Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 154792 dokumen yang sesuai dengan query
cover
Nindya Ariyanti
"Adanya perkembangan teknologi bahan, khususnya untuk aplikasi kabel penghantar listrik menyebabkan terjadinya pergeseran terhadap bahan yang digunakan untuk konduktor listrik yang sebelumnya menggunakan tembaga dan sekarang mulai digeser oleh paduan Aluminium. Pergeseran tersebut disebabkan oleh paduan aluminium mempunyai keunggulan dibandingkan dengan kawat tembaga antara lain; mempunyai berat jenis lebih rendah, proses pembuatan relatif lebih mudah, serta harga relatif lebih murah. Bahan konduktor tidak selalu berada pada lingkungan yang ideal.
Isu pencemaran udara tidak luput dari kualitas bahan konduktor di lapangan, salah satu contohnya adalah hujan asam. Hujan asam dapat mempengaruhi kualitas bahan konduktor. Hujan asam dapat membuat korosi dan menurunkan konduktivitas. Penelitian ini bertujuan untuk mendapatkan penyebab menurunnya konduktivitas bahan konduktor aluminium dan paduan aluminium dengan melakukan pengujian konduktor yang terkontaminasi oleh larutan H2SO4. Bahan konduktor yang digunakan adalah aluminium murni, AlZrCe+Mg 1%+ Al2O31% dan AlZrCe + Al2O31%.
Penelitian dilakukan dengan merendam bahan konduktor didalam larutan H2SO4 1%, 3%, dan 5% selama 7 hari dan data diambil pada hari pertama, kedua, ketiga dan ketujuh. Konduktivitas hari pertama dan ketujuh mengalami penurunan konduktivitas akibat larutnya butir butir aluminium dan paduan aluminium. kondisi awal konduktivitas aluminium murni IACS pada hari ketujuh atau 7x24 jam terjadi penurunan menjadi 57,584% IACS pada larutan 1%, 56,486% IACS pada larutan 3% dan 55,632% IACS pada larutan 5%. Hal ini dapat terjadi karena elektron bebas yang melewati kisi-kisi kristal yang terdistorsi, maka elektron-elektron akan dibelokkan sehingga jarak bebas rata-ratanya menurun atau tahanan listrik menjadi naik dan kisi kristal terdistorsi didapat dari paduan Aluminium

The development of materials technology, especially for the application of electrically conductive wires causing a shift to materials used for electrical conductors previously using copper and are now starting to be shifted by Aluminum alloy. The shift is caused by aluminum alloys have advantages over copper wire, among others; lower specific gravity, easy manufacturing process, cheaper price. Conductor materials are not always at the ideal environment.
The issue of air pollution does not escape from the conductor material quality in the field, one example is acid rain. Acid rain can affect the quality of the conductor material. Acid rain can create corrosion and lowers conductivity. This study aimed to obtain the decrease in the conductivity of the conductor material of aluminum and aluminum alloy conductors by testing contaminated by H2SO4solution Conductor material used is pure aluminum, AlZrCe Mg + 1% + Al2O31% and AlZrCe + Al2O3 1%.
The study was conducted by immersing the conductor material in solution H2SO4 1%, 3%, and 5% for 7 days and the data taken on the first, second, third and seventh. The first day of the seventh conductivity and conductivity decreased due to the dissolution of the items to aluminum and aluminum alloys. Initial conditions IACS conductivity of pure aluminum on the seventh day or 7x24 hours decreased 57.584% IACS into a solution of 1%, 56.486% IACS in a solution of 3% and 55.632% IACS at a 5% solution. This may occur because the free electrons which pass through a crystal lattice that is distorted, then the electrons will be deflected so that the mean free path decreases or the electrical resistivity to be increased and distorted crystal lattice obtained from Aluminum alloy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64614
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Effect of Ni content on the hardness, corrosion rate and heat stability of cladding structure material with an alminium base alloy. The development of cladding structure material with an aluminium base alloy was performed by variation of Ni content in the alloy. Various of Ni content in alloy will generates material properties changes in mechanical, physical, and thermal. The investigation and development of cladding structure material was studied order to to get materials which have good mechanical properties and corrosion resistance. The examination of the hardness of -eNi structure materials was observed using vickers method..."
Artikel Jurnal  Universitas Indonesia Library
cover
cover
Muhammad Tsabit Ayman
"Komposit aluminium A356/nano SiC dapat menjadi material alternatif blok rem kereta dikarenakan sifatnya yang ringan, ulet, dan dapat ditingkatkan sifat mekanisnya. Pada penelitian ini digunakan variasi penambahan %Vf nano SiC sebesar 0.05%, 0.10%, 0.15%, 0.20%, dan 0.25% ke dalam matriks aluminium A356, serta dilakukan penambahan modifier Sr 0.046 wt% dan Mg 2 wt%.
Hasil dari penelitian didapatkan peningkatan kekuatan yang optimum sebesar 175.45 MPa dengan elongasi sebesar 7.914% pada penambahan nano SiC 0.10 %Vf. Ketahanan aus juga meningkat seiring dengan peningkatan kekerasan komposit A356/nano SiC. Sedangkan kekuatan impak hanya berkurang sedikit akibat penambahan %Vf nano SiC. Peningkatan kekuatan mekanis terjadi akibat terbentuknya fasa MgAl2O4 pada antarmuka partikel nano SiC dan matriks Al A356 dan persentase porositas yang kecil. Penambahan modifier Sr menyebabkan fasa Si eutektik yang terbentuk menjadi halus.

A356/nano SiC composite is an alternative material as train?s brake shoe because of its light weight, ductility, and the ability to improve its mechanical properties. In this work, the casting is done via stir casting method by various additions of 0.05%, 0.10%, 0.15%, 0.20%, and 0.25% volume fraction. Small amounts of Sr (0.046 wt%) and 2 wt% of Mg are also added into A356 matrix.
The results show the optimum UTS reach 175.45 MPa with elongation of 7.914% at addition of 0.10 %Vf nano SiC. The wear resistance of this composite also increase as the hardness increases as increasing of addition of nano SiC particle. Meanwhile, the impact strength just slightly decreases as the increasing of nano SiC addition. The improvement of mechanical properties of A356/nano SiC composite is contributed by formation of thin layer MgAl2O4 surrounding the nano SiC particles and low percentage of porosity. The addition of Sr caused the morphology of eutectic Si in the microstructure fine and fibrous.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66091
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Designed for use by practicing engineers, and maintenance and operating personnel, who are concerned with the problem of corrosion of aluminum in their daily job functions. DLC: Aluminum--Corrosion."
Materials Park, OH: ASM International, 1999
e20442127
eBooks  Universitas Indonesia Library
cover
cover
Martha Indriyati
"Karena sifatnya yang menarik seperti ketahanan aus yang tinggi, koefisien ekspansi termal yang rendah, ketahanan korosi yang baik serta kemampuan cor yang baik, paduan aluminium - silikon hipereutektik telah menjadi suatu kandidat material untuk aplikasi - aplikasi yang membutuhkan sifat mekanis yang baik seperti piston.Walaupun demikian, paduan ini memiliki kekurangan yaitu paduan akan semakin bertambah brittle seiring dengan bertambahnya kandungan silicon dikarenakan oleh adanya silikon primer yang kasar. Terdapat berbagai cara untuk meminimalkan ukuran dari fasa silikon salah satunya adalah modifikasi dengan penambahan modifier.
Pada penelitian ini, material AC8A didesain pada kondisi hipereutektik. Modifier fosfor ditambahkan dengan komposisi 0,0025 wt%, 0,0027 wt %, 0,0038 wt %, 0,0046 wt % dan 0,0061 wt % P. Untuk mengetahui sifat mekanis material, dilakukan pengujian kekuatan tarik, kekerasan serta keausan. Pengujian struktur mikro, SEM dan EDAX dilakukan untuk mengetahu perubahan struktur mikro serta fasa - fasa yang terbentuk dalam paduan.
Hasil penelitian menunjukkan bahwa penambahan fosfor pada material AC8A hipereutektik akan mengubah morfologi dan ukuran silikon primer dari yang berbentuk poligonal dan kasar menjadi berbentuk blocky dan halus. Silikon eutektik juga mengalami perubahan karena pertumbuhannya yang berasal dari ujung silikon primer dan dipengaruhi oleh morfologi dan ukuran silikon prime. Silikon eutektik berubah dari jarum - jarum halus yang panjang menjadi batangan pendek dan seperti titik dengan panjang rata - rata yang lebih pendek.
Hasil pengujian kekerasan menunjukkan, dengan bertambahnya kadar fosfor (0,0025 wt%, 0,0027 wt %, 0,0038 wt %, 0,0046 wt % dan 0,0061 wt %), kekerasan akan meningkat dari 38 HRB menjadi 39 HRB,40 HRB, 41 HRB dan 42 HRB. Peningkatan juga terjadi pada nilai ketahanan aus material. Sedangkan nilai kekuatan tarik tidak menunjukkan kecenderungan tertentu dikarenakan terdapatnya porositas pada sampel.

Because of the interesting properties such as high wear resistance, low thermal expansion coefficient, high resistance to corrosion and castability, hypereutectic Al-Si alloys have become a candidate material for potential applications including piston. Nevertheless, it has a disadvantage which is it becomes more brittle as the ratio of silicon is added because of the presence of coarse primary silicon. There are a lot of ways to minimize silicon phases, one of them is modification using modifier.
In this research, aluminium alloy desaigned as AC8A was desaigned in hypereutectic condition. Phosphorus modifier was added to the melt with composition 0,0025 wt%, 0,0027 wt %, 0,0038 wt %, 0,0046 wt % dan 0,0061 wt % P. Tensile strength, hardness and wear were tested in order to know mechanical properties of material. Microstructure testing, SEM and EDAX were conducted to observe microstructure changing and phases formed in alloy.
Results of this research show that phosphorus addition in hypereutectic AC8A alloy changes the morphology and size of primary silicon from coarse polygonal to fine blocky structure. Eutectic silicon is also changed because it grows from the tip of angles on the primary silicon and is influenced by the morphology and size of primary silicon. The eutectic silicon changes from long fine needle-like shape to short bars and dots with less average length.
Hardness testing shows that by increasing phosphorus addition (0 wt %, 0,003 wt%, 0,004 wt% , 0,005 wt% dan 0,006 wt%) to the melt, hardness of the material increases from 38 HRB to 39 HRB, 40 HRB, 41 HRB, and 42 HRB. Furthermore, the value of wear resistance also increases. Nevertheless, tensile strength doesn't show any tendency because of porosity.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S51074
UI - Skripsi Open  Universitas Indonesia Library
cover
Damisih
"Pada umumnya modifier stronsium ditambahkan pada paduan Al-Si hipoeutektik dengan kadar Si < 12 %. Penambahan modifier stronsium pada paduan Al-Si hipoeutektik terbukti efektif meningkatkan sifat-sifat mekanis paduan. Sedangkan penambahan modifier stronsium pada paduan aluminium hipereutektik belum banyak dilakukan. Penelitian ini bertujuan untuk mengetahui pengaruh penambahan modifier stronsium terhadap sifat mekanis paduan Al-Si hipereutektik (Si>12,7%). Sifat mekanis yang ingin diketahui setelah penambahan modifier stronsium adalah kekerasan, kekuatan tarik dan keausan. Dalam penelitian ini digunakan material AC8A dengan standar kadar Si sebesar 11-13%. Ditambahkan kristal silikon murni ke dalam material AC8A untuk mendapatkan kondisi hipereutektik (Si>12.7%). Perbedaan penambahan kadar stronsium dalam paduan AC8A hipereutektik merupakan variabel dalam penelitian ini, sedangkan kondisi-kondisi proses lainnya dibuat sama. Stronsium yang ditambahkan adalah sebesar 0% wt, 0.126% wt, 0.208% wt, 0.284% wt dan 0.299% wt.
Hasil penelitian menunjukkan bahwa dengan penambahan modifier stronsium pada paduan AC8A hipereutektik akan mengubah bentuk silicon eutektik dari acircular menjadi fibrous dan fasa intermetalik yang terbentuk menjadi lebih tersebar. Selain itu silikon primer akan ditekan pertumbuhannya sehingga berukuran lebih kecil dan lebih tersebar merata. Hasil pengujian kekerasan dan keausan menunjukkan adanya kekerasan dan ketahanan aus yang cenderung meningkat dengan peningkatan kadar stronsium yang ditambahkan. Kekerasan cenderung meningkat secara berturut-turut dari 41 HRB menjadi 44 HRB, 45 HRB, 43 HRB dan 48 HRB. Ketahanan aus meningkat dengan laju aus yang cenderung semakin menurun secara berturut-turut dari 3.27 x 10-5 mm3/mm menjadi 2.01 x 10-5 mm3/mm, 1.82 x 10-5 mm3/mm, 2.27 x 10-5 mm3/mm, dan 1.28 x 10-5 mm3/mm. Kekuatan tarik yang didapatkan berturut-turut dari 173 Mpa menjadi 187 Mpa, 168 Mpa, 172 Mpa dan 185 Mpa. Nilai elongasi cenderung mengalami penurunan yaitu dari 0.125 menjadi 0.123, 0.118, 0.124 dan 0.114.

In general, stronsium modifier is added to hypoeutectic Al-Si alloys with Si content < 12%. Addition of stronsium modifier in hypoeutectic Al-Si alloys effectivelly improve mechanical properties of alloys. Whereas, addition of stronsium modifier in hypereutectic Al-Si alloys is done rarely. This research has purpose to know effect of stronsium modifier addition on mechanical properties of hypereutectic Al-Si alloys. The mechanical properties that will be observed in this research are hardness, tensile strength and wear resistant. This research use AC8A material with 11-13% standard of Si content. Silicon crystal is added to AC8A material for obtaining hypereutectic condition (Si >12.7%). The difference of amount stronsium addition is as variable on this research. The other condition casting process, such as : strontium modifier addition temperature, cast temperature, solidification time and casting time are the same. The amount of strontium modifier which added is 0,126% wt, 0.208% wt, 0.284% wt and 0.299% wt.
The result of research show that with addition of strontium modifier to hypereutectic AC8A alloy will change eutectic silicon morphology from acircular to fibrous and intermetallic phase that be formed become more uniformly dispersed. Another, the growth of primary silicon will be suppressed until finer in size and more uniformly dispersed. The results both of hardness and wear testing show presence of disposed increasing in hardness and wear resistant with rising of Sr content that be added. The hardness disposed increase, in succession, from 41 HRB to 44 HRB, 45 HRB, 43 HRB and 48 HRB. Wear resistant disposed increase with disposed decreasing of wear rate, in succession, from 3.27 x 10-5 mm3/mm to 2.01 x 10-5 mm3/mm, 1.82 x 10-5 mm3/mm, 2.27 x 10-5 mm3/mm, and 1.28 x 10-5 mm3/mm. Tensile strength that be obtained, in succession, from 173 Mpa to 187 Mpa, 168 Mpa, 172 Mpa and 185 Mpa. The value of elongation disposed decrease from 0.125 to 0.123, 0.118, 0.124 and 0.114.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S51078
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Faza Satrio
"Aluminium dan paduan Aluminium adalah bahan yang paling banyak digunakan kedua di dunia. Aluminium Silikon (Al-Si)  dipanaskan pada suhu 500 oC dengan 4 waktu berbeda 30, 60, 180, dan 240 menit untuk memodifikasi sifat korosinya. Paduan ini akan diterapkan sebagai rangkaian string, di mana ia mengalami berbagai lingkungan yang parah. XRD (X-ray Difraction) dan Potensiostat digunakan untuk menentukan fase dan struktur dan perilaku korosi masing-masing sampel. Hasil penelitian menunjukkan bahwa struktur sampel masih didominasi oleh struktur Aluminium Face Center Cubic, dan fasa yang diperoleh dimiliki oleh aluminium dan silikon. Ketahanan korosi juga dipengaruhi oleh waktu perlakuan panas yang bervariasi. Potensi korosi dan perubahan arus Korosi sebagai fungsi dari waktu perlakuan panas. Laju korosi diperoleh dengan melihat titik potong sumbu X dan Y pada kurva LSV. Paduan yang tidak diberikan perlakuan panas memiliki laju korosi 0,299 dan 0,201 mm/year pada suhu 10 dan 25oC. Perlakuan panas dengan variasi waktu 30, 60, 180, dan 240 menit merubah laju korosi paduan menjadi 0,75, 0,494, 0,387, dan 0,477 mm/year pada pengujian korosi dengan suhu 10oC, sementara pada pengujian dengan suhu 25oC laju korosi paduan berubah menjadi 0,175, 0,088, 3,36 , dan 1,74 mm/year pada pengujian korosi dengan suhu 25oC. Ukuran rata-rata kristal dan microstrain juga diperoleh dengan metode Williamson-Hall. Paduan yang tidak diberikan perlakuan memiliki ukuran rata-rata kristal 63,024 nm. Pemberian perlakuan panas dengan variasi waktu 30, 60, 180,dan 240 menit merubah ukuran rata-rata kristal menjadi 231,09 , 115,55, 90,47, dan  55,46 nm. Kesimpulannya bahwa perlakuan panas dan variasi waktunya sangat mempengaruhi struktur dan perilaku korosi paduan Al-Si karena rekristalisasi yang terjadi akibat perlakuan panas yang diberikan.

Aluminum and aluminum alloys are the second most widely used materials in the world. Aluminum Silicon (Al-Si)  heated at 500 oC with 4 different times of 30, 60, 180, and 240 minutes to modify its corrosion properties. This alloy will be applied as a string set, where it experiences various severe environments. XRD (X-ray Difraction ) and Potentiostat are used to determine the phase and structure and corrosion behaviour of each sample. The results showed that the samples structure was still dominated by the Aluminium Face Center Cubic structure, and the phase obtained was owned by aluminium and silicon. Corrosion resistance is also affected by variated heat treatment times. Potential corrosion and change in current Corrosion as a function of heat treatment time. Corrosion rate is obtained by looking at the intersection points of the X and Y axes on the LSV curve. Alloys not given heat treatment have corrosion rates of 0.299 and 0.201 (mm/year) at temperatures of 10 and 25oC. Heat treatment with time variations of 30, 60, 180, and 240 minutes changes the alloy corrosion rate to 0.75, 0.494, 0.387, and 0.477 (mm/year) on corrosion testing at 10oC, while testing at 25oC at corrosion rate of alloys changed to 0.175, 0.088, 3.36, and 1.74 (mm / year) on corrosion testing with a temperature of 25oC. The average size of crystals and microstrains were also obtained by the Williamson-Hall method. The alloys that were not treated had an average crystal size of 63,024 nm. Provision of heat treatment with time variations of 30, 60, 180, and 240 minutes to change the average size of crystals to 231.09, 115.55, 90.47, and 55.46 nm. The conclusion is that heat treatment and time variation greatly affect the structure and corrosion behaviour of Al-Si alloys due to the recrystallization that occurs due to the heat treatment process."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gavin Setiawan
"Aluminium (Al) dan paduannya telah secara luas digunakan dalam berbagai industri seperti konstruksi, otomotif, manufaktur, dan kedirgantaraan karena memiliki kekuatan tinggi, kerapatan rendah, serta kemampuan pembentukan yang baik. Meskipun Al memiliki lapisan oksida alami di permukaannya, lapisan ini dapat terkelupas atau larut dalam lingkungan korosif, yang menyebabkan turunnya ketahanan korosi. Oleh karena itu, diperlukan pelapisan permukaan. Plasma Electrolytic Oxidation (PEO) menghasilkan lapisan keramik oksida tebal yang meningkatkan resistansi korosi. Diperlukan aditif sebagai penguat untuk mengoptimalkan ketahanan korosi dan mekanik lapisan. Pada penelitian ini, graphene oxide (GO) digunakan sebagai aditif selain untuk meningkatkan ketahanan korosi lapisan, juga untuk meningkatkan konduktivitas listrik lapisan. Proses PEO dilakukan pada paduan AA7075-T735 menggunakan elektrolit 30 g/l Na2SiO3, 30 g/l KOH, 20 g/l trietanolamin (TEA) dengan aditif 2 g/l dan 20 g/l GO pada rapat arus konstan sebesar 200 A/m2 dan suhu 10 °C ± 1 °C. Karakterisasi morfologi dan komposisi dilakukan SEM-EDS dan XRD. Uji korosi dilakukan dengan metode elektrokimia. Sifat mekanik lapisan diuji dengan uji aus dan keras. Penambahan GO sebesar 2 g/l berhasil meningkatkan sifat mekanik dan ketahanan korosi coating yang didukung oleh morfologi permukaan yang lebih halus dan sedikit pori. Perfoma coating menurun pada konsentrasi GO sebesar 20 g/l, hal ini disebabkan penurunan laju pertumbuhan dari coating yang disebabkan GO melebihi batas dispersif sehingga GO yang terinkorporasi di dalam coating lebih sedikit karena aglomerasi GO.

Aluminium (Al) and its alloys are widely used in various industries such as construction, automotive, manufacturing, and aerospace due to their high strength, low density, and good formability. Despite the natural oxide layer on its surface, which can peel or dissolve in corrosive environments, leading to a decrease in corrosion resistance, surface coating is necessary. Plasma Electrolytic Oxidation (PEO) produces thick ceramic oxide layers that enhance corrosion resistance. Additives are required to strengthen and optimize the corrosion resistance and mechanical properties of the coating. In this study, graphene oxide (GO) is used as an additive not only to improve corrosion resistance but also to enhance the electrical conductivity of the coating. The PEO process is conducted on AA7075-T735 alloy using an electrolyte of 30 g/l Na2SiO3, 30 g/l KOH, 20 g/l triethanolamine (TEA) with 2 g/l additive and 20 g/l GO at a constant current density of 200 A/m2 and a temperature of 10 °C ± 1 °C. Morphological and compositional characterization is performed using SEM-EDS and XRD. Corrosion testing is conducted using electrochemical methods, while the mechanical properties of the coating are assessed through wear and hardness tests. The addition of 2 g/l of GO successfully improves the mechanical properties and corrosion resistance of the coating, supported by a smoother surface morphology with fewer pores. However, coating performance decreases at a GO concentration of 20 g/l, attributed to a reduction in coating growth rate caused by GO exceeding the dispersal limit, resulting in less incorporated GO due to agglomeration."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>