Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 194526 dokumen yang sesuai dengan query
cover
Angga Pratama
"ABSTRAK
Perkembangan teknologi khususnya internet berkembang begitu pesat dewasa ini. Oleh karena itu, arus informasi meningkat begitu cepat yang menyebabkan informasi diperoleh sangat banyak. Media sosial pun menjadi salah satu sarana penyedia informasi, salah satunya adalah Twitter. Pendeteksian topik menjadi suatu kebutuhan bagi masyarakat untuk mengetahui hal-hal yang bicarakan pada waktu tertentu. Maka, dibutuhkan suatu cara yang cepat dan tepat untuk mendapatkan topik dari tweet yang terkirim pada Twitter. Dengan jumlah dokumen yang sangat besar, diperlukan suatu metode otomatis. Salah satu metode otomatis untuk pendeteksian topik adalah model yang berbasis faktorisasi matriks yaitu Non-negative Matrix Factorization (NMF). Metode NMF yang digunakan pada penelitian ini difokuskan pada wilayah Jakarta dan sekitarnya guna melihat topik yang dibahas masyarakat Jakarta dan sekitarnya pada kurun waktu tertentu. Hasil yang didapatkan lewat metode NMF ini selanjutnya akan dievaluasi dengan cara melihat tingkat akurasi yang dihasilkan lalu disimulasikan dalam bentuk tren berdasarkan frekuensi masing-masing topik.

ABSTRACT
Development of technology spesifically in internet grows so fast nowadays. Therefore, flow of information increase rapidly that leads information to be obtained so much. Social media become the one information provider, such as Twitter. Topic detection become a public society to know the things that being discussed at a certain time. Hence, needed a quick and precise method to obatain topic from tweet posted from twitter. With large amount of document, needed an automaticly method. One of automaticly method that based on matrix factorization is Non-negative Matrix Factorization as usually being called as NMF. Non-negative matrix factorization method on this research focused on region of Jakarta in order to know what are being discussed by society there in a period of time. The result have been obtain with NMF method will be evaluated by calculating the accuracy and finally will be simulated in the form of trend plot based on the frequency of the topic."
2016
S65611
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rosiana Disiati Prabandari
"ABSTRAK
Era globalisasi tidak dapat menahan besarnya pengaruh kecanggihan teknologi informasi, salah satunya adalah internet. Perkembangan teknologi internet tentu meningkatkan jumlah informasi yang tersedia. Informasi tersebut dapat berupa berita ? berita aktual yang dapat diakses melalui media sosial, seperti Twitter. Oleh karena itu, dibutuhkan suatu cara cepat dan efisien untuk menemukan topik utama dari Twitter. Pendeteksian topik pada dokumen yang sangat besar sulit dilakukan secara manual sehingga dibutuhkan metode otomatis, salah satunya faktorisasi matriks yaitu Nonnegative Matrix Factorization (NMF). Salah satu metode NMF yang telah berhasil dikembangkan dengan komplesitas waktu polinomial adalah P-NMF dengan algoritma AGM yang memiliki asumsi bahwa setiap topik memiliki sedikitnya satu kata yang tidak terdapat pada topik lainnya yang disebut sebagai kata anchor. P-NMF dengan algoritma AGM terdiri dari tiga tahapan, yaitu pembentukan matriks coocurance, pencarian kata anchor, dan recover. Pada penelitian ini akan diterapkan P-NMF dengan Recover KL untuk mendeteksian topik pada twitter, kemudian hasilnya akan dibandingkan dengan LDA dan P-NMF dengan Original Recover. Penelitian menunjukan bahwa P-NMF dengan Recover KL mampu meningkatkan akurasi untuk pendeteksian topik pada Twitter.

ABSTRACT
The era of globalization can?t withstand the influence of sophistication of information technology, such as Internet. Development of Internet technology would increase the amount of information. The information may be actual news that can be accessed through social media, such as Twitter. Therefore, needed a fast and efficient way to find the main topics of Twitter. Detection topics on very large documents difficult to do manually so it takes automated methods, one of which is nonnegative matrix factorization (NMF). One method that has been successfully developed NMF with polynomial time complexity is P-NMF algorithm AGM which assumes that each topic has at least one word that doesn?t appear on other topics, called anchor words. P-NMF algorithm AGM consists of three steps, the establishment of a matrix coocurance, finding anchor words, and recover. This research will be implemented P-NMF with Recover KL to detect topics on twitter, then the results will be compared with the LDA and P-NMF with Original Recover. Research shows that P-NMF with Recover KL can improve detection accuracy for topics on Twitter."
2016
T46037
UI - Tesis Membership  Universitas Indonesia Library
cover
Praditya Nugraha
"Salah satu metode otomatis untuk analisis data tekstual adalah deteksi topik. Fuzzy C- Means di Ruang Eigen (EFCM) adalah metode berbasis soft clustering untuk pendetek- sian topik. Pada Algoritme EFCM adanya reduksi dimensi data awal menjadi lebih kecil. Namun, proses reduksi itu dapat menghilangkan beberapa fitur penting dari data tekstual. Sehingga, akurasi dapat berkurang. Dalam mengatasi hilangnya fitur penting digunakan bantuan Kernelisasi Fuzzy C-Means di Ruang Eigen sehingga proses clustering dapat di- lakukan dalam ruang dimensi yang lebih tinggi. Dalam penelitian ini akan dicek akurasi dari metode EFCM dan KEFCM dan perbandingannya dengan metode standar seperti Latent Dirichlet Allocation (LDA) dan Nonnegative Matrix Factorization (NMF) dalam masalah pendeteksian topik. Simulasi menunjukkan bahwa KEFCM memberikan akurasi yang lebih baik dalam menemukan topik daripada metode standar LDA dan EFCM namun tidak lebih baik dari NMF untuk masalah mendeteksi topik berita online di Twitter.

One of automated methods for textual data analysis is topic detection. Fuzzy C-Means in Eigenspace (EFCM) is a soft clustering-based method for topic detection. In, EFCM Algorithm there is a step to transform high dimensional textual data into lower dimensional data. However, that transformation process may eliminate some important features from the textual data. Therefore, the accuracy may be reduced. To overcome in losing important features Kernelized Fuzzy C-Means in Eigenspace (KEFCM) is needed, so that clustering process can be done in higher dimensional space. In this study the accuracy of EFCM and KEFCM will be evaluated and these methods will be compared by any standard method such as Latent Dirichlet Allocation (LDA) and Nonnegative Matrix Factorization (NMF) for topic detection problem. Simulations show that KEFCM gives better accuracy to find topics than LDA and EFCM method. However, these methods fail to give better results than NMF for the problem of sensing trending topic in online news in Twitter."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dini Rahmawati Akmalia
"Perkembangan teknologi dan informasi kini telah memberikan berbagai kemudahan dalam menjalani kehidupan. Salah satu perkembangan teknologi tersebut adalah munculnya berbagai portal berita online di Indonesia. Hal ini menyebabkan banyak berita online yang tersebar di Indonesia. Untuk mengetahui topik utama pada waktu tertentu, sulit jika harus membaca seluruh berita online. Oleh karena itu, digunakan proses pemodelan topik yang secara otomatis membantu menemukan topik utama yaitu metode NMF (Nonnegative Matrix Factorization). Dalam metode NMF, kumpulan berita online direpresentasikan sebagai matriks. Kemudian, metode NMF memfaktorisasi matriks tersebut menjadi matriks-matriks yang nonnegatif. Secara umum, sparseness merupakan akibat dari proses faktorisasi matriks. Namun, dalam penelitian ini, dilakukan proses pengaturan derajat sparseness pada metode NMF. Proses analisis pengaruh derajat sparseness dalam metode NMF pada ekstraksi topik utama berita online Indonesia ini dilihat pada tingkat interpretabilitas topik yang dihasilkan, semakin sparse suatu matriks maka semakin sulit untuk diinterpretasikan.

Development of technology and information nowadays gives many tools to be alive. One of that improved is the appearance of many portals of online news in Indonesia. As a consequences, many online news spread easily in Indonesia. For knowing the main topics in some time, it can be hard to read all the online news in short time. So that, using topic modeling that automatically help people to find the main topics. Non-negative matrix factorization (NMF) method is part of the topic modeling. In NMF method, the collection of online news are representing by a matrix. After that, NMF method factors that matrix into two nonnegative matrixs. Generally, sparseness is a result of the factorization process. But, in this research, we use to controlling the degree of sparseness in NMF method. Process of analizing the impact of degrees of sparseness for extracting main topics of Indonesia online news are seeing by the interpretability of the topics, more sparse the matrix, more difficult to interpret."
Depok: Universitas Indonesia, 2015
S59658
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ibtisami Najahaty
"Pendeteksian topik merupakan suatu proses untuk mendapatkan topik dari suatu koleksi dokumen. Salah satu metode yang dapat digunakan untuk mendeteksi topik adalah nonnegative matrix factorization (NMF). Pada penelitian ini topik berita pada Twitter dideteksi menggunakan algoritma NMF berbasis metode langsung. Terdapat tiga tahap untuk menyelesaikan NMF berbasis metode langsung, yakni membentuk matriks kookurensi kata-kata, mencari kata anchor dan mencari matriks kata-topik. Pendeteksian topik dilakukan dengan jumlah topik yang berbeda-beda. Setelah didapatkan hasil berupa topik-topik dari pembicaraan di Twitter, kemudian tingkat akurasi topik-topik tersebut dianalisis menggunakan satuan topic recall, term precision dan term recall. Jumlah topik yang berbeda akan mempengaruhi tingkat akurasi topik-topik hasil NMF berbasis metode langsung.Pendeteksian topik merupakan suatu proses untuk mendapatkan topik dari suatu koleksi dokumen. Salah satu metode yang dapat digunakan untuk mendeteksi topik adalah nonnegative matrix factorization (NMF). Pada penelitian ini topik berita pada Twitter dideteksi menggunakan algoritma NMF berbasis metode langsung. Terdapat tiga tahap untuk menyelesaikan NMF berbasis metode langsung, yakni membentuk matriks kookurensi kata-kata, mencari kata anchor dan mencari matriks kata-topik. Pendeteksian topik dilakukan dengan jumlah topik yang berbeda-beda. Setelah didapatkan hasil berupa topik-topik dari pembicaraan di Twitter, kemudian tingkat akurasi topik-topik tersebut dianalisis menggunakan satuan topic recall, term precision dan term recall. Jumlah topik yang berbeda akan mempengaruhi tingkat akurasi topik-topik hasil NMF berbasis metode langsung.

Topic detection is a process to get the topic of a collection of documents. One method that can be used to detect the topic is nonnegative matrix factorization (NMF). In this research, the topic of the news on Twitter detected using NMF algorithm based on the direct method. There are three stages to complete NMF-based direct method, they are, form the word-word coocurence matrix, look for the anchor word and seek word-topic matrix. Topic detection performed by the different numbers of topic. Once the results are obtained in the form of topics of conversation in Twitter, then the level of accuracy of these topics were analyzed using the unit topic recall, term precision and term recall. Number of different topics will affect the accuracy of topics results of NMF-based direct method."
Depok: Universitas Indonesia, 2015
S60924
UI - Skripsi Membership  Universitas Indonesia Library
cover
Puput Lismawati
"Manusia cukup baik dalam mengenali wajah, betapapun miripnya wajah yang diberikan. Akan tetapi membangun model komputasional yang dapat menyamai kemampuan manusia dalam mengenali wajah merupakan pekerjaan yang sulit. Upaya pengenalan dan pengklasifikasian wajah dilakukan dengan mentransformasikan face images menjadi himpunan karakteristik dari image yang disebut vektor eigen.
Pengenalan wajah dengan menggunakan vektor eigen metode Principal Component Analysis dilakukan dengan memproyeksikan test image ke ruang yang direntang dari vektor-vektor eigen, yaitu disebut face space. Kemudian mengklasifikasikannya sebagai individu yang ?dikenali? atau ?tidak dikenali? dengan membandingkan test image tersebut di face space dengan individu pada database. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2007
S27683
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Zahra
"Penuaan adalah proses alami yang secara bertahap menurunkan kondisi fisik dan menyebabkan kemunculan berbagai penyakit, yang pada akhirnya dapat mengurangi rentang hidup makhluk hidup serta berujung pada kematian. Dalam konteks ini, usia biologis berperan sebagai indikator penting yang mampu mengevaluasi proses penuaan dan prediksi penyakit lebih efektif dibandingkan dengan usia kronologis. Hal ini dikarenakan usia biologis juga memperhatikan kondisi fisiologis individu, bukan hanya mengukur lamanya hidup seseorang sejak lahir. Penelitian ini berfokus pada proses penuaan alami yang tidak dipengaruhi oleh penyakit. Dengan demikian, model ini dapat dijadikan alat untuk mengidentifikasi individu yang jalur penuaannya menyimpang dari jalur penuaan yang sehat. Penelitian ini menggunakan metode Support Vector Regression dan Principal Component Analysis untuk memprediksi usia biologis berdasarkan biomarker klinis yang berkontribusi terhadap proses penuaan. Data yang digunakan pada penelitian ini adalah data medis yang berasal dari Kementerian Kesehatan Republik Indonesia. Pada dataset, dilakukan data preprocessing yang meliputi pengubahan tipe data, penghapusan kolom yang tidak digunakan, penyaringan usia partisipan, pembentukan data sintetis, dan pemisahan dataset pria dan wanita. Selanjutnya, dilakukan feature selection, uji multikolinearitas, dan pembentukan model menggunakan metode Support Vector Regression dan Principal Component Analysis. Performa dari model yang dibentuk, dievaluasi menggunakan Root Mean Squared Error dan Coefficient of Determination. Untuk model yang menggunakan metode Support Vector Regression, didapatkan nilai RMSE = 5, 228 dan r2 = 0, 807 pada model pria, serta nilai RMSE = 1, 798 dan r2 = 0, 959 pada model wanita. Sementara itu, model yang menggunakan metode Principal Component Analysis didapatkan nilai RMSE = 6, 835 dan r2 = 0, 751 pada model pria dan nilai RMSE = 5, 35 dan r2 = 0, 874 pada model wanita. Berdasarkan analisis kinerja model yang dilakukan pada penelitian ini, model dengan metode Support Vector Regression lebih unggul dalam memprediksi usia biologis dibandingkan dengan metode Principal Component Analysis.

Aging is a natural process that gradually deteriorates physical condition and leads to the emergence of various diseases, ultimately reducing the lifespan of living beings and leading to death. In this context, biological age acts as an important indicator capable of evaluating the aging process and predicting diseases more effectively than chronological age. This is because biological age also considers an individual's physiological condition, not just measuring the length of time of person's life since birth. This research focuses on the natural aging process that is not influenced by disease. Thus, this model can be used as a tool to identify individuals whose aging path deviates from a healthy aging trajectory. This study uses Support Vector Regression and Principal Component Analysis methods to predict biological age based on clinical biomarkers that contribute to the aging process. The data used in this study are medical data from the Ministry of Health of the Republic of Indonesia. In the dataset, data preprocessing is performed, which includes changing data types, removing unused columns, filtering participant ages, forming synthetic data, and separating datasets for men and women. Next, feature selection, tests of multicollinearity, and model formation using the Support Vector Regression and Principal Component Analysis methods are conducted. The model formed is evaluated using Root Mean Squared Error and Coefficient of Determination. For the model using the Support Vector Regression method, RMSE=5,228 and r^2=0,807 were obtained for the men model, while an RMSE=1,798 and r^2=0,959 were obtained for the women model. Conversely, for the model using the Principal Component Analysis method, an RMSE=6,835 and r^2=0,751 were obtained for the men model, and an RMSE=5,35 and r^2=0,874 for the women model. Based on the performance analysis conducted in this study, the model using the Support Vector Regression method outperforms the Principal Component Analysis method in predicting biological age."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sava Danugraha Budi
"Deteksi dan resolusi dari lapisan tipis merupakan masalah penting dalam analisis reservoir. Semakin tipis lapisan menyebabkan semakan tingginya puncak frekuensi pada spektrum wavelet yang direfleksikan dari lapisan tipis relatif terhadap domain frekuensi dari wavelet seismik datang. Untuk itu, energi dari gelombang digunakan untuk mendapatkan integrated energy spectra (INTENS) sebagai fungsi dari frekuensi. INTENS merupakan hasil plot antara integrated partial energy dengan frekuensi yang dapat digunakan untuk mendeteksi perubahan ketebalan dari lapisan tipis yang tidak dapat langsung dikenali pada domain waktu.
Metode integrated energy spectra diterapkan pada model baji dan data seismik real 3 dimensi untuk mendapatkan penggambaran lapisan tipis yang lebih baik. Kemudian, untuk mempermudah analisis lapisan tipis, digunakan metode principal component spectral analysis (PCA) untuk mencari trend dari dari data yang dihasilkan. Metode ini mengkompaksi 86 komponen spectral yang harus dianalisa menjadi kurang dari 6 komponen utama.
Hasil yang didapat menunjukkan PC band pertama dapat menggambarkan dengan baik distribusi channel. Jumlah dari 6 PC band pertama menunjukkan variansi sebesar 78% dan dapat menggambarkan distribusi channel yang lengkap. PCA dapat memproyeksikan fitur utama dengan baik pada beberapa PC band pertama dan menghilangkan sinyal yang tak berarti seperti noise.

Detection and resolution of thin layers is an important issue in the analysis of the reservoir. A progressively thinner bed corresponds to a progressively higher peak frequency in the spectrum of the wavelet reflected from the thin bed relative to the dominant frequency of the incident seismic wavelet. the energy of the waveform is used to obtain integrated energy spectra as a function of frequency. INTegrated ENergy Spectra (INTENS) is a plot of integrated partial energy against frequency that can be used to detect changes in thickness of thin that are not immediately recognizable in the time domain.
Integrated energy spectra method applied to the wedge model and 3-dimensional real seismic data to obtain a better image of thin bed. Then, to analyze thin layers, principal component analysis (PCA) is used to find the trend of the data produced. This method decrease 86 spectral components that must be analyzed to less than 6 main components.
The results show the first PC band can delineate channel distribution with good image. The sum of first 6 PC bands show variance by 78% and can delineate the complete distribution channel. PCA could project the main features on some first PC band and could eliminate bad signal such noise.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S698
UI - Skripsi Open  Universitas Indonesia Library
cover
Ardibian Krismanti
"Dari pemeriksaan MRI, diperoleh gambar jaringan otak, yang akan digunakan oleh proton MRS untuk menentukan konsentrasi metabolit otak pada jaringan yang didiagnosa astrocytoma, seperti metabolit NAA, choline, creatine, Lipid, Lactate, Myoinositol, dan Glutamine-glutamate. Dari hasil MRS ini, astrocytoma dapat diklasifikasi berdasarkan derajat keganasannya (grade), yaitu high grade dan low grade. Proses klasifikasi astrocytoma, biasa dilakukan secara manual oleh ahli patologi atau secara statistik. Dalam skripsi ini, akan dibahas proses klasifikasi astrocytoma menjadi tiga kelas derajat keganasan dengan menggunakan metode Principal Component Analysis (PCA) dan Spherical K-Means terhadap data MRS. Algoritma Spherical K-Means merupakan algoritma K- Means dengan cosine similarity. Sedangkan PCA merupakan teknik yang digunakan untuk mencari vektor-vektor basis subruang tiap kelas (grade). Vektor-vektor basis ini akan membangun Principal Component yang akan digunakan dalam pengidentifikasian grade suatu data MRS. Data yang digunakan dalam skripsi ini adalah data yang berasal dari laboratorium radiologi Rumah Sakit Cipto Mangunkusumo (RSCM), Jakarta. Hasil penelitian yang dilakukan pada skripsi ini, diketahui bahwa PCA dapat mengklasifikasi astrocytoma dengan akurasi tertinggi, yaitu 85%. Selain itu, dari penelitian ini dihasilkan perangkat lunak yang dapat digunakan untuk membantu pengambilan keputusan yang terkait dengan klasifikasi astrocytoma menjadi high grade, low grade, dan normal.

MRI gives information in form of brain tissue image, which will be used by MRS proton to determine the concentration of brain metabolites on the astrocytoma diagnosed tissue, such as NAA, choline (Cho), creatine (Cr), Lipid (Lip), Lactate (Lac), Myoinositol (MI), and Glutamine-glutamate (Glx). From that result, astrocytoma could be classified to high grade and low grade. This classifying could be processed manually by pathologist, or be processed statistically. On this essay, astrocytoma would be classified into three class of astrocytoma grades with the Principal Component Analysis (PCA) and Spherical K-Means of the MRS data. Spherical K-Means algorithm is a K-Means algorithm with cosine similarity. At the same time, PCA is a technique which used to find the basis vectors of each class (grade) subspace. These basis vectors would build Principal Component which would be used in identifying a grade of a MRS data. The data used in this essay is resourced from radiology laboratory of Rumah Sakit Cipto Mangunkusumo (RSCM), Jakarta. From this research, note that PCA can classify astrocytoma with the highest accuracy, ie 85%. In addition, this research produce software that can be used to assist decision making related to the classification of astrocytoma to high grade, low grade, and normal"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anggi Pandyo Wibowo
"Magnetic Resonance Spectroscopy (MRS) membantu ahli radiologi untuk mengetahui tingkat keganasan dari kanker otak (astrocytoma). Dalam tugas akhir ini akan dibahas proses klasifikasi terhadap data hasil MRS untuk mengetahui tingkat keganasan dari astrocytoma yang terdiri dari Tingkat rendah (Low Grade), Tingkat tinggi (High Grade), dan Normal. Data yang digunakan dalam tugas akhir ini berasal dari RSU Pusat Nasional Dr. Cipto Mangunkusumo, Jakarta. Metode yang digunakan untuk klasifikasi adalah metode Independent Component Analysis dan metode Possibilistic C-Means.
Hasil percobaan yang dilakukan menunjukkan bahwa metode Independent Component Analysis mempunyai nilai akurasi 96,67% sementara nilai akurasi dari metode Possibilistic C-Means mencapai 90,91%. Dalam tugas akhir ini, akan dibuat sebuah perangkat lunak untuk pendukung keputusan yang membantu memberikan informasi mengenai tingkat keganasan dari astrocytoma.

Magnetic Resonance Spectroscopy (MRS) helps radiologists to determine the level of malignancy of brain cancer (astrocytoma). In this final project, we will discuss the classification process of MRS data to determine the level of malignancy of astrocytoma consisting of low grade, high grade, and normal. The data used in this final project comes from the National Central Hospital Dr. Cipto Mangunkusumo, Jakarta. The methods used for classification are the Independent Component Analysis method and the Possibilistic C-Means method.
The experimental results show that the Independent Component Analysis method has an accuracy value of 96.67% while the accuracy value of the Possibilistic C-Means method reaches 90.91%. In this final project, a decision support software will be made to help provide information about the level of malignancy of astrocytoma.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27867
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>