Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 122624 dokumen yang sesuai dengan query
cover
Fadli Bakhtiar Aji
"ABSTRAK
Sebagai salah satu teknologi perpindahan panas dua fasa terbaru, pulsating heat pipe (PHP) mempunyai daya tarik tersendiri dalam perkembangan teknologi heat pipe. Pemanfaatan PHP sangat beragam mulai dari aplikasi pendingin elektronika, sampai dengan heat recovery heat exchanger. Pada penelitian ini sebuah PHP didesain pada penggunaan ductwork dengan ukuran 300 x 470 mm. PHP dibuat dengan menggunakan pipa kapiler tembaga dengan diameter dalam 1,7 mm dan diameter luar 3 mm dan panjang total 13,5 m. Panjang bagian evaporator, adiabatik dan kondenser berturut-turut , 260 mm, 240 mm, dan 260 mm. Ethanol dipergunakan sebagai fluida kerja dengan filling ratio sebesar 60%. Hasil penelitian didapatkan bahwa nilai resistansi termal terendah adalah 0.36 K/W pada input kalor 76,1 W. Resistansi PHP cenderung stabil saat sudut inklinasi dari PHP divariasikan. Dengan hasil pengujian kinerja didapatkkan, bahwa PHP sangat mungkin dimanfaatkan heat recovery pada pemanfaatan dengan temperatur 50oC-70oC.

ABSTRACT
As one of the latest technologies of heat transfer in two phases, pulsating heat pipe (PHP) has a special attraction in the development of heat pipe technology. Utilization of PHP is very diverse ranging from electronics cooling applications, up to the heat recovery heat exchanger. In this study, the use of a PHP was designed in ductwork with a size of 300 x 470 mm. PHP created using copper capillary tube with an inner diameter of 1.7 mm and an outer diameter of 3 mm and a total length of 13.5 m. The length of the evaporator, adiabatic and condenser, respectively, 260 mm, 240 mm and 260 mm. Ethanol is used as a working fluid with filling ratio of 60%. The results showed that the lowest thermal resistance value is 0.36 K / W at a heat input 76.1 W. PHP tend to be stable when the angle of inclination of PHP varied. With performance test results obtained, that PHP is very possibly being heat recovery in the utilization temperature of 50 oC-70 oC."
2016
S62934
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizkananda Salsabila Putri Moksen
"Kenaikan populasi tentunya juga akan mengalami peningkatan bangunan dan konstruksi. Sektor bangunan sendiri bertanggung jawab atas kurang lebih sepertiga dari total permintaan konsumsi energi yang dibutuhkan untuk menyediakan kondisi ruangan yang nyaman dengan sistem pemanas, pendingin, dan ventilasi. Penggunaan sistem pendingin udara yang berlebihan mengakibatkan adanya peningkatan konsumsi energi. Terlebih lagi untuk daerah tropis yang umumnya bersifat lebih hangat dan basah. Suhu dan kelembaban suatu ruangan kemudian bergantung kepada seberapa banyak panas yang masuk ke dalam ruangan (heat gain). Heat gain pada bangunan rumah kebanyakan berasal dari radiasi panas matahari yang masuk melalui atap. Heat gain dapat dikurangi salah satunya dengan teknik pendinginan pasif menggunakan Closed-Loop Pulsating Heat Pipe (CLPHP). Pada penelitian ini kinerja Sistem atap CLPHP diuji dengan menggunakan dua jenis fluida, air dan campuran air-etanol. Sistem atap CLPHP kemudian dibandingkan dengan kondisi ketika sistem atap tidak menggunakan CLPHP menggunakan metode eksperimen. Hasil dari eksperimen menunjukkan adanya penurunan suhu dari 34,1oC menjadi 30,4oC ketika sistem atap CLPHP dengan fluida campuran air-etanol digunakan. Sedangkan untuk sistem atap CLPHP dengan fluida air saja hanya mampu menurunkan suhu sampai 31,7oC. Oleh karena itu, dapat dikatakan bahwa secara keseluruhan penggunaan CLPHP pada atap dapat meningkatkan kenyamanan termal pada ruang pemodelan dan kinerja CLPHP meningkat dengan menggunakan campuran fluida dengan titik didih lebih rendah dari air, yang dalam penelitian ini diwakili oleh penggunaan dari etanol.

The increase in population will also has an effect on an increase in buildings and construction. The buildings themselves are responsible for approximately one third of the total demand for energy consumption required to provide comfortable room conditions with heating, cooling and ventilation systems. Excessive use of air conditioning systems results in increased energy gain. Even more for the tropics which generally has warmer and wetter climate. The temperature and humidity of a room then depend on how much heat enters the room (heat gain). Heat gain in house buildings most often comes from solar heat radiation that enters through the roof. One of the ways to reduce heat gain is by using a passive cooling technique using a Closed-Loop Pulsating Heat Pipe (CLPHP). In this study, the performance of the CLPHP roofing system was tested using two types of fluids, water and a water-ethanol mixture. The CLPHP roof system was then compared with the condition when the roof system did not use CLPHP using the experimental method. The results of the experiment showed a decrease in temperature from 34.1oC to 30.4oC when the CLPHP roof system with a water-ethanol mixture was used. As for the CLPHP roof system with water fluid alone, it is only able to lower the temperature down to 31.7oC. Therefore, it can be said that overall, the use of CLPHP on the roof can increase thermal comfort in a modeling room and the performance of CLPHP is increase by using fluid mixture with lower boiling point than water, which in this study is represented by usage of ethanol."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurhalimah Aprianingsih
"ABSTRACT
Panas yang dihasilkan pada sebuah motor listrik dapat meningkatkan temperatur kerja. Temperatur kerja yang berlebihan akan menurunkan performa dan mempersingkat masa pakai. Oleh karena itu, sebuah sistem manajemen termal yang tepat diperlukan untuk menurunkan temperatur kerja. Tujuan dari penelitian ini adalah untuk menentukan nilai performa motor listrik menggunakan pulsating heat pipe sebagai sistem manajemen termal dengan menurunkan temperatur kerja motor listrik secara eksperimental. Sebuah prototipe sistem manajemen termal motor listrik dibuat menggunakan cartridge heater sebagai pengganti rotor dan stator dalam menstimulasikan panas. Masing-masing pulsating heat pipe dipasang pada sisi hexagonal mounting di dalam motor listrik. Pulsating heat pipe terbuat dari pipa kapiler dengan material tembaga yang menggunakan acetone dan methanol sebagai fluida kerja dengan rasio pengisian 0.5, dengan variasi dari input beban kalor. Penggunaan pulsating heat pipe dapat menurunkan temperatur motor listrik dengan fluida kerja acetone dan methanol berturut-turut sebesar 84.05oC dan 82.31oC, dengan resistansi termal minimum 0.21oC/W dan 0.26oC/W, pada beban kalor 120 W.

ABSTRACT
Heat generated on an electric motor can increase the working temperature. Excessive working temperature will reduce its performance and shorten the life. Therefore, an appropriate thermal management system is required to reduce the working temperature. The purpose of this study is to determine the thermal performance of pulsating heat pipe which applied in electric motor as a thermal management system. A prototype of thermal management on an electric motor with a cartridge heater is constructed instead of a heat generating rotor and stator. Each pieces of pulsating heat pipe are mounted on the side of hexagonal mounting inside the electric motor. The pulsating heat pipes are made of a capillary tube with copper material using acetone and methanol as working fluid with a filling ratio of 0.5, with variation of heat load. Using pulsating heat pipe can reduce electric motors working temperature with variation of working fluid acetone and methanol by 84.05oC and 82.31oC, with minimum thermal resistance of 0.21 oC W and 0.26oC W at heat load of 120 W."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faza Furqan Wibisana
"Indonesia merupakan negara yang beriklim tropis, menyebabkan Indonesia cenderung mendapatkan sinar matahari secara merata dan memiliki temperature yang cukup panas. Hal tersebut dapat dimanfaatkan sebagai keuntungan dalam pemanfaatan energi surya dan juga menyebabkan kerugian pada tinggi nya suhu pada ruang bangunan akibat energi termal. panasnya energi termal menyebabkan ketidaknyamanan termal pada bangunan, sehingga dibutuhkan sistem pendinginan ruangan yang dapat menyebabkan peningkatan konsumsi listrik. oleh karena itu sistem konservasi energi merupakan solusi yang tepat untuk mengatasi permaslahan tersebut. penelitian ini menggunakan sistem Closed loop pulsating heat pipe dengan fluida kerja biner DI Water- Methanol untuk konservasi energi pada bangunan Gedung. Closed loop pulsating heat pipe bekerja dengan prinsip heat exchange pada tiga bagian yaitu evaporator, adiabatic dan kondensor. bagian evaporator diharapkan dapat menyerap panas dan menggerakan fluida kerja sebagai medium perpindahan panas melalui bagian adiabatik ke bagian kondensor untuk melepas panas. studi ini dilakukan untuk mengetahui kinerja sistem CLPHP dengan fluida kerja biner DI Water-Methanol sebagai perangkat reduksi termal dan konservasi energi Gedung serta pemanfaatan Kembali panas yang dilepas pada bagian kondensor sebagai pemanas air. eksperimen ini menggunakan variasi antara lain Mixing ratio 10:1, 5:1, 1:1, 1:5, 1:10 sudut inklinasi 5°, 10° , 15° dan Heat Input 25 W 35 W 45 W. Hasil pengujian menunjukan bahwa Mixing ratio 1:5 dengan sudut inklinasi 5 danHeat Input 45 W menghasilkan hasil paling optimum dengan nilai resistensi termal (0,741°C/W) dan perolehan suhu akhir pada tangki kondensor (34,89 °C).

Indonesia is a tropical country, which means it tends to receive sunlight evenly and has relatively high temperatures. This can be leveraged as an advantage in the utilization of solar energy but also poses a disadvantage in terms of high indoor temperatures due to thermal energy. The heat from thermal energy causes thermal discomfort in buildings, necessitating cooling systems that can increase electricity consumption. Therefore, energy conservation systems are an appropriate solution to address this issue. This research utilizes a Closed loop pulsating heat pipe (CLPHP) system with a binary working fluid of DI Water-Methanol for energy conservation in buildings. The Closed loop pulsating heat pipe operates on the principle of heat exchange in three sections: the evaporator, the adiabatic section, and the condenser. The evaporator is expected to absorb heat and move the working fluid as a heat transfer medium through the adiabatic section to the condenser to release heat. This study aims to determine the performance of the CLPHP system with the binary working fluid DI Water-Methanol as a thermal reduction device and energy conservation for buildings, as well as the reutilization of heat released in the condenser section for water heating. This experiment employs variations including Mixing ratios of 10:1, 5:1, 1:1, 1:5, 1:10; inclination angles of 5°, 10° , 15°; and Heat Inputs of 25 W, 35 W, and 45 W. The test results show that working fluid with Mixing ratio of 1:5 with an inclination angle of 5° and a Heat Input of 45 W produces the most optimal results with thermal resistance value of 0.741 °C/W and a final temperature gain in the condenser tank of 34.89°C."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Trisno Anggoro
"Tingginya konsumsi energi dari sistem tata udara di rumah sakit, khususnya ruang operasi, disebabkan adanya persyaratan khusus yang harus dipenuhi untuk memastikan kondisi lingkungan di dalam ruang operasi yang steril serta bersih bagi staf dan pasien. Oleh karena itu, perlu adanya langkah konservasi energi di bangunan rumah sakit dengan menerapkan metode dan peralatan yang dapat menurunkan konsumsi energi tanpa mengorbankan kenyamanan sekaligus meningkatkan kualitas udara yang bersih dan steril. Integrasi heat pipe dalam suatu sistem tata udara merupakan salah satu contoh aplikasi peningkatan efisiensi energi. Studi eksperimental dilakukan untuk menginvestigasi kinerja termal dari heat pipe sebagai alat penukar kalor (heat exchanger) atau yang umum disebut dengan heat pipe heat exchanger (HPHE).
Pada penelitian ini HPHE dirancang dan dibuat untuk me-recovery kalor di dalam udara yang keluar dari simulator ruangan. HPHE terdiri dari heat pipe jenis tubular dengan fluida kerja air yang disusun staggered hingga sebanyak 6 baris dengan ukuran menyesuaikan dimensi ducting (lebar 470 mm, tinggi 300 mm, tebal 20 mm) dan ditambahkan fins di sepanjang heat pipe tersebut. Dimensi heat pipe yang digunakan memiliki panjang 700 mm, diameter luar 13 mm, dan 30 fins terpasang di masing-masing heat pipe. Terdapat beberapa parameter yang mempengaruhi kinerja HPHE.
Serangkaian eksperimen dilakukan untuk mengetahui pengaruh dari temperatur inlet udara di dalam ducting (30°C, 35°C, 40°C, 45°C), jumlah baris heat pipe (2 baris, 4 baris, 6 baris), dan kecepatan udara masuk (1 m/s, 1.5 m/s, 2 m/s). Hasilnya menunjukkan bahwa efektivitas HPHE mengalami peningkatan seiring dengan kenaikan temperatur inlet udara. Efektivitas terbesar diperoleh ketika menggunakan 6 baris heat pipe dengan kecepatan aliran udara masuk 1 m/s dan temperatur inlet udara 45°C. Jika ruang operasi rumah sakit beroperasi selama 8 jam/hari dan 365 hari/tahun, maka penurunan konsumsi energi pada sistem tata udara rumah sakit, khususnya ruang operasi, dapat diketahui dari prediksi besarnya heat recovery yang mencapai 4.1 GJ/tahun.

The high-energy consumption of hospitals HVAC systems, particularly the operating room, due to the specific requirements that must be met to ensure the environmental conditions in the operating room are healthy, convenient, and safe for staff and patients. Therefore, energy conservation efforts are needed in the hospital by applying the method and device that can reduce electricity consumption without sacrificing comfort while improving air quality is clean and sterile. The use of heat pipes in an HVAC system is one example of the application of energyefficiency improvements. Experimental studies conducted to investigate the thermal performance of the heat pipe as a heat exchanger or commonly named a heat pipe heat exchanger (HPHE).
In this study, HPHE is designed to recover the heat of exhaust air from a room simulator. HPHE consists of a tubular heat pipe with water as a working fluid that is arranged staggered by up to six rows with sizes to fit ducting dimensions (width: 470 mm, height: 300 mm, thickness: 20 mm) and added fins along the heat pipe. The tubular heat pipe has a length of 700 mm, an outer diameter of 13 mm, and 30 fins mounted on each heat pipe. Several parameters affect performance HPHE.
A series of experiments was conducted to determine the effect of the inlet air temperature in the ducting (30°C, 35°C, 40°C, 45°C). Moreover, the influence of the number of heat pipe rows (two rows, four rows, six rows) and velocity air (1 m/s, 1.5 m/s, 2m/s) was also investigated. The results show that the effectiveness of HPHE increase in line with the rise in inlet air temperature. The highest effectiveness was obtained when using 6-row heat pipes with the inlet air velocity of 1 m/s and the inlet air temperature of 45°C. The reduction of energy consumption in HVAC system can be seen from the prediction annual heat recovery with 8 h/day and 365 days/year will be 4.1 GJ/yr.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45937
UI - Tesis Membership  Universitas Indonesia Library
cover
Dimas Dwisantoso
"Heat pipe merupakan alat heat exchanger sederhana yang memiliki konduktivitas termal yang tinggi dan dapat mentransfer panas dalam jumlah yang besar dengan perbedaan temperatur yang sangat kecil antara sisi evaporator dan sisi kondenser tanpa membutuhkan listrik sebagai sumber daya tambahan. Heat pipe dapat berfungsi sebagai precooler dan reheater sehingga dapat menghemat energi serta memiliki kapasitas sebagai dehumidifier. Performansi heat pipe yang optimal perlu dicari sehingga dapat memberikan efek yang maksimal terhadap pengkondisian udara. Sebuah percobaan dibuat untuk menguji unjuk kerja pengkondisian udara menggunakan heat pipe yang diimplementasikan pada saluran udara (ducting), terdiri dari 8 buah heat pipe dengan diameter 5/8" dan panjang 500mm. Pengujian juga dilakukan dengan menambahkan penggunaan heat pipe pada unit kondenser yang terdiri dari 15 buah heat pipe dengan diameter 5/8" dan panjang 730mm. Unjuk kerja heat pipe akan diuji dengan pemakaian komponen tersebut dan divariasikan dengan jumlah fluida kerja (fill ratio) R134a yang diisikan ke dalam heat pipe ducting sebanyak 40%, 60%, 80%, dan 100% dari volume evaporator heat pipe. Unjuk kerja heat pipe optimal terjadi pada fill ratio 60%. Pengujian unjuk kerja heat pipe terbukti dapat menurunkan relative humidity sebesar 7,3% dan meningkatkan efek pendinginan sebesar 2,2%.

Heat pipe is a simple heat exchanger tool with high thermal conductivity and able to transfer large amounts of heat with very small temperature difference between the evaporator and condenser section of heat pipe without need of electricity as an additional resource. Heat pipe can serve as a precooler and reheater so as to conserve energy and has the capacity as dehumidifier. Optimal heat pipe performance should be sought so as to give maximum effect to the air conditioning. An attempt was made for test the performance of air conditioning using heat pipes that was implemented on ducting, consists of 8 pieces of heat pipes with 5/8" of diameter, 500mm of length and the condensing unit that has 15 pipes with 5/8" diameter, length 730mm. Testing is also done by adding the use of heat pipes on the condenser unit consisting of 15 pieces of heat pipes with a diameter of 5/8" and 730mm of length. The performance of heat pipes will be tested using those components and varying the amount of working fluid (fill ratio) R134a loaded in the heat pipe ducting as much as 40%, 60%, 80%, and 100% of the volume of heat pipe evaporator. Optimal performance of the heat pipe occurs in 60% fill ratio. Testing the performance of the heat pipe is proven to reduce the relative humidity to 7.3% and increase the cooling effect to 2.2%."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44244
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tua, Roland David Hotma
"Energi adalah kebutuhan utama manusia dan kebutuhan ini terus meningkat sepanjang tahun. Selama ini, manusia sangat tergantung pada energi fosil dan gas dan hal ini membuat ketersediaan energi tersebut di alam semakin berkurang sehingga diperlukan peningkatan penggunaan energi alternatif terbarukan, salah satunya adalah energi matahari sebagai sumber energi utama di bumi. Salah satu aplikasi energi matahari yang paling terkenal adalah untuk memanaskan air guna kebutuhan rumah tangga dengan menggunakan berbagai macam sistem pemanas air, salah satunya adalah evacuated tube heat pipe solar collector.
Pada penelitian ini, perancangan dan pengujian evacuated tube heat pipe solar collector dilakukan pada beberapa posisi kemiringan dan fluida kerja, untuk melihat kinerja perpindahan kalornya sebagai suatu sistem pemanas air. Pengujian dilakukan dengan fluida kerja air dan Al2O3-air 0,1% pada sudut kemiringan 0°, 15°, 30°, dan 45°. Pipa kalor yang digunakan menggunakanscreen mesh sebagai sumbu kapiler. Dalam pengujian, temperatur masuk air yang dipanaskan dijaga tetap pada temperatur 30°C.
Hasil pengujian menunjukkan bahwa peningkatan sudut kemiringan dapat meningkatkan kinerja perpindahan kalor alat. Sudut kemiringan yang optimal diperoleh pada sudut 30°. Penggunaan nano fluida Al2O3-air 0,1% sebagai fluida kerja juga mampu meningkatkan kinerja perpindahan kalor alat. Efisiensi paling besar alat diperoleh pada sudut kemiringan 30o dengan fluida kerja Al2O3-air 0,1%, yaitu sebesar 0,196.

Energy is a primary need of human being and the need keeps increasing every year. Until now, people are very dependent to fossil and gas energy and this causes the availability of these two kinds of energy keeps more and more decreasing. Therefore, it is a necessary to increase using of renewable alternative energy, one of them is solar energy as the source of primary energy on earth. One of the most well-known application of solar energy is for heating water as a household need by using kinds of water heater system, one is evacuated tube heat pipe solar collector.
On this research, a designing and experimental investigation of evacuated tube heat pipe solar collector has been done on variation of working fluid and angle of inclination to investigate its heat transfer performance as a water heater system. Experiments were done with water and Al2O3-water 0,1% as the working fluids on inclination of 0°, 15°, 30°, dan 45°. Heat pipes used in this experiment use screen mesh as wick. In this experimental investigation, inlet temperature of heated water was maintained at 30°C.
Results of experiments show that increasing inclination will enhance the heat transfer performance of the system. The optimal inclination is discovered at 30o. The using of nanofluid Al2O3-water 0,1% as the working fluid is also able to improve the heat transfer performance of the system. Highest eficiency of the system was found at 30° inclination with Al2O3-water 0,1% as the working fluid, that is 0,196.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S45177
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raden Muhammad Rafi Jati Kusumo
"Berkembang pesatnya pembangunan gedung dan pertumbuhan penduduk berpengaruh besar terhadap konsumsi energi harian yang terus meningkat. Namun kebutuhan akan energi masih lazim menggunakan sumber energi konvensional yang menghasilkan gas efek rumah kaca sehingga menyebabkan pemanasan global dan perubahan iklim. Dalam langkah mengimplementasikan nilai Sustainable Development Goals (SDGs) poin 7 mengenai pemanfaatan energi bersih dan poin 13 dalam mengatasi dampak perubahan iklim, konservasi energi bersih dan terbarukan perlu dikembangkan. Letak geografis Indonesia sebagai negara tropis menjadi salah satu alasan mengapa peningkatan cooling load pada bangunan gedung berkontribusi meningkatkan emisi karbon pada bangunan sehingga membutuhkan sistem konservasi energi salah satunya yaitu Closed Loop Pulsating Heat Pipe (CLPHP). Bagian evaporator sistem diharapkan mampu mengurangi panas yang masuk ke bangunan dan panas yang dilepas bagian kondenser mampu dimanfaatkan kembali untuk memanaskan air. Studi ini bertujuan untuk mengamati bagaimana performa closed loop pulsating heat pipe dalam memanfaatkan panas yang dilepas sebagai solar water heater. Penelitian dilaksanakan dengan menggunakan fluida kerja aseton dengan variasi filling ratio 40%, 50%, 60%, 70%, dan 80% dengan nilai heat input sesuai dengan iradiasi matahari sebesar 1322 W/m2. Eksperimen dilakukan untuk mengetahui resistansi termal dari sistem CLPHP dan ketercapaiannya dalam memanaskan air pada tangki kondenser. Hasil eksperimen menunjukkan filling ratio 60% memiliki performa paling optimal dengan resistansi termal terendah serta mampu meningkatkan temperatur air hingga 36,5oC.

The construction of buildings and population growth significantly increase daily energy consumption. However, the prevalent use of conventional energy sources for this purpose contributes to greenhouse gas emissions, leading to global warming and climate change. In line with the Sustainable Development Goals (SDGs) point 7 on clean energy utilization and point 13 addressing the impact of climate change, the development of clean and renewable energy conservation becomes imperative. Indonesia's geographical location as a tropical country is one of the reasons why the increase in cooling load in buildings contributes to increasing carbon emissions in buildings so it requires an energy conservation system, one of which is the Closed Loop Pulsating Heat Pipe (CLPHP). The evaporator section of the system is expected to reduce heat entering the building and the heat released by the condenser section can be reused to heat water. This study aims to observe the performance of closed loop pulsating heat pipe in utilizing the heat released as a solar water heater. The research used acetone as the working fluid and varied the filling ratio between 40%, 50%, 60%, 70%, and 80%. The heat input value was adjusted according to the solar irradiance of 1322 W/m2. The experiments were conducted to determine the thermal resistance of the CLPHP system and its ability to heat water in the condenser tank. The results indicate that the 60% filling ratio had the best performance with the lowest thermal resistance and was able to increase the water temperature to 36.55°C."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Zayd Arifuddin Istiqamah
"Seringkali pada pipa kalor terjadi fenomena dryout akibat kegagalan desain ataupun kalor yang masuk terlalu besar. Untuk mengantisipasi terjadinya dryout maka ditambahkan pompa diafragma untuk mempercepat pengiriman kondensat hasil kondensasi menuju bagian evaporator. Penambahan pompa dengan menggunakan pompa diafragma dipasang pada jalur bypass sehingga ketika tidak terjadi dryout screen mesh dengan ukuran 300 mesh lah yang membawa liquid menuju evaporator. Hybrid loop heat pipe bekerja menggunakan kontrol temperatur yang dipasang pada evaporator. Dari hasil penelitiannya temperatur saturasi sistem pada pembebanan fluks kalor 0,375 W/cm2 dan filling ratio evaporator dengan fluida kerja air 70% terjadi di sekitar temperatur 120oC. Hal ini dapat dikatakan bahwa sistem telah bekerja secara dua fasa dan steady di temperatur 120oC beberapa saat hingga akhirnya benar-benar steady pada temperatur 100oC yaitu pada temperatur set point akibat kerja pompa diafragma. Pada saat inilah sistem bekerja secara dua fasa dan temperatur pada bagian evaporator tetap di temperatur 100oC sama dengan temperatur set point. Dryout teratasi dengan menggunakan pompa diafragma dari temperatur evaporator 143oC ketika pompa tidak aktif menjadi 100oC ketika pompa aktif.

Dryout phenomenon in the heat pipe often occurs due to failure of the design or incoming heat to the system is too high. To anticipate dryout, the addition of a diaphragm pump is used to accelerate the delivery of the condensate outcome to the evaporator. The addition of the pump using a diaphragm pump installed on the bypass lines, so that when the dryout does not happen, the 300 of the screen mesh was the one that brought the liquid to the evaporator. Hybrid loop heat pipe is working by using the controls which is installed on the evaporator temperature. The results of this study, the saturation temperature of the heat flux loading system at 0.375 W/cm2 andthe filling ratio of the evaporator with water working fluid 70% occurred in the temperature range of 120oC. It can be stated that the system had worked in two phasesand steady at a temperature of 120oC for a while until completely steady at atemperature of 100°C at a temperature set point due to work of diaphragm pump. At this point, the system works in two phases and the temperature at the evaporator remained at 100oC temperature equal to the set point temperature. Dryout can beresolved by using a diaphragm pump of the evaporator temperature of 143oC whenthe pump is off into 100°C when the pump is active."
Depok: Fakultas Teknik Universitas Indonesia, 2015
S58583
UI - Skripsi Membership  Universitas Indonesia Library
cover
Herka Manda Putra
"ABSTRAK
Manajemen termal sangatlah penting untuk memastikan kestabilan termal dan daya tahan jangka panjang pada baterai litium-ion. Pipa kalor pipih bersirip digunakan pada penelitian ini untuk membantu pelepasan kalor yang dibangkitkan oleh pemanas melalui baterai. Baterai litium-ion dimodelkan dengan menggunakan aluminium yang menyerupai modul baterai. Sistem saluran pendingin baterai yang dilengkapi dengan kipas diterapkan untuk meningkatkan laju perpindahan kalor yang di lepas oleh pipa kalor. Plat konduksi juga dipasang agar kalor yang diterima oleh pipa kalor dapat diperhitungkan. Pembangkitan kalor divariasikan agar pengaruh hambatan termal dapat terlihat. Dengan adanya pipa kalor, temperatur baterai berkurang secara signifikan. Permodelan baterai 3 dimensi disimulasikan dan dibandingkan dengan hasil data eksperimental. Dengan menggunakan pipa kalor, penurunan temperatur baterai dapat mencapai 55,58 °C pada pembangkitan daya 150 W. Hasil simulasi memperlihatkan persebaran temperatur pada dinding baterai dengan error rata-rata temperatur permukaan baterai terkecil yang menggunakan pipa kalor dan tanpa pipa kalor sebesar 10,70 % dan 5,33 %.

ABSTRACT
Thermal management is critical to ensure thermal stability and long term durability of the lithium-ion battery. Finned heat pipes are used in this study to help dissipating heat generated by heater through the batteries. Lithium-ion batteries modeled by using aluminum that resembles a battery module. The system contain of air duct which is streamed air by fan to increase heat transfer rate. Conduction plate is also fitted so that the heat received by the heat pipe can be calculated. The heat generation is variated so that the effect thermal resistance can be seen. With the heat pipe, the battery temperature is significantly reduced. Model is developed to describe the thermal distribution of the lithium-ion batteries, and compared through both simulation and experiment. By using two heat pipes, battery temperature can be reduce up to 55.58 °C at 150 W heat generation. The simulation shows the temperature distribution on battery surface using heat pipe and without heat pipe with the lowest average error temperature surfaces are 10.70 % and 5.33 %
"
2016
S64919
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>