compared to the electrode without functionalization, namely 392.29. mA/m2 and 109.14 mW/m2. In addition, an Electrochemical Impedance Spectroscopy (EIS) study was conducted to determine the amount of resistance in the MFC system so that deviations in power production could be identified."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
"[Elektroforesis kapiler merupakan suatu metode pemisahan senyawa-senyawa berdasarkan perbedaan kecepatan mobilitas ion karena adanya perbedaaan tegangan tinggi yang diberikan. Pendeteksian yang digunakan adalah secara elektrokimia dengan menggunakan elektroda kerja yaitu Boron Doped Diamond (BDD) dengan terminasi Hidrogen yaitu Hydrogenated Boron Doped Diamond (H-BDD) dan sebagai pembanding, digunakan juga elektroda kerja Oxidized Boron Doped Diamond (O-BDD). Elektoda H-BDD digunakan sebagai elektroda kerja karena dapat lebih baik mengukur puncak arus senyawa Adenosin Fosfat yaitu AMP, ADP, dan ATP dibandingkan elektroda O-BDD. Diukur pula Adenin dan Adenosin sebagai data tambahan. Puncak arus ketiga senyawa adenosine fosfat sama yaitu 1,5 Volt sehingga diperlukan metode elektroforesis untuk dapat memisahkannya. Puncak arus tertinggi didapatkan pada kodisi pH 4 dalam larutan penyangga PBS (Phosphate Buffer Saline) dengan menggunakan elektroda H-BDD sedangkan pH 2 dengan menggunakan elektroda O-BDD. Kapiler yang digunakan berupa fused silica dengan diameter dalam yaitu 50 μm dan diameter luar yaitu 150 μm. Tegangan tinggi yang digunakan sebesar 10 kV dengan menggunakan power suplai tegangan tinggi. Perlu dilakukan perbaikan rancangan elektroforesis dan beberapa kendala lain untuk menghasilkan pengukuran yang baik.
, Capillary electrophoresis is a method of separating compounds by ion mobility speed difference because of the different high voltage supplied. Detection used is electrochemically by using the working electrode is doped Boron Diamond (BDD) with Hydrogen termination, It is Hydrogenated Boron doped Diamond (H-BDD) and as a comparison, the working electrode is used also Oxidized Boron doped Diamond (O-BDD). H-BDD electrode is used as the working electrode as it can better measure the peak flow Adenosine Phosphate compounds are AMP, ADP, and ATP than O-BDD electrode. Adenine and adenosine is measured as well as additional data. The third current peak adenosine phosphate compounds are 1.5 Volt so that the necessary methods of electrophoresis to separate them. Highest peak currents obtained at pH 4 Events in PBS buffer solution (Phosphate Buffer Saline) using H-BDD electrodes while pH 2 using electrodes O-BDD. Capillaries are used in the form of fused silica with a diameter of 50 μm and the outer diameter of 150 μm. High voltage is used at 10 kV using a high voltage power supply. The need to restore the draft electrophoresis and several other obstacles to produce a good measurement.
]"
Universitas Indonesia, 2015
S60933
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hanzhola Gusman Riyanto
"Ketergantungan Indonesia pada energi fosil membuat produksi minyak bumi dalam negeri turun drastis sejak tahun 2001 silam sedangkan kebutuhan energi terus meningkat. Selain itu, penggunaan energi fosil dapat menimbulkan permasalahan bagi lingkungan. Oleh karena itu, dibutuhkan suatu energi alternatif yang ramah lingkungan untuk mengatasi masalah tersebut. Microbial Fuel Cell (MFC) merupakan salah satu sumber energi alternatif yang prospektif untuk dikembangkan dan ramah lingkungan. Pada penelitian ini, elektroda boron-doped diamond digunakan sebagai elektroda kerja dan khamir Candida fukuyamaensis digunakan sebagai biokatalis pada sistem MFC. Untuk memperoleh energi listrik yang optimum dilakukan variasi pH pada kompartemen anoda dari pH 6,5-7,5 dan variasi konsentrasi mediator dari 10-100 μM. Energi listrik maksimum yang dihasilkan sebesar 396,2 mW/m2 dan 310 mA/m2 pada kondisi pH 7,5 dengan konsentrasi mediator 10 μM.

The dependency of fossil energy in Indonesia may cause crude oil production decreased drastically since 2001, while energy consumption increased. In addition, The use of fossil energy can cause several environment problems. Therefore, we need a alternative energy that environment friendly as solution for these problems. Microbial fuel cell is one of prospective alternative energy source to be developed and environment friendly. In this study, Boron-doped diamond electrode was used as working electrode and Candida fukuyamaensis as biocatalyst in microbial fuel cell. Different pH of anode compartmen (pH 6,5-7,5) and mediator consentration (10-100 μM) was used to produce electricity optimally. The maximum power and current density 396,2 mW/m2 and 310 mA/m2, for MFC using pH 7,5 at anode compartment and methylene blue concentration at 10 μM respectively.
"
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
S60607
UI - Skripsi Membership  Universitas Indonesia Library
cover
Galus, Zbigniew
Chichester: Ellis Horwood, 1976
543.4 GAL f
Buku Teks  Universitas Indonesia Library
cover
Galus, Zbigniew
New York : Ellis Horwood, 1994
543.4 GAL f
Buku Teks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>