Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 155071 dokumen yang sesuai dengan query
cover
"Metode k0-NAA merupakan metode analisis yang banyak digunakan dengan berbagai keunggulan. Dalam penerapan metode k0-NAA diperlukan nilai parameter reaktor (f dan α), maka tujuan penelitian ini adalah akan dilakukan pengukuran nilai parameter f dan α di fasilitas Lazy Susan reaktor Kartini. Metode yang digunakan meliputi metode Cd-ratio dan triple bare. Telah diukur nilai parameter tersebut pada tiga lubang iradiasi di fasilitas Lazy Susan. Diperoleh perbedaan hasil pengukuran nilai parameter yang signifikan pada setiap lubang iradiasi, nilai ƒ berkisar 13,713 - 22,128 dan α berkisar -0,060 – 0,068. Hasil pengukuran f dan α dengan metode Cd-ratio, memberikan nilai yang lebih stabil dibandingkan metode triple bare. Nilai f dan α yang diperoleh dapat dijadikan basis data pada penerapan metode k0-NAA untuk analisis sampel di laboratorium AAN – PSTA."
Jakarta: Badan Tenaga Nuklir Nasional, 2014
JTRN 16:2 (2014)
Artikel Jurnal  Universitas Indonesia Library
cover
Syahrudin Yusuf
"Sistem instrumentasi dan kendali reaktor riset SR4 adalah perangkt alat di bidang reaktor nuklir riset sebagai perangkat proteksi dan kendali daya yang mempunyai fungsi untuk memonitor parameter keselamatan dan parameter proses yang baik dalam keadaan reaktor shut down, start-up, maupun operasi reaktor pada daya tetap. Dalam perekayasaan sistem instrumentasi dan kendali reaktr riset SR4 desain dasar yang ditetapkan terdiri dari spesifikasi teknis perangkat sistem proteksi reaktor, spesifikasi teknis perangkat sistem kendali daya reaktor, spesifikasi teknis perangkat sistem informasi proses dan sistem terminalisasi kabeling sebagai sistem pendukung. Dalam perekayasaan sistem instrumentasi dan kendali reaktor riset SR4 desain dasar yang ditetapkan digunakan sebagai dasar untuk penyusunan desain rinci dan selanjutnya perekayasaan sistem instrumentasi dan kendali secara terpadu."
Tanggerang: Pusat Rekayasa Perangkat Nuklir Puspiptek-Tanggerang, 2010
PRIMA 7:14 (2010)
Artikel Jurnal  Universitas Indonesia Library
cover
Lily Suparlina
"Parameter neutronik dibutuhkan dalam mendesain teras reaktor riset. Reaktor riset jenis MTR (Material Testing Reactor) sangat diminati karena dapat digunakan baik untuk riset dan juga produksi radio isotop. Reaktor riset yang ada saat ini sudah tua sehingga dibutuhkan desain reaktor yang mempunyai teras kompak. Desain teras reaktor riset yang sudah ada saat ini belum cukup memadai untuk memenuhi persyaratan di dalam UCD yang telah ditetapkan yaitu fluks neutron termal di teras 1x1015 n/cm2s, oleh karena itu perlu dibuat desain teras reaktor baru sebagai alternatif yang kompak dan dapat menghasilkan fluks neutron tinggi. Telah dilakukan perhitungan dan analisis terhadap manajemen bahan bakar desain teras kompak dengan konfigurasi teras 5x5, berbahan bakar U9Mo-Al dan tinggi teras aktif 70 cm. Tujuan dari riset ini untuk memperoleh fluks neutron di teras memenuhi kebutuhan seperti yang telah ditetapkan di UCD dengan panjang siklus operasi minimum 20 hari pada daya 50 MW. Perhitungan dilakukan dengan menggunakan paket program komputer WIMSD-5B untuk menggenerasi tampang lintang makroskopik bahan bakar dan Batan-FUEL untuk memperoleh nilai parameter neutronik serta Batan-3DIFF untuk perhitungan nilai reaktivitas batang kendali. Perhitungan parameter neutronik teras reaktor riset ini dilakukan untuk bahan bakar U-9Mo-Al dengan tingkat muat bervariasi dan 2 macam pola pergantian bahan bakar yaitu teras segar dan teras setimbang. Hasil analisis menunjukkan bahwa pada teras segar, tingkat muat 235U sebesar 360 gram, 390 gram dan 450 gram memenuhi kriteria keselamatan dan kriteria penerimaan di UCD dengan nilai fluks neutron termal di teras lebih dari 1x1015 n/cm2s dan panjang siklus >20 hari, sedangkan pada teras setimbang panjang siklus dapat terpenuhi hanya untuk tingkat muat 450 gram."
Jakarta: Badan Tenaga Nuklir Nasional, 2014
JTRN 16:2 (2014)
Artikel Jurnal  Universitas Indonesia Library
cover
Jati Susilo
"Dalam penelitian ini dilakukan verifikasi perhitungan benchmark VERA pada kasus Zero Power Physical Test (ZPPT) teras reaktor Watts Bar 1. Reaktor tersebut merupakan jenis PWR kelas 1000 MWe yang didesain oleh Westinghouse, tersusun dari 193 perangkat bahan bakar 17×17 dengan 3 jenis pengkayaan UO2 yaitu 2,1wt%, 2,619wt% dan 3,1wt%. Perhitungan nilai k-eff dan distribusi faktor daya dilakukan pada siklus operasi pertama teras dengan kondisi beginning of cycle (BOC) dan hot zero power (HZP). Posisi batang kendali dibedakan menjadi uncontrolled (semua batang kendali berada di luar teras), dan controlled (batang kendali Bank D didalam teras). Paket program komputer yang digunakan dalam perhitungan adalah MVP-II dan SRAC2006 modul CITATION dengan data pustaka tampang lintang ENDF/B-VII.0. Hasil perhitungan menunjukkan bahwa perbedaan nilai k-eff teras pada kondisi controlled dan uncontrolled antara referensi dengan MVP-II (-0,07% dan -0,014%) dan SRAC2006 (0,92% dan 0,99%) sangat kecil atau masih dibawah 1%. Perbedaan faktor daya maksimum teras pada kondisi controlled dan uncontrolled dengan referensi dengan MVP-II adalah 0,38% dan 1,53%, sedangkan dengan SRAC2006 adalah 1,13% dan -2,45%. Dapat dikatakan bahwa kedua paket program komputer menunjukkan hasil perhitungan yang sesuai dengan nilai referensi. Dalam hal penentuan kekritisan teras, maka hasil perhitungan MVP-II lebih konservatif dibandingkan dengan SRAC2006."
Jakarta: Badan Tenaga Nuklir Nasional, 2014
JTRN 16:2 (2014)
Artikel Jurnal  Universitas Indonesia Library
cover
Hendro Tjahjono
"ngkup reaktor merupakan benteng terakhir dalam menahan terlepasnya zat-zat radioaktif ke lingkungan ketika terjadi suatu kecelakaan reaktor. Oleh karena itu integritasnya harus selalu dipertahankan yang antara lain dilakukan dengan cara mencegah dilampauinya batas desain tekanan dan temperatur yang bisa terjadi pada kondisi kecelakaan melalui pendinginan sungkup yang mencukupi. Pada reaktor generasi III+ yang menerapkan konsep pendinginan pasif seperti AP1000, sungkup didinginkan secara eksternal melalui konveksi alamiah pada celah udara dan guyuran air pendingin di permukaan luar sungkup. Karakteristik pendinginan eksternal ini akan diteliti secara eksperimental melalui model sungkup PWR1000 berskala 1/40. Tujuan dari penelitian ini adalah untuk mengetahui nilai debit optimal yang diperlukan dalam pendinginan model sungkup sebelum konfirmasi secara eksperimental dilakukan. Metode yang digunakan adalah dengan melakukan pemodelan analitis dan pemrograman berbasis Matlab yang mampu mengestimasi nilai-nilai parameter pendinginan eksternal seperti laju alir, temperatur dan daya kalor yang dievakuasi. Penerapan program pada sungkup AP1000 juga dilakukan untuk bisa dibandingkan dengan data desain. Hasilnya menunjukkan kesesuaian dengan data desain sungkup AP1000 dengan debit optimal sebesar 9,5 liter/detik yang mampu mengevakuasi kalor sebesar 21,6 MW. Sedangkan pada model sungkup diperoleh debit optimal sebesar 22 cc/detik yang mampu mengevakuasi kalor sebesar 37 KW. Disimpulkan bahwa dengan penelitian ini karakteristik pendinginan eksternal sungkup reaktor PWR mampu diestimasi dan bersamaan dengan itu dapat diketahui nilai optimal dari debit pendingin yang diperlukan."
Jakarta: Badan Tenaga Nuklir Nasional, 2014
JTRN 16:2 (2014)
Artikel Jurnal  Universitas Indonesia Library
cover
Sungkowo Wahyu Santoso
"Analisis desain down scale teras dan bahan bakar PBMR-HTR dengan menggunakan program SRAC bertujuan mengetahui pengaruh variasi pengayaan U235, burnable poison, laju aliran pendingin dan suhu pendingin masuk terhadap kekritisan teras serta aspek-aspek keselamatan reaktor nuklir dengan parameter nilai keff dan koefisien reaktivitas suhu bahan bakar, moderator dan pendingin. Teras PBMR-HTR berbentuk silinder finite dengan lubang ditengahnya yang berisi 334.000 bahan bakar pebble bed. Bahan bakar berupa UO2, moderator grafit dan pendingin helium. Model desain down scale dilakukan pada ½ teras yang mewakili keseluruhan teras. Penelitian dilakukan dengan memvariasikan pengayaan bahan bakar sebesar 8%, 8,5%, 9%, 9,5% dan 10% sementara variasi konsentrasi burnable poison sebesar 5 ppm, 7 ppm, 9 ppm, 11 ppm, dan 15 ppm. Variasi laju aliran pendingin sebesar 60%, 80%, 100%, 120%, dan 140% sementara variasi suhu masukan pendingin sebesar 673,15K; 723,15K; 773,15K; 823,15K dan 873,15K. Pada penelitian ini keff pada BOL tanpa Gd2O3 sebesar 1.026213 dan EOL sebesar 0.995865 dengan excess reactivity sebesar 2,5 % dengan pengkayaan U235 9%. Sementara keffpada BOL dengan menggunakan Gd2O3 sebesar 1.0069680 dan EOL sebesar 0.9961928 dengan excess reactivity sebesar 0.69 % dengan konsentrasi Gd2O3 7 ppm. Koefisien reaktivitas suhu bahan bakar,moderator dan pendingin berturut-turut sebesar -9,074583E-05/K, -2,971833E-05/K dan 1,120700E-05/K. Koefisien reaktivitas bernilai negatif menunjukkan karakteristik keselamatan melekat (inherent safety) telah terpenuhi. Peningkatan suhu masukan dan penurunan laju aliran pendingin berkontribusi menurunkan nilai keff teras sehingga koefisien reaktivitas bernilai negatif."
Jakarta: Badan Tenaga Nuklir Nasional, 2014
JTRN 16:2 (2014)
Artikel Jurnal  Universitas Indonesia Library
cover
Muh. Sirojul Munir
"Model matematis reaktor Kartini berupa fungsi alih dapat diturunkan berdasarkan persamaan kinetika reaktor dengan menganggap ada 6 grup neutron kasip. Dengan menggunakan SIMULINK dari MATLAB. model reaktor Kartini digahung dcngan model dari ketiga batang kendali. akan disimulasikan untuk keperluan analisis. Analisis dilakukan dengan uji tanggap rransient pada domain waktu yaitu mcnggunakan uji step dan uji ramp. Hasil analisis ini digunakan untuk mcnentukan kcabsahan model. Model yang telah absah (m/id) selanjutnya digunakan untuk merancang, menguji dan mengimplementasikan sistem kendali daya.
Pengendalian dilakukan dengan menggunakan algoritma pengendali PID dan logika fuzzy. Pada pengendalian dengan pengendali PID, dari percobaan didapat harga Kp = 500 , Ki = 30 dan Kd = 1200. Pada pengendalian dengan FLC jenis SISO, masukannya adalah variabel "error" dan keluarannya adalah variabel posisi batang kendali. Untuk kedua variabel ini, digunakan tujuh membership function. Pengaturan rise time dilakukan dengan mengatur Iebar jangkauan variabel keluaran "control rod".

The mathematical model of Kartini nuclear reactor is derived based on the reactor kinetics equations using 6 (six) groups of delayed neutrons. Then, this model with the three control rods models is used for simulation using SIMULINK of MA TLAB version 4.2c.l. The validity of the model is verified using step and ramp response analysis at time domain. After the validity is proven, it is then used to design, test and implement the power control system.
Both the PID control and fuzzy logic control algorithms will be used to control the Kartini nuclear reactor. Using heuristic design method, it is found that PID controller parameters are Kp = 500 , K; = 30 dan Kd = 1200. For Fuzzy Logic Controller (FLC), the input is the error signal and the output is the control rod position. It is 7 (seven) membership functions for input and also 7 (seven) membership functions for output. It is found that the steady state error can be reduced by using smaller width for ZE membership function, and the rise time can be controlled by controlling the range of the control rod position.
"
Depok: Fakultas Teknik Universitas Indonesia, 1999
T40685
UI - Tesis Membership  Universitas Indonesia Library
cover
Sembiring, Tagor M.
"Setelah kejadian Fukushima, penggunaan sistem keselamatan pasif menjadi persyaratan yang penting untuk PLTN. PLTN jenis PWR maju kelas 1000 yang didesain oleh Westinghouse, AP1000, memiliki fitur keselamatan pasif disamping sederhana dan modular. Sebelum memilih suatu PLTN, maka perlu dilakukan suatu evaluasi terhadap parameter desainnya. Salah satu parameter yang penting dalam keselamatan adalah kritikalitas teras. Permasalahan pokok dalam mengevaluasi parameter kritikalitas teras AP1000 tidak adanya data komposisi material SS304 dan H2O di daerah reflektor dan diameter penyerap SS304. Dengan demikian tujuan penelitian ini adalah mendapatkan model teras 3-dimensi AP1000 dan siap diaplikasikan dalam evaluasi parameter kritikalitas teras. Hasil perhitungan menunjukkan bahwa komposisi terbaik SS304 dan H2O di reflektor teras bagian atas dan bawah masing-masing 50 vol%, sedangkan diameter penyerap SS304 adalah 0,960 cm. Evaluasi konsentrasi boron kritis menunjukkan perbedaan yang signifikan dengan nilai desain. Meskipun penyebab utama dari perbedaan ini belum diketahui, akan tetapi dapat dibuktikan bahwa konsentrasi boron kritis sangat sensitif dengan densitas UO2. Untuk reaktivitas padam, reaktor AP1000 memiliki margin subkritikalitas teras yang besar untuk satu siklus operasi. Dengan demikian teras yang diusulkan dapat digunakan sebagai acuan untuk evaluasi parameter teras lainnya atau perangkat analitis lainnya dalam rangka mengevaluasi desain reaktor AP1000."
Jakarta: Badan Tenaga Nuklir Nasional, 2011
JTRN 13:2 (2011)
Artikel Jurnal  Universitas Indonesia Library
cover
Werdi Putra Daeng Beta
"Energi nuklir telah dimanfaatkan di Indonesia untuk berbagai kegiatan. Pemanfaatan energi nuklir harus memperhatikan keamanan dan keselamatan masyarakat dan lingkungan. Dampak lingkungan dari operasi reaktor adalah risiko meningkatnya gross radioaktivitas lingkungan, risiko terlepasnya radionuklida ke lingkungan, risiko pemajanan radiasi pada para pekerja dan pada masyarakat sekitar. Semua risiko tersebut harus dikendalikan pada kondisi yang tidak membahayakan pekerja, masyarakat sekitar dan lingkungan. Oleh karena itu, untuk mengendalikan risiko-risiko tersebut diperlukan sistem peringatan dini.
Tujuan umum penelitian ini adalah untuk mengetahui sistem peringatan dini reaktor nuklir dalam menjamin keamanan dan keselamatan masyarakat dan lingkungan. Selain itu ada 3 tujuan khusus, yaitu: (1) Untuk mengetahui pengaruh parameter daya reaktor terhadap kemungkinan kejadian kedaruratan nuklir; (2) Untuk mengetahui pengaruh parameter pendingin primer terhadap kemungkinan kejadian kedaruratan nuklir; dan (3) Untuk mengetahui apakah sistem peringatan dini dapat mencegah pencemaran lingkungan disebabkan oleh kecelakaan nuklir.
Adapun hipotesis claim penelitian ini adalah:
a) Terdapat hubungan yang positif antara parameter daya reaktor dengan kemungkinan terjadinya kedaruratan nuklir.
b) Terdapat hubungan yang positif antara parameter pendingin primer reaktor dengan kemungkinan terjadinya kedaruratan nuklir
c) Sistem peringatan dini reaktor nuklir bekerja secara efisien dan efektif.
d) Sistem peringatan dini reaktor dapat mencegah pencemaran lingkungan yang disebabkan oleh kecelakaan nuklir.
Jenis penelitian ini adalah penelitian eksperimental dengan pendekatan simulasi sistem reaktor nuklir. Metode penelitian dilakukan dengan pengamatan atau observasi data lapangan maupun simulasi di laboratorium dan menjalankan program perhitungan permodelan sebaran radionuklida di lingkungan. Sifat penelitian adalah kuantitatif, deskriptif analitik.
Teknik analisis data dilakukan dengan pengkajian keselamatan deterministik (deterministic safely assessment, atau disingkat DSA) berdasarkan spesifikasi teknis dan sistem dengan pengujian 2 variabel babas yang ditinjau dalam penelitian ini mempunyai nilai detenninistik terbesar yang mengakibatkan terjadi kegagalan sistem; serta dengan menerapkan dua skenario kecelakaan terparah yaitu penyumbatan kanal pendingin elemen bakar (Flow Blockage to Single Cooling Channels) dan pelelehan pelat elemen bakar (Local melting of a Few Fuel Plates) yang terjadi secara berurutan. Kemudian dilakukan perhitungan matematis dan pengkajian kecelakaan yang timbuI serta penanggulangan yang mungkin dapat dilakukan dengan berfokus pada penyelamatan manusia dan lingkungan; penetapan serta pengelolaan zona kedaruratan dan zona pendukungnya dalam rangka proteksi terhadap masyarakat dan lingkungan.
Hasil penelitian ini adalah semakin lama reaktor dioperasikan pada daya tinggi maka akan semakin besar peluang untuk terjadinya kedaruratan atau kecelakaan nuklir. Laju alir pendingin primer tetap konstan selama operasi daya tinggi dengan fluktuasi yang dapat diabaikan atau masih dalam batas aman.
Penelitian ini juga berhasil menghitung nilai dosis efektif kolektif pada simulasi kecelakaan pelelehan 6 elemen bakar reaktor (beyond design basic accident, BDBA) dengan asumsi-asumsi yang ketat diperoleh nilai 0,0288 man Sievert. Hal ini berarti bahwa setiap orang yang berada pada radius 0-5 km dari reaktor pada saat kecelakaan akan menerima dosis rata-rata 0,0288 Sy atau 28,8 mSv atau berarti hampir 6 kali dari dosis tahunan untuk masyarakat umum yaitu 5 mSvlth. Berdasarkan grafik standar efek probabilistik risiko kematian karena kanker pada dosis 28,8 mSv ini diketahui bahwa angka risiko kematian adalah sekitar 2 x 10-3 atau 2 kasus pada setiap 1000 penduduk setiap tahunnya atau 20 kasus per 10.000 penduduk per tahun (Camber, 1992). Artinya jika jumlah penduduk yang terpajan radiasi 176224 orang (sampai dengan radius 5 km) maka ada kebolehjadian sekitar 176 kasus kematian karena kanker setiap tahunnya. Sistem peringatan dini dalam hat ini adalah benteng pertama (first barrier) yang harus diperkuat dalam rangka pengelolaan lingkungan hidup guna mempertahankan kualitas lingkungan menuju pemanfaatan tenaga nuklir yang aman dan selamat.
Menurut rekomendasi IAEA jika skenario terburuk terjadi maka masyarakat disekitar reaktor pada radius 0.5 - 5 km harus diungsikan sementara (selama 2 hari - 1 minggu) untuk menghindari pemajanan radiasi (1AEA, 2003). Pembatasan atau pengendalian bahan makanan (food restriction zone) karena diduga tercemar oleh auen kecelakaan nuklir yang melalui rantai makanan (produk daging temak, produk susu, vegetasi atau sayuran dan buah-buahan) direkomendasikan dilakukan pada radius 5 - 50 km dari lokasi kecelakaan (IAEA, 2003).
Kesimpulan penelitian ini adalah:
1. Sistem Peringatan Dini adalah bagian yang tidak dapat dipisahkan dari Sistem Kesiapsiagaan Nuklir Nasional. Oleh karena itu, Sistem Peringatan Dini reaktor nuklir dapat bekerja menjamin keamanan dan keselamatan masyarakat dan lingkungan jika didukung oleh sarana dan prasarana pendukungnya termasuk manusia (sumberdaya manusia) sebagai pelaksana penanggulangan keadaan darurat.
2. Parameter laju alir pendingin primer konstan selama operasi daya tinggi, sehingga lebih kecil peluangnya bagi kemungkinan kecelakaan nuklir. Pada kondisi kecelakaan, laju alir pendingin primer menurun hingga melampaui batas aman.
3. Daya reaktor lebih peka bagi kemungkinan kecelakaan nuklir. Semakin lama reaktor dioperasikan pada daya tinggi maka semakin besar peluang untuk terjadinya kedaruratan nuklir.
4. Efektivitas dan efisiensi sistem peringatan dini bergantung pada skenario yang ada dan tim-tim penanggulangan kedaruratan dalam mengurangi risiko dampak yang timbul, mencegah eskalasi tingkat kecelakaan yang tidak diinginkan serta mencegah penyebaran dampak pencemaran dan kerusakan lingkungan karena kecelakaan nuklir.
Berdasarkan kendala dan keterbatasan penelitian dan pembahasan maka dapat dikemukakan saran sebagai berikut:
1. Mengingat belum ada data baik dalam laporan keselamatan reaktor maupun dokumen-dokumen lainnya maka sebaiknya kecelakaan BDBA dimasukkan ke dalam dokumen keselamatan agar dapat diantisipasi secara dini penanggulangannya.
2. Efektivitas dan efisiensi sistem peringatan dini sebaiknya diukur lebih hati-hati dan dilaksanakan dengan cara latihan penanggulangan kedaruratan secara rutin dengan melibatkan instansi atau lembaga terkait dan mengevaluasinya dengan seksama.
3. Perlu dilaksanakan studi parameter-parameter lainnya selain parameter yang telah diteliti dalam penelitian ini untuk mengetahui untuk kerja sistem peringatan dini secara menyeluruh.
4. Untuk penelitian selanjutnya, perlu dilakukan validasi atau verifikasi model dan studi evaluasi pada rasio percabangan (branching ratio) pemajanan radioaktif ke lingkungan dan bagaimana kerugian ekonomi jika sistem peringatan dini tidak berfungsi dengan balk.
5. Perlu ada sosialisasi tentang penerapan sistem peringatan dini dan potensi bahaya kecelakaan reaktor nuklir kepada masyarakat agar mereka tetap waspada dan bersiap siaga jika potensi bahaya tersebut berkembang dan benar-benar terjadi. Sosialisasi dapat dilaksanakan dengan penyuluhan masyarakat tentang nuklir serta aspek keselamatan masyarakat dan lingkungan; penyebaran brosur-brosur tentang keselamatan nuklir, kedaruratan nuklir dan menyelenggarakan latihan-latihan kedaruratan nuklir yang melibatkan peranserta masyarakat. Sosialisasi ini harus dilaksanakan oleh BATAN, BAPETEN, PEMDA setempat, Badan Koordinasi Penanggulangan Bencana dan Pengungsi (BAKORNAS PBP), Kepolisian, dan instansi terkait lainnya.

Nuclear energy has been utilized for much kind of activities in Indonesia, included nuclear reactor operation. Environmental impacts of its operation are increasing of gross environmental radioactivity, radionuclide release to the environment, and radiation exposure risks to workers and public. All of those risks should be controlled and monitored properly to ensure security and safety of the public and environment. To control and monitor of that risks, early warning system is needed.
General purpose of this research is to recognize the role of early warning system in ensuring security and safety of the public and environment. There are three specific purposes of research, namely: (1) to recognize power reactor parameter influence to probability of nuclear emergency; (2) to recognize influence of primary cooling system parameter to probability of nuclear emergency; and (3) to recognize whether early warning system is able to prevent environmental pollution caused by nuclear accident.
Hypothesis of the research are:
a) There is a positive relationship between power reactor parameter and probability of nuclear emergency;
b) There is a positive relationship between primary cooling system parameter and probability of nuclear emergency;
c) Early warning system works effectively and efficiently.
d) Early warning system of nuclear reactor can prevent environmental pollution caused by nuclear accident.
The type of the research is experimental research laboratory scale, with nuclear reactor simulation system approach. Research methods are observation field data then laboratory simulation and running computer modeling calculation program of radionuclide distribution and release to the environment. The nature of this research are quantitative and analitical descriptive.
Data analitical technique is deterministic safety assessment based on technical specification of the system by testing two independent variables reviewed have big deterministic values which cause system failed. By applying two scenarios of fatal accidents, namely Flow Blockage to Single Cooling Channels and Local melting of a Few Fuel Plates sequentially. Then, mathematical calculation, accident assessment and its anticipation have to be done by focused on saving people and environment; emergency and supporting zones establishment and management in purpose of public and environmental protection. Research results are the longer reactor operation in high power, the bigger probability of nuclear emergency would be happened. In the history of nuclear accident, namely Chernobyl accident, Uni Sovyet, was caused by graphite moderation failure then fuel temperature increased dramatically to initiate power transient leads to core damaged and fuel elements melt down and then widespread of contamination of radionuclide substances to the environment. In this experiment, flow rate of coolant in primay system was constant during high power operation with slightly fluctuation in safety margin, except when accident happened.
This research was successful to calculate collective effective dose of radiation in accident simulation of six fuel elements meltdown (BDBA) with stringent assumptions. Collective effective dose is 0,0288 man Sievert, meaning, everyone within radius of 0-5 km receives average radiation dose of 0,0288 Sv or 28,8 mSv. This means almost six times of yearly radiation dose of the public (5 mSvlyear). Based on standard graph (Cember, 1992) of probabilistic death of cancer at dose of 28,8 mSv is 2 x 10-3 or 2 cases per 1000 population per year. It means that there are more than 176 cases per 176224 people (within 0-5 km radius of accident) will die every year. Early Warning System is the first barrier that should be strengthened in purpose of environmental management for maintaining quality of environment on safe and secure utilization of nuclear energy.
According to IAEA's (International Atomic Energy Agency) recommendation, if worse scenario of accident happened, people within radius of 0.5 - 5 km of accident location should be temporary sheltered or evacuated ( 2 days - 1 week) to avoid radiation exposure (IAEA, 2003). While food restriction zone should be applied, within radius 5 - 50 km from the location (IAEA, 2003).
Based on research results and discussion, it can be concluded as follows:
1. Early Warning System is an integrated part of National Nuclear Emergency Preparedness System. So that, it would be working to ensure security and safety of the public and environment if and only if it is supported by strong management and infrastructures, manpower included as emergency response teams to relieve the situation.
2. Reactor power is more sensitive toward probability of nuclear emergency. So, the longer reactor operated in high power, the bigger probability of nuclear emergency would be happened.
3. Primary coolant flow rate is constant during high power operation, so it has smaller probability of nuclear emergency than the power parameter itself. While in accident, the primary coolant flow rate is dropped exceeding safety margin.
4. Effectively and efficiency of Early Warning System are depending upon applied emergency scenario and alertness of the team personnel to reduce accident's risk and impact, to prevent escalation of the accident and to prevent propagation of environmental pollution and damage because of nuclear accident.
Based on constraints and limitations of the research and the discussion, it can be given some suggestions as follows:
1. Because there is no BDBA data available in safety analysis report and other documents, it would be a wise step to include BDBA accident analysis in the documents. So that people are more prepared in early anticipating the accident if it actually happens. This is to be discussed by BATAN and BAPETEN.
2. Effectively and efficiency of early warning system should be judged cautiously and to be done by emergency response exercises regularly, and to involve other institutions and to evaluate it carefully.
3. It needs to be done the study of other parameters to recognize total performance early warning system.
4. It needs to be done model verification and study of branching ratio of radioactivity exposure to the environment and economic loss identification if early warning system does not function properly.
5. There should be socializations of early warning system application and potential danger of nuclear accident to the public. This is to ensure that the people alert and prepared of the actual danger. Socialization can be done by public counseling of nuclear and its safety aspects; dissemination of information via nuclear safety and emergency brochures; and to arrange nuclear emergency exercises with public involvement. These activities have to be done by BATAN, BAPETEN, local governments, BAKORNAS PBP, Police Department, and other institutions.
"
Jakarta: Program Pascasarjana Universitas Indonesia, 2005
T15213
UI - Tesis Membership  Universitas Indonesia Library
cover
"Panas gamma merupakan faktor yang sangat diperlukan untuk analisis keselamatan pada setiap fasilitas eksperimen yang akan dilakukan di teras reaktor nuklir. Panas gamma merupakan sumber panas internal yang harus dihitung dengan tepat, karena berkaitan dengan masalah keselamatan. Nilai panas gamma sangat bergantung pada karakteristik teras reaktor secara keseluruhan, sehingga setiap desain teras baru harus dilengkapi dengan penentuan nilai distribusi panas gammanya. Reaktor Riset Inovatif (RRI) merupakan reaktor riset desain baru yang harus dilengkapi dengan data keselamatannya, termasuk dalam hal ini nilai dan distribusi panas gammanya. Untuk keperluan tersebut, telah dilakukan perhitungan dan analisis distribusi panas gamma teras dan fasilitas iradiasi refletortor RRI dengan menggunakan program Gamset yang telah dimodifikasi dan divalidasi untuk model teras RRI. Diperoleh hasil bahwa di pusat teras reaktor memiliki nilai panas gamma yang cukup tinggi (11,75 W/g), jauh lebih besar dari reaktor RSG-GAS Akan tetapi penempatan semua fasilitas iradiasi di reflektor menunjukkan bahwa desain RRI jauh lebih aman untuk iradiasi dibanding dengan di RSG-GAS, karena memiliki panas gamma di reflektor yang sangat rendah. Disimpulkan bahwa berdasarkan nilai panas gamma di reflektor yang sangat rendah, desain teras reaktor RRI lebih aman untuk penggunaan berbagai jenis iradiasi."
JTRN 16:3 (2014)
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>