Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 167708 dokumen yang sesuai dengan query
cover
Ratna Dwi Puji Astuti
"Ammonia merupakan gas yang tidak berwarna, berbau tajam, bersifat korosif dan beracun. Mayoritas pajanan melalui jalur inhalasi menyebabkan cedera. Akibat dari pajanan tersebut diantaranya iritasi pada saluran pernapasan, penurunan fungsi paru-paru hingga kematian. Pekerja pada pabrik pupuk urea merupakan salah satu populasi yang berisiko untuk terpajan ammonia dari proses produksi. Unit produksi urea dan ammonia merupakan unit yang dikategorikan sebagai zona pemajanan tinggi.
Metode: Penelitian ini menggunakan metode Analisis Risiko Kesehatan Lingkungan untuk mengestimasi risiko kesehatan (Risk Quotient atau RQ) dan manajemen risikonya. Sampel dalam penelitian ini adalah populasi pekerja shift di unit produksi urea dan ammonia pabrik K1A.
Hasil: Rata ? rata konsentrasi gas ammonia di unit produksi urea dan ammonia K1A masing-masing sebesar 4.24 mg/m3 dan 3.53 mg/m3. Dari hasil estimasi risiko didapatkan bahwa pada pajanan realtime dan lifetime kedua pekerja di dua unit tersebut memiliki risiko kesehatan non-karsinogenik akibat pajanan gas ammonia kerena memiliki RQ > 1.
Simpulan: Dikarenakan hasil estimasi risiko didapatkan adanya risiko non-karsinogenik pada pekerja di dua unit tersebut, maka perusahaan perlu melakukan manajemen risiko. Dalam penelitian ini direkomendasikan untuk meminimalisasi konsentrasi gas ammonia, adapun batas aman yang direkomendasikan sebesar 0.41 mg/m3 untuk unit urea K1A dan 0.38 mg/m3 untuk unit ammonia K1A.

Ammonia is a colorless gas with very sharp odor. This gas is corrosive and toxic substance. Inhaled ammonia gas can caused irritation of respiratory tract, decrease lungs function and death. Population at risk to expose ammonia gas is workers which work at urea and ammonia plant. Urea and ammonia plant at PT K is high exposure zone. So, there is possibility of workers in that area at risk of disease resulting from exposure to ammonia either at this time or in the future.
Method: this study using environmental health risk assessment to estimate risk of inhaled ammonia gas to workers and also to formulate risk management for company. Sample for this study are shift workers who work at urea and ammonia plant K1A at PT K.
Result: Average of gas concentration at urea and ammonia plant K1A are 4.24 mg/m3 and 3.53 mg/m3. Result from risk estimation for realtime exposure and lifetime exposure found that both workers at that two unit have non carcinogenic risk to ammonia because they have RQ > 1.
Conclusion: Due to risk estimation result for workers at two units, company management need to engage risk management. In this study gas concentration which recommend are 0.41 mg/m3 for urea plant K1A and 0.38 mg/m3 for ammonia plant K1A.
"
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2016
S65510
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rosyana Lieyanty
"TPA Cipayung memiliki sistem pengolahan sampah berupa sistem penimbunan sampah atau dsebut juga dengan Sanitary Landfill. Sampah yang tertimbun akan menghasilkan berbagai gas berbahaya, salah satunya ialah gas Amonia NH3. Tidak tersedianya instalasi gas NH3 di TPA Cipayung dapat menyebabkan polusi udara di TPA dan dapat menyebabkan berbagai dampak kesehatan seperti sesak napas, mual, iritasi mata, iritasi kulit, dsb jika terpapar pada para pekerja pemulung.
Tujuan penelitian ini adalah mengetahui risiko kesehatan lingkungan akibat pajanan gas NH3 kepada pekerja pemulung di TPA Cipayung. Penelitian ini menggunakan desain analisis kesehatan lingkungan dengan populasi sampel adalah seluruh pemulung yang bekerja di TPA Cipayung yang telah bekerja minimal 1 tahun dengan batas usia 18-55 tahun. Total sampel yang didapatkan ialah 87 responden dan 3 sampel udara yang diambil dari 3 titik berbeda dengan jarak masing-masing titik sejauh 50 m.
Hasil konsentrasi tertinggi yaitu 0,122 mg/m3 dan konsentrasi terendah yaitu 0,053 mg/m3 dengan perhitungan konsentrasi rata-rata sebesar 0,082 mg/m3. Berdasarkan perhitungan risiko yang diterima saat ini real time , didapatkan hasil RQ < 1. Demikian pula hasil estimasi risiko yang diterima seumur hidup life span, juga didapatkan RQ < 1. Karena konsentrasi NH3 di TPA Cipayung masih dalam kategori aman, maka tidak diperlukan manajemen risiko.

TPA Cipayung has a waste processing system in the form of garbage dumping system or also called Sanitary Landfill. The accumulated waste will produce various harmful gases, one of which is Ammonia gas NH3 . The unavailability of NH3 gas installations in TPA Cipayung can cause air pollution in the landfill and may cause various health effects such as shortness of breath, nausea, eye irritation, skin irritation, etc. if exposed to scavengers.
The purpose of this research is to know the environmental health risk due to NH3 gas exposure to scavengers in TPA Cipayung. This research uses environmental health analysis design with sample population is all scavengers who work in TPA Cipayung who have worked at least 1 year with age limit 18 55 years. The total samples obtained were 87 respondents and 3 air samples taken from 3 different points with distance of each point as far as 50 m.
The highest concentration result was 0.122 mg m3 and the lowest concentration was 0.053 mg m3 with the calculation of average concentration of 0.082 mg m3. Based on the calculation of the risk received at this time real time , the results obtained RQ.
"
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rumman Rifa Matalino
"Penelitian ini bertujuan untuk menyelidiki analisis simulasi termodinamika dan pengaruh temperatur serta penambahan NH3 selama reduksi nikel laterit saprolit sintetis. Perangkat lunak simulasi termodinamika HSC Chemistry 9.1.5® digunakan untuk memprediksi fasa-fasa yang ada, komposisi kesetimbangan, dan spontanitas reaksi. Sintesis bahan umpan melibatkan ball milling dan kalsinasi pada suhu 1200oC kemudian direduksi pada suhu 800, 900, dan 1000oC dengan variasi penambahan amonia sebesar 35, 40, dan 45%. Analisis predominance diagram menunjukkan bahwa atmosfer reduksi dengan tekanan parsial oksigen 10-18 atm atau lebih rendah diperlukan untuk transformasi fasa. Analisis diagram komposisi kesetimbangan menunjukkan perolehan nikel maksimum pada temperatur rendah, tetapi puncak perolehan Fe terjadi pada penambahan amonia 35%. Selanjutnya, dekomposisi amonia terjadi pada suhu 200oC. Analisis spontanitas reaksi menunjukkan bahwa Amonia beroperasi secara langsung dalam reduksi pada suhu yang lebih rendah dari 600°C sementara reduksi tidak langsung oksida terjadi secara spontan mulai dari suhu 900°C. Analisis x-ray diffraction menunjukkan bahwa reduksi fayalit, forsterit, dan enstatit terjadi pada suhu 900oC dengan puncak perolehan nikel dan besi pada suhu 1000oC. Analisis mikroskop optik memperkirakan adanya fasa logam.

 


This study aims to investigate thermodynamic simulation analysis and the influence of temperature and NH3 addition during the reduction of synthetic saprolitic nickel laterite. HSC Chemistry 9.1.5® thermodynamic simulation software is used to predict the phases present, equilibrium composition, and reaction spontaneity. The synthesis of feed material involves ball milling and calcination at 1200oC then reduced at temperatures of 800, 900 and 1000oC with ammonia addition variety of 35, 40, and 45%. Predominance diagram analysis showed that a reducing atmosphere with oxygen partial pressure of 10-18 atm or lower is required for phase transformation. Equilibrium composition diagram analysis revealed maximum nickel recovery at low temperature, but peak Fe recovery at ammonia addition of 35%. Furthermore, ammonia decomposition occurred at 200oC. Reaction spontaneity analysis revealed Ammonia operates directly in reduction at temperatures lower than 600°C while indirect reduction of oxides was spontaneous starting at 900oC. X-ray diffraction analysis revealed that reduction of fayalite, forsterite, and enstatite occurred at 900oC with peak nickel and iron recovery at 1000oC with optical microscope analysis predicted the presence of a metallic phase.

"
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Idan Awaludin
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2010
S25630
UI - Skripsi Open  Universitas Indonesia Library
cover
"Reformer merupakan salah satu unit penting pada pabrik ammonia. Padanya terjadi reaksi steam reforming. Reforming adalah suatu reaksi untuk mengubah gas alam menjadi CO dan H2 dengan cara dilewatkan pada kalalis nikel dalam atmosfir steam pada temperatur dan tekanan tertentu.
Reaksi ini sangat endothermic:
CH4 + H2O -> CO +3H2 -20510 KJ
Tetapi terjadi juga reaksi samping yang exorhermic lemah:
CO + H2O -> C)2 + H2 + 41 KJ
Karena reaksi keseluruhan bersifat endorhermic maka dibutuhkan panas untuk terjadinya reaksi. Pada Primary Reformer panas disuplay dari pembakaran gas alam dan purge gas di Arch dan Superhear Bumers, sedang pada Secondary panas didapat dari reaksi eksotermik antara H2 yang terdapat pada outlet primary dan O2 yang terdapat pada udara proses:
2H2 + O2 -> 2 H2O + 60 KJ
Optimasi pemanfaatan panas pada unit ini sangat penting artinya mengingat bila kita dapat menghemat panas (energi) 1 MMBTU dari pembakaran NG dalam 1 jam operasi maka kita dapat menghemat sekitar USS 17,000 dalam 1 tahun operasi. Tahapan awal dari optimasi adalah melakukan analisis sensitifitas Lmtuk melihat sensitiiitas dari masing-masing variabel yang berpengaruh terhadap etisiensi termal dan rasional. Dari studi ini didapatkan hasil sebagai berikut :
- Empat variabel model yang merniliki sensitifitas terbesar di primary adalah : flow NG ro Process (FRCa-1), flow NG to Ammonia plant (FR-18), flow Steam Process (FRCa-2) dan flow Superheared Steam (FR-33), sedang pada secondary: flow NG to Process (FRCa-1), flow Process Air (FRCa-3), flow Process Steam (FRCa-2) dan flow Added Sream (FI-51, FI-51A).
- Penambahan sedikit flow NG to Ammonia plant (FR-18), flow purge gas (FR-205-J) dengan menganggap komponen lain tetap justru akan mengurangi efisiensi termal dan rasional pada primary, sedang pada secondary komponen teersebut: flow Process Air (FRCa-3)."
Fakultas Teknik Universitas Indonesia, 1997
S49119
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nastiti Mugi Lestari
"Perkembangan sektor industri, seperti di DKI Jakarta sangat pesat. Industri selain sebagai indikator adanya kegiatan ekonomi yang potensial dan pemerataan lapangan kerja, menyumbang dampak pada lingkungan. Sentra industri PIK PRIMKOPTI Swakerta Semanan belum melakukan pengelolaan limbah hasil produksi tahu. Proses produksi tahu menghasilkan limbah yang menyebabkan bau. Bau tersebut dapat berpotensi menimbulkan gangguan kesehatan, terutama pada pekerja. Tujuan dari penelitian ini adalah mengidentifikasi kadar gas H2S dan NH3 pada limbah, menganalisis tingkat risiko limbah gas, dan menganalisis keluhan kesehatan pekerja industri tahu di PIK KOPTI Semanan.
Penelitian ini menggunakan metode analisis risiko kesehatan dan menggunakan pendekatan kuantitatif dan kualitatif. Kadar NH3 dan H2S pada lokasi penelitian berturut-turut mempunyai rata-rata sebesar 0,1897 ppm dan 0,0546 ppm. Tingkat risiko NH3 rata-rata 0,367383 (RQ<1) dan Tingkat risiko pajanan H2S 11,99166 (RQ>1). Tingkat risiko pajanan NH3 dan H2S rata-rata 12,359042. Terdapat hubungan antara kadar NH3 dan H2S dengan tingkat risiko kesehatan (p=0,000). Terdapat hubungan antara usia (p=0,003) dan IMT (p=0,000) dengan keluhan kesehatan pekerja. Terdapat hubungan antara kadar H2S dengan keluhan pusing (p=0,033), mata perih (p=0,000), dan tenggorokan kering (p=0,018).

The development of the industrial sector, such as in Jakarta is growing very rapidly. In addition, the industry as an indicator of the presence of potential economic activities and equitable employment, accounted for the impact on the environment. Industrial centers PIK PRIMKOPTI Swakerta Semanan waste management have not made the results of the production of tofu. Production process produces waste that cause odor. The odor can potentially cause health problems, especially on workers. The purpose of this research is to identify the levels of gaseous NH3 and H2S on sewage, to analyze the level of risk of waste gas, and analyze health complaints in tofu industry workers PIK PRIMKOPTI Semanan.
This research using the method of analysis of the health risks and use quantitative and qualitative approaches. Concentration of NH3 and H2S on consecutive research site has an average of 0.1897 ppm and the average of 0.0546 ppm. The level of risk of NH3 and H2S in a row an average of 0,367383 (RQ<1) and 11,99166 (RQ > 1). The level of risk of NH3 and H2S has anaverage of 12,359042. There are relation between NH3 and H2S concentration with level of risk (p=0,000). There are relation between age (p=0,003) and BMI (p=0,000) with health complaints. There are relation between H2S concentration with dizzines (p=0,033), sore eyes (p=0,000), and dry throat (p=0,018).
"
Depok: Program Pascasarjana Universitas Indonesia, 2016
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Tiara Ayuwardani
"Penanganan batubara akan selalu menghasilkan debu batubara dalam jumlah yang signifikan, termasuk di dalamnya PM10. PM10 adalah partikulat respirabel yang dapat terhirup manusia dan mengendap di thoraks.Penelitian ini menggunakan pendekatan Analisis Risiko Kesehatan Lingkungan dengan desain studi cross sectional untuk mengetahui tingkat risiko kesehatan pekerja Divisi Alat Berat di PT Z.Penelitian dilakukan di PT Z pada bulan Mei-Juni 2015.Jumlah sampel diambil dengan metode total sampling sejumlah 47 responden. Konsentrasi PM10 diukur di 6 titik sampling dengan hasil konsentrasi tertinggi 0,355 mg/m3 dan konsentrasi terendah 0,151 mg/m3.
Rata-rata pola aktivitas pekerja di divisi Alat Berat PT Z menunjukkan waktu kerja selama 8 jam/ hari, 263 hari/ tahun, selama 13,3 tahun. Hasil perhitungan asupan untuk durasi realtime adalah 0,0065 mg/kg/hari dengan RQ = 0,75. Sedangkan hasil perhitungan untuk asupan lifetime yaitu 0,012 mg/kg/hari dengan RQ = 1,38. Manajemen risiko yang paling mungkin dilakukan adalah dengan menurunkan konsentrasi menjadi 0,16 mg/m3. Pengendalian PM10 di area kerja dapat dilakukan dengan carakonstruksi jalan yang tepat, pengairan rutin di sepanjang jalan, penggunaan terpal untuk menutup muatan truk, hingga pemasangan barrier tanaman.

Coal handling will always produce significant amount of coal dust, including PM10. PM10 is a respirableparticulate that can be inhaled by human and settle in thoracic area. This research is using Environmental Health Risk Analysis with cross sectional study design to determine health risk level of workers in Heavy Equipment division in PT Z. This study was conducted in PT Z in May-June 2015. The number of samples taken by total sampling method is 47 respondents. PM10 concentrations were measured at 6 sampling points with the results of the highest concentration of 0.355 mg/m3 and the lowest 0.151 mg/m3.
The average activity patterns of Heavy Equipment workers shows a working hour of 8 hours/ day, 163 day/year for 13.3 years. The intake measurement for real-time duration in 0,0065 mg/kg/days with RQ value of 0.75, whereas the intake measurement for life-span duration is 0.012 mg/kg/days with an RQ value of 1.38. The most feasible risk management is to lower the concentration of PM10 to 0,16 mg/m3. PM10 quality control in the working area can be done by proper road construction, regular watering on haul roads, applying tarps on truckbed, and the installment of plant barrier.
"
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2015
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Novrikasari
"[ABSTRAK
Konsep penanggulangan bencana saat ini adalah paradigma pengurangan risiko.Setiap individu, masyarakat di daerah diperkenalkan dengan berbagai ancaman (hazards) dan kerentanan (vulnerability) yang dimiliki, serta meningkatkan kemampuan (capacity) masyarakat dalam menghadapi setiap ancaman. Sehingga studi ini bertujuan mengkaji model pengendalian risiko dispersi gas amonia.
Disain studi adalah cross sectional. Analisis model pengukuran dan struktural menggunakan comfirmatory factor analysis (CFA). Nilai validitas dan reliabilitas hasil uji kesesuaian/Goodness of Fit (GOF) adalah good fit untuk konstruk dari model.Kuesioner disebarkan secara cluster, terdapat 626 responden (area risiko 0- 2600 meter). Dibagi menjadi 293 responden pada zona dalam (area risiko 0-1300 meter) dan 333 responden zona luar (area risiko >1300-2600 meter).
Model pengukuran menghasilkan 5 variabel eksogen (kondisi lingkungan, sosial, ekonomi, biologi dan kapasitas) yang saling berhubungan langsung membentuk variabel endogen risiko dispersi gas amonia. Faktor kondisi lingkungan terdiri dari zona bahaya dan jarak rumah ke jalan raya.Faktor sosial yaitu pelatihan dan pekerjaan.Faktor ekonomi yaitu kecukupan akomodasi, pendapatan, asuransi dan pendidikan.Faktor kapasitas yaitu pengetahuan tentang bahaya, pengetahuan tentang peringatan dini, pengetahuan tentang evakuasi dan perilaku tanggap darurat. Faktor biologi yaitu usia> 65 tahun, anggota keluarga dengan penyakit kronis dan anggota keluarga berkebutuhan khusus. Risiko dispersi gas amonia pada rumah tangga area risiko 0-2600 meter ada pengaruh kontribusi dari 47% faktor sosial, 37% faktor ekonomi, 29% faktor kapasitas dan 9% faktor kondisi. Risiko dispersi gas amonia zona dalam (area risiko 0-1300 meter ada pengaruh kontribusi darifaktor sosialberkontribusi 63%, faktor ekonomi 64%, faktor kapasitas 57% dan biologi 2,3%. Selanjutnya risiko dispersi gas amonia pada rumah tangga area risiko >1300-2600 meter ada pengaruh kontribusi dari 2 (dua) faktor yaitu faktor kondisi 99% dan faktor kapasitas (12%).
Penelitian ini menyimpulkan model risiko dispersi gas amonia dalam penelitian ini menunjukkan faktor yang berkontribusi membentuk risiko dispersi gas amonia sehingga dapat menjadi upaya pengendalian dengan memperhatikan faktor yang berkontribusi tersebut. Rekomendasi kepadaPemerintah Daerah untuk menetapkan peta rawan bencana menjadi peraturan daerah yang berkekuatan hukum dan pemberlakuan peraturan tentang tata ruang (daerah pemukiman), standar keselamatan (pemantauan penggunaan teknologi) dan penerapan sanksi terhadap pelanggar. Mengkoordinasi antara Satuan Kerja Perangkat Daerah
ix
(SKPD), Dinas Pemadam Kebakaran/ Badan Penanggulangan Bencana Daerah (BPBD), dan dinas terkait untuk evakuasi (akomodasi), kelancaran akses jalur evakuasi. Menyelenggarakan sosialisasi, pendidikan dan pelatihan mengenai kesiapsiagaan bencana dispersi gas amonia kepada masyarakat melalui perkumpulan/organisasi di masyarakat. Rekomendasi kepada perusahaan antara lain : Membuat peta rawan bencana dan Emergency Respon Plan (ERP) baik internal maupun eksternal; Melakukan perawatan dengan inspeksi rutin berbasis risiko untuk memastikan kehandalan peralatan sistem pendingin amonia; Semua pekerja dalam operasional tangki sistem pendingin amonia selalu dilakukan dengan mengikuti Standard Operating Procedure (SOP), peraturan keselamatan, audit keselamatan; Mengingat sifat gas amonia yang tidak berwarna tetapi sangat beracun serta luasan area risiko yang berdampak perlu adanya sensor untuk gas amonia sebagai alat ukur dan monitoring. Selanjutnya rekomendasi kepada masyarakat agar mengembangkan dan berperan aktif dalam desa siaga bencana (kesiapsiagaan bencana berbasis masyarakat);

ABSTRACT
The concept of disaster management nowadays is risk reductionsparadigm. Each individual, residents are introduced to various threats and vulnerabilities owned, as well as increased capacity in facing any threats. This study aims to assess the risk control model of ammonia gas dispersion.
The designstudy was cross sectional using confirmatory factor analysis (CFA) as the measurement model and structural analysis. Validity and reliability value for Goodness of Fit (GOF) test is good fit for construct of the model. Questionnaires were distributed by cluster, there were626 respondents (risk area 0-2600 meters) divided into 293 and 333 respondents in the inner and outer zones (risk area >1300-2600 meters).
Measurement model produces 5 directly interconnected exogenous variables (environmental, social, economic, biological and capacity condition) to form an endogenous variable risk of ammonia gas dispersion. Environmental conditions consist of danger zone and distance from home to road. Social factors consist of training and job. Economic factors consist of accommodation, salary, assurance and education. Capacity factors consist of hazard knowledge, early warning knowledge, evacuation knowledge and emergency response behavior.Biological factors consist of age >65 year old and family member with chronic disease and disability. The model goodness of fit test result was compatible for RMSEA, CFI, IFI, CN, SRMR, GFI and AGFI. It indicates that the models can describe the ammonia gas dispersion riskformed factors. Social factorscontribute61% of thetotalrisk ofammoniagasdispersion, related toeconomic factors(42%), capacityfactor(36%)andconditionfactor(5.7%). Riskdispersionof ammoniagasin thezoneindicateseconomic factorsaccounted for64% of thetotalrisk ofammoniagas
dispersionincludingsocial(63%), capacity(57%) andbiology(2.3%). While theouterzone ofthe conditionfactor(99%) to be importantin the risk ofammoniagasdispersionandcapacity factor(1%).
This study concludes dispersion risk modelsof ammonia gas in this study indicate risk factors that contribute to form ammonia gas dispersion to be a control effort by noticing the factors that contribute as following; recommend to the Regional Government to establish hazard maps into a legally binding regional regulations and enforcement of regulations on spatial (residential areas), safety standards (monitoring the use of technology) and the imposition of sanctions against offenders. Coordinate between work units (SKPD), Fire Department / Agency for Disaster Management (BPBD), and related agencies for evacuation (accommodation), the smooth evacuation route access. Organize socialization,
xi
education and training on disaster preparedness ammonia gas dispersion to the public through associations / organizations in the community. Recommendations to the company include: Creating a hazard map and Emergency Response Plan (ERP) both internally and externally; Perform routine maintenance with risk- based inspections to ensure equipment reliability ammonia refrigeration systems; All workers in the operational tank ammonia cooling system is always done by following the Standard Operating Procedure (SOP), safety rules, safety audits; Given the nature of ammonia gas that is colorless but highly toxic as well as the extent of the risk areas that impact the need for a sensor for ammonia gas as a means of measuring and monitoring. Further recommendations to the community are to develop and play an active role in disaster preparedness village (community-based disaster preparedness).;The concept of disaster management nowadays is risk reductionsparadigm. Each individual, residents are introduced to various threats and vulnerabilities owned, as well as increased capacity in facing any threats. This study aims to assess the risk control model of ammonia gas dispersion.
The designstudy was cross sectional using confirmatory factor analysis (CFA) as the measurement model and structural analysis. Validity and reliability value for Goodness of Fit (GOF) test is good fit for construct of the model. Questionnaires were distributed by cluster, there were626 respondents (risk area 0-2600 meters) divided into 293 and 333 respondents in the inner and outer zones (risk area >1300-2600 meters).
Measurement model produces 5 directly interconnected exogenous variables (environmental, social, economic, biological and capacity condition) to form an endogenous variable risk of ammonia gas dispersion. Environmental conditions consist of danger zone and distance from home to road. Social factors consist of training and job. Economic factors consist of accommodation, salary, assurance and education. Capacity factors consist of hazard knowledge, early warning knowledge, evacuation knowledge and emergency response behavior.Biological factors consist of age >65 year old and family member with chronic disease and disability. The model goodness of fit test result was compatible for RMSEA, CFI, IFI, CN, SRMR, GFI and AGFI. It indicates that the models can describe the ammonia gas dispersion riskformed factors. Social factorscontribute61% of thetotalrisk ofammoniagasdispersion, related toeconomic factors(42%), capacityfactor(36%)andconditionfactor(5.7%). Riskdispersionof ammoniagasin thezoneindicateseconomic factorsaccounted for64% of thetotalrisk ofammoniagas
dispersionincludingsocial(63%), capacity(57%) andbiology(2.3%). While theouterzone ofthe conditionfactor(99%) to be importantin the risk ofammoniagasdispersionandcapacity factor(1%).
This study concludes dispersion risk modelsof ammonia gas in this study indicate risk factors that contribute to form ammonia gas dispersion to be a control effort by noticing the factors that contribute as following; recommend to the Regional Government to establish hazard maps into a legally binding regional regulations and enforcement of regulations on spatial (residential areas), safety standards (monitoring the use of technology) and the imposition of sanctions against offenders. Coordinate between work units (SKPD), Fire Department / Agency for Disaster Management (BPBD), and related agencies for evacuation (accommodation), the smooth evacuation route access. Organize socialization,
xi
education and training on disaster preparedness ammonia gas dispersion to the public through associations / organizations in the community. Recommendations to the company include: Creating a hazard map and Emergency Response Plan (ERP) both internally and externally; Perform routine maintenance with risk- based inspections to ensure equipment reliability ammonia refrigeration systems; All workers in the operational tank ammonia cooling system is always done by following the Standard Operating Procedure (SOP), safety rules, safety audits; Given the nature of ammonia gas that is colorless but highly toxic as well as the extent of the risk areas that impact the need for a sensor for ammonia gas as a means of measuring and monitoring. Further recommendations to the community are to develop and play an active role in disaster preparedness village (community-based disaster preparedness).;The concept of disaster management nowadays is risk reductionsparadigm. Each individual, residents are introduced to various threats and vulnerabilities owned, as well as increased capacity in facing any threats. This study aims to assess the risk control model of ammonia gas dispersion.
The designstudy was cross sectional using confirmatory factor analysis (CFA) as the measurement model and structural analysis. Validity and reliability value for Goodness of Fit (GOF) test is good fit for construct of the model. Questionnaires were distributed by cluster, there were626 respondents (risk area 0-2600 meters) divided into 293 and 333 respondents in the inner and outer zones (risk area >1300-2600 meters).
Measurement model produces 5 directly interconnected exogenous variables (environmental, social, economic, biological and capacity condition) to form an endogenous variable risk of ammonia gas dispersion. Environmental conditions consist of danger zone and distance from home to road. Social factors consist of training and job. Economic factors consist of accommodation, salary, assurance and education. Capacity factors consist of hazard knowledge, early warning knowledge, evacuation knowledge and emergency response behavior.Biological factors consist of age >65 year old and family member with chronic disease and disability. The model goodness of fit test result was compatible for RMSEA, CFI, IFI, CN, SRMR, GFI and AGFI. It indicates that the models can describe the ammonia gas dispersion riskformed factors. Social factorscontribute61% of thetotalrisk ofammoniagasdispersion, related toeconomic factors(42%), capacityfactor(36%)andconditionfactor(5.7%). Riskdispersionof ammoniagasin thezoneindicateseconomic factorsaccounted for64% of thetotalrisk ofammoniagas
dispersionincludingsocial(63%), capacity(57%) andbiology(2.3%). While theouterzone ofthe conditionfactor(99%) to be importantin the risk ofammoniagasdispersionandcapacity factor(1%).
This study concludes dispersion risk modelsof ammonia gas in this study indicate risk factors that contribute to form ammonia gas dispersion to be a control effort by noticing the factors that contribute as following; recommend to the Regional Government to establish hazard maps into a legally binding regional regulations and enforcement of regulations on spatial (residential areas), safety standards (monitoring the use of technology) and the imposition of sanctions against offenders. Coordinate between work units (SKPD), Fire Department / Agency for Disaster Management (BPBD), and related agencies for evacuation (accommodation), the smooth evacuation route access. Organize socialization,
xi
education and training on disaster preparedness ammonia gas dispersion to the public through associations / organizations in the community. Recommendations to the company include: Creating a hazard map and Emergency Response Plan (ERP) both internally and externally; Perform routine maintenance with risk- based inspections to ensure equipment reliability ammonia refrigeration systems; All workers in the operational tank ammonia cooling system is always done by following the Standard Operating Procedure (SOP), safety rules, safety audits; Given the nature of ammonia gas that is colorless but highly toxic as well as the extent of the risk areas that impact the need for a sensor for ammonia gas as a means of measuring and monitoring. Further recommendations to the community are to develop and play an active role in disaster preparedness village (community-based disaster preparedness)., The concept of disaster management nowadays is risk reductionsparadigm. Each individual, residents are introduced to various threats and vulnerabilities owned, as well as increased capacity in facing any threats. This study aims to assess the risk control model of ammonia gas dispersion.
The designstudy was cross sectional using confirmatory factor analysis (CFA) as the measurement model and structural analysis. Validity and reliability value for Goodness of Fit (GOF) test is good fit for construct of the model. Questionnaires were distributed by cluster, there were626 respondents (risk area 0-2600 meters) divided into 293 and 333 respondents in the inner and outer zones (risk area >1300-2600 meters).
Measurement model produces 5 directly interconnected exogenous variables (environmental, social, economic, biological and capacity condition) to form an endogenous variable risk of ammonia gas dispersion. Environmental conditions consist of danger zone and distance from home to road. Social factors consist of training and job. Economic factors consist of accommodation, salary, assurance and education. Capacity factors consist of hazard knowledge, early warning knowledge, evacuation knowledge and emergency response behavior.Biological factors consist of age >65 year old and family member with chronic disease and disability. The model goodness of fit test result was compatible for RMSEA, CFI, IFI, CN, SRMR, GFI and AGFI. It indicates that the models can describe the ammonia gas dispersion riskformed factors. Social factorscontribute61% of thetotalrisk ofammoniagasdispersion, related toeconomic factors(42%), capacityfactor(36%)andconditionfactor(5.7%). Riskdispersionof ammoniagasin thezoneindicateseconomic factorsaccounted for64% of thetotalrisk ofammoniagas
dispersionincludingsocial(63%), capacity(57%) andbiology(2.3%). While theouterzone ofthe conditionfactor(99%) to be importantin the risk ofammoniagasdispersionandcapacity factor(1%).
This study concludes dispersion risk modelsof ammonia gas in this study indicate risk factors that contribute to form ammonia gas dispersion to be a control effort by noticing the factors that contribute as following; recommend to the Regional Government to establish hazard maps into a legally binding regional regulations and enforcement of regulations on spatial (residential areas), safety standards (monitoring the use of technology) and the imposition of sanctions against offenders. Coordinate between work units (SKPD), Fire Department / Agency for Disaster Management (BPBD), and related agencies for evacuation (accommodation), the smooth evacuation route access. Organize socialization,
xi
education and training on disaster preparedness ammonia gas dispersion to the public through associations / organizations in the community. Recommendations to the company include: Creating a hazard map and Emergency Response Plan (ERP) both internally and externally; Perform routine maintenance with risk- based inspections to ensure equipment reliability ammonia refrigeration systems; All workers in the operational tank ammonia cooling system is always done by following the Standard Operating Procedure (SOP), safety rules, safety audits; Given the nature of ammonia gas that is colorless but highly toxic as well as the extent of the risk areas that impact the need for a sensor for ammonia gas as a means of measuring and monitoring. Further recommendations to the community are to develop and play an active role in disaster preparedness village (community-based disaster preparedness).]"
2015
D-Pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Isnatami Nurul Azni
"Pajanan agen risiko kesehatan dari lingkungan kerja berdampak pada timbulnya risiko penyakit akibat kerja sehingga pekerja menjadi tidak produktif. Oleh karena itu, untuk mengestimasi risiko kesehatan dari pajanan agen risiko berupa PM10 dari lingkungan kerja, sebuah penelitian analisis risiko telah dilakukan pada 70 orang pekerja industri readymix PT. X Plant Kebon Nanas. Penelitian ini menggunakan desain studi cross sectional dengan pendekatan analisis risiko. Risiko kesehatan akibat pajanan PM10 dihitung dengan membandingkan asupan PM10 dengan dosis referensi. Konsentrasi PM10 diukur pada 6 titik. Hasil konsentrasi tertinggi yaitu 0,407 mg/M3 dan terendah yaitu 0,167 mg/M3 dengan perhitungan konsentrasi rata-rata yaitu 0,289 mg/M3. Hasil perhitungan risiko yang diterima saat ini (realtime) terdapat 21,4% pekerja yang berada dalam kategori berisiko. Sedangkan hasil estimasi risiko yang diterima seumur hidup (lifetime) hanya 2 orang pekerja yang dalam kategori tidak berisiko. Manajemen risiko yang dapat dilakukan adalah dengan menurunkan konsentrasi menjadi 0,08 mg/M3. Dengan konsentrasi tersebut pekerja diestimasikan aman bekerja selama 11 jam per hari dan 362 hari per tahun.

Exposure of a risk agent from the workplace affect the incidence of occupational diseases so the workers are not able to work productively. To estimate health risk from exposure to PM10, health assessment has been conducted among 70 readymix workers of PT. X at Kebon Nanas Plant. PM10 as risk agent was measured in six points and the result of the highest concentration was 0.407 mg/M3 and the lowest concentration was 0.167 mg/M3 with the average concentration was 0.289 mg/M3. The estimations of health risks are represented by Risk Quotient (RQ), which is obtained from the comparison of the daily intake and reference dose. The calculations of the real time risk showed that 21.4 percent of workers are not safe from a health risk (RQ > 1). While only 2 workers are safe from life time risk. The result of safest concentration was 0.08 mg/M3. With that concentration, estimated workers will be safe to work for 11 hr/day and 362 days/year without adverse health effect."
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2015
S60375
UI - Skripsi Membership  Universitas Indonesia Library
cover
Diana Mutia Pratiwi
"Ammonia merupakan senyawa polutan dengan ciri khas bau menyengat, serta dapat berbahaya ketika terpapar manusia. PT.PUSRI adalah produsen ammonia dan urea di Indonesia yang terletak berdekatan dengan permukiman warga, dimana gas ammonia seringkali terbebas diudara dan menyebabkan gangguan baik di dalam maupun disekitar lingkungan pabrik. Tujuan penelitian ini adalah mengevaluasi terbebasnya gas ammonia pada lingkungan sekitar pabrik ditinjau dari faktor penyebab, konsentrasi keluaran ammonia terbebas, dampak terhadap pekerja dan masyarakat, serta tindak penanggulangan yang dilakukan. Penelitian ini menggunakan metode sequential explanatory dengan menggabungkan data yang didapatkan dari observasi lapangan, wawancara key informan, kuesioner, dan literature review.
Berdasarkan penelitian, sekitar 95% faktor terbebasnya gas ammonia disebabkan permasalahan peralatan dengan nilai konsentrasi keluaran plant pada kondisi normal berada diantara 50-150 mg/Nm3 dan konsentrasi tertinggi dapat melebihi 435,79 mg/Nm3 pada saat pabrik mengalami gangguan. Dampak yang dialami pekerja dan masyarakat lebih kepada gangguan iritasi pada mata, hidung, dan saluran pernapasan yang bersifat sementara. Adapun tindak penanggulangan PT. PUSRI dalam bentuk Perbaikan proses dan pengembangan IPAL, pembangunan Green barrier, serta posko kesehatan sementara. Perlu dipertimbangkan penanggulangan yang diduga paling baik adalah dengan spraying dan pembangunan green barrier. Akan tetapi, masih terdapat beberapa kendala dan kelemahan dalam implementasinya, sehingga perlu dioptimalkan kembali.

Ammonia is a major pollutant compound with the characteristic of pungent odor, potentially harming when exposed to the human. PT. PUSRI is one of the Industries that produce ammonia and urea which is located adjacent to residential areas, where ammonia is often released in the air, causing disturbances both in and around the factory. This study focused on determining the factors causing the ammonia released, the concentration level of gas, its influence on the environment, along with the prevention attempted by the plant related to the case. This study use a quantitative approach with sequential explanatory method, by using literature study reinforced field observation, secondary data assisted by interviews and questionnaires on the workers and communities.
Based on the research, about 95% of the ammonia gas release is caused by equipment problems with the plant output concentration values under normal conditions between 50-150 mg/Nm3 and can exceed 435.79 mg/Nm3 when the plant is disrupted. The impact experienced by workers and the community is more on temporary irritation of the eyes, nose and respiratory tract. The countermeasures taken are the improvement of the process and development of WWTPs, the construction of Green barriers, and temporary health clinic. It should be considered that the best response is spraying and green barrier, but several weakness towards its implementation should be highlighted in order to achieve the best optimalization.
"
Depok: Sekolah Ilmu Lingkungan Universitas Indonesia, 2018
T51963
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>