Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 16096 dokumen yang sesuai dengan query
cover
Lin, Chin-Jung
"The 0-1 multidimensional knapsack problem (MKP) has been proven it belongs to difficult NP-har combinatorial optimization problems. There are various search algorithms based on population concept to solv these problems. the particle swarm optimization (PSO) technique is adapted in our stucy, which proposes a novel PSO algorithm, namely, the binary PSO based on surrogate information with proportional acceleration coefficients (BPSOSIPAC). the proposed algorithm was tasted on 135 benchmark problems from the OR-Library to validate and demonstrate the efficiency in solving multidimensional knapsack problems. The result were then compared with those in the other nine existing PSO algorithms. The simulation and evaluation result showed that the proposed algorithm, BPSOSIPAC, is superior to the of successful runs, average eror (AE) , mean absolute deviation, mean absolute percentage error, last error, standard deviation, best profit, mean profit, worst profit, AE of the best profit (%), AE of the mean profit deviaton. "
Taylor and Francis, 2016
658 JIPE 33:2 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Andri Priyono
"ABSTRAK
Knapsack Problem (KP) merupakan masalah optimisasi dalam menentukan objek
dari sekumpulan objek yang memiliki nilai dan bobot yang akan ditempatkan ke
dalam media penyimpanan dengan tujuan memaksimumkan nilai barang dengan
syarat kapasitas bobot media penyimpanan terbatas. Dalam tugas akhir ini, akan
dibahas {0-1} Knapsack Problem ({0-1} KP) yang direpresentasikan dalam
bentuk graf berarah. Setelah direpresentasikan dalam bentuk graf berarah,
kemudian dilakukan transformasi pada nilai busur pada graf berarah tersebut dan
dicari lintasan terpendek antar dua node. Untuk mencari lintasan terpendek,
digunakan Algoritma Amoeboid Organism dengan inputnya adalah matriks
adjacency dari graf berarah yang telah ditransformasi nilai busurnya dan matriks
konduktivitas. Output dari algoritma ini adalah menghasilkan matriks
konduktivitas yang elemen-elemennya bernilai mendekati 0 atau 1. Entri yang
bernilai mendekati 1 merepresentasikan lintasan terpendek pada graf. Lintasan
terpendek yang diperoleh akan menjadi solusi yang optimal pada {0-1} KP.

ABSTRACT
Knapsack Problem (KP) is optimization problem to choose object from set of
objects which have profit and weight and the object will be placed in limited
storage with total of profit is maksimum. First, will be explained about
representing {0-1} Knapsack Problem ({0-1} KP)to directed graph. After {0-1}
KP is represented in directed graph, so transforming value of edge on directed
graph and dicari lintasan terpendek antar dua node. To search shortest path, use
Amoeboid Organism Algorithm with adjacency matrices from directed graph and
conductivity matrices as input. Output from this algorithm is produce conductivity
matrices with element which have value approach 0 and . Element which have
value approach 1 represent shortest path on graph. Shortest path on graph is
optimal solution in {0-1} KP."
2016
S70138
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muji Prasetyo Iryanto
"ABSTRAK
Knapsack Problem KP adalah masalah penempatan item barang ke dalam suatu tempat biasa disebut Knapsack yang mempunyai kapasitas tertentu dimana setiap item memiliki berat dan nilai sehingga total berat dari item item yang ditempatkan tidak melebihi kapasitas Knapsack dan nilai yang didapatkan maksimum 0 1 Knapsack Problem 0 1 KP adalah kasus khusus dari KP dimana setiap item hanya tersedia 1 unit sehingga keputusannya adalah untuk memasukkan item tersebut ke dalam Knapsack atau tidak Algoritma Soccer League Competition SLC akan digunakan untuk menyelesaikan 0 1 KP yang ide dasarnya berasal dari kompetisi yang terjadi di liga sepak bola Penyelesaian 0 1 KP menggunakan algoritma SLC ini kemudian akan disimulasikan pada 10 permasalahan 0 1 KP dengan menggunakan perangkat lunak pada komputer Lalu hasilnya akan dibandingkan dengan solusi yang diperoleh dari algoritma NGHS.

ABSTRACT
Knapsack Problem KP is an optimization problem to placed some item into a place called Knapsack that have certain capacity which each item has a weight and a value so that the total weight of the chosen items does not exceed the capacity of knapsack and the total value is as large as possible 0 1 Knapsack Problem 0 1 KP is a case of KP which is only one unit available for each item so that the decision is to put these items to knapsack or not Soccer League Competition algorithm will be used to solving 0 1 KP The basic idea of SLC algorithm is from the competition that happen on a soccer league Then SLC algorithm will be simulated on 10 solved 0 1 KP problem with software on computer to solve 0 1 KP and will be compared with solutions from NGHS.
"
2016
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ubadah
"Traveling Salesman Problem (TSP) adalah masalah mencari jalur terpendek untuk mengunjungi setiap simpul tepat satu kali kecuali simpul awal kunjungan jika diberikan himpunan simpul yang harus dikunjungi. Tiga modifikasi dilakukan pada skripsi ini untuk menyelesaikan masalah TSP dengan menggabungkan metode Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO) dan 3-Opt Algorithm. ACO digunakan untuk mencari solusi TSP, PSO digunakan untuk mencari nilai paremeter terbaik 𝛼 dan 𝛽 yang digunakan pada ACO, dan 3-Opt digunakan untuk mengurangi total jarak tempuh solusi yang didapat dari ACO. Pada modifikasi pertama, 3-Opt digunakan untuk mengurangi total jarak tempuh dari solusi terbaik yang didapatkan setiap iterasi. Pada modifikasi kedua, 3-Opt digunakan untuk mengurangi total jarak tempuh seluruh solusi yang didapatkan pada setiap iterasi. Pada modifikasi ketiga, 3-Opt digunakan untuk mengurangi total jarak tempuh seluruh solusi yang berbeda yang didapatkan pada setiap iterasi.
Hasil modifikasi diuji menggunakan 6 benchmark problems yang diambil dari TSPLIB dengan menghitung besarnya galat relatif terhadap best known solution dan running time percobaan. Setiap masalah diselesaikan dengan 10 kali percobaan, dengan masing-masing percobaan menggunakan 10 agen dan 50 iterasi. Hasil implementasi menunjukkan modifikasi pertama tidak memberikan hasil yang memuaskan, modifikasi kedua memberikan hasil yang memuaskan namun dengan running time yang cukup besar, serta modifikasi ketiga memberikan nilai galat yang tidak jauh berbeda dengan modifikasi kedua namun dengan running time yang jauh lebih kecil.

The Traveling Salesman Problem (TSP) is the problem of finding a shortest tour which visits all the vertices exactly once, except the first vertex, given a set of vertices. This thesis discusses three modification to solve TSP by combining Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO) and 3-Opt Algorithm. ACO is used to find the solution of TSP, PSO is used to find the best value of parameters α and β that are used in ACO, and 3-Opt is used to reduce the total of tour length from the solution obtained by ACO. In the first modification, 3-Opt is used to reduce the total of tour length from the best solution obtained at each iteration. In the second modification, 3-Opt is used to reduce the total of tour length from the entire solutions obtained at each iteration. In the third modification, 3-Opt is used to reduce the total of tour length from different solutions obtained at each iteration.
Results were tested using 6 benchmark problems taken from TSPLIB by calculating the relative error to the best known solution and the running time. Every problem was solved with 10 trials, where each trial uses 10 agents and 50 iterations. The implementation results showed the first modification did not provide satisfactory results, the second modification gave a satisfactory result, but the running time was quite large, and the third modification gave errors that were close to the second one but with smaller running time."
Depok: Universitas Indonesia, 2015
S62553
UI - Skripsi Membership  Universitas Indonesia Library
cover
" PSS (Power system stabilizer) telah digunakan secara luas untuk memperbaiki stabilitas sistem tenaga listrik modern. Dalam makalah ini diusulkan perancangan sistematik PSS dengan Particle Swarm Optimization (PSO) sebagai metode optimasi penalaan parameter PSS. Penalaan parameter PSS dilakukan untuk mendapatkan sistem tenaga listrik yang stabil dan teredam secara optimal. Kriteria optimal yang digunakan dalam proses penalaan parameter adalah indeks performansi Integral of Time multiplied by Absolute Error (ITAE). Performansi dari
PSS ini diujikan pada sistem tenaga listrik mesin tunggal dibawah gangguan kecil, kondisi beban dan parameter tertentu. Hasil analisa nilaieigen dan simulasi menunjukkan bahwa osilasi sistem tenaga listrik dapat teredam secara optimal melalui penalaan PSS berbasis PSO ini. Hasil simulasi juga menunjukkan bahwa performansi dinamik PSS berbasis PSO lebih baik dibandingkan PSS yang ditala secara konvensional.

Abstract
Power system stabilizer (PSS) have been extensively used in modern power system for enhancing stability of the system. This paper presents a new systematic approach for the design of power system
stabilizer using PSO (Particle Swarm Optimization). The proposed approach employs PSO search for optimal setting of PSS parameters. The optimal criteria of the Integral of Time multiplied by Absolute
Error (ITAE) is used to search optimal setting. The performance of the proposed PSS under small disturbances, loading conditions and system parameters is tested. The eigenvalue analysis and simulation
results show the effectiveness of the PSO based PSS to damp out the system oscillations. It is found that the dynamic performance with the PSO based PSS shows improved results, over conventionally tuned
PSS."
[Fakultas Teknik UI, Institut Teknologi Sepuluh Nopember. Fakultas Teknologi Industri], 2007
pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Minton, Steven
Boston: Kluwer, 1988
006.3 MIN l
Buku Teks  Universitas Indonesia Library
cover
cover
Silalahi, Amara Beatrice Hosianna
"Kemiskinan masih menjadi tantangan di Indonesia, bahkan ketika tingkat kemiskinan moneter mengalami penurunan. Indonesia bergulat dengan kesenjangan antarwilayah yang signifikan, terutama pada indikator kemiskinan non-moneter. Oleh karena itu, penting untuk mendalami lanskap kemiskinan non-moneter di Indonesia dan menggali potensi desentralisasi dalam mengatasi permasalahan ini di berbagai daerah.
Penelitian ini bertujuan untuk menguji hubungan desentralisasi fiskal dengan kemiskinan multidimensi yang diukur dengan Angka Kemiskinan Multidimensi Indonesia (AKM) yang dikembangkan oleh Prakarsa. Penulis juga menggunakan data APBD DJPK Kementerian Keuangan dan data karakteristik daerah dari BPS. Dengan mempertimbangkan potensi dampak tingkat kemiskinan di masa lalu dan hubungan reverse causality antara pengeluaran pemerintah dan kemiskinan, penulis menggunakan generalized method of moments (GMM).
Studi ini tidak menemukan bukti kuat adanya korelasi yang signifikan antara belanja kesehatan dan perumahan dengan AKM. Namun terdapat korelasi yang signifikan antara belanja pendidikan dengan AKM. Temuan ini dapat dikaitkan dengan tingkat kesadaran dan upaya strategis terhadap parameter AKM yang tertuang dalam rencana kerja pemerintah daerah (RKPD) dan rencana pembangunan jangka menengah (RPJMD).

Poverty remains a persistent challenge in Indonesia, despite declining monetary poverty rates. Indonesia faces significant interregional disparities, particularly in non- monetary poverty indicators. Therefore, it is crucial to thoroughly understand Indonesia’s non-monetary poverty landscape and explore the potential of decentralization in addressing these issues across different regions.
This study aims to examine the relationship between fiscal decentralization and multidimensional poverty, measured by the Indonesian Multidimensional Poverty Figure (AKM) developed by Prakarsa. The author utilizes APBD data from the DJPK Ministry of Finance and regional characteristics data from BPS. Considering the potential impact of past poverty levels and the reverse causality between government expenditure and poverty, the author employs the generalized method of moments (GMM).
The study finds no strong evidence of a significant correlation between health and housing expenditures and AKM. However, there is a significant correlation between education expenditures and AKM. These findings can be attributed to the awareness and strategic efforts towards AKM parameters as outlined in the regional government work plan (RKPD) and the medium-term development plan (RPJMD).
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Nowadays, the pursuance of sustainability obligates manufacturers to redesign products in order to reduce negative environmental impacts. However, only a few studies have simultaneously considered environmental sustainability and assemblability. To bridge this research gap, this study aimed to develop a redesign method based on modular product architecture. This method manages to support a sustainable product considering its materials, assembly sequence and line balance at initial design phase. This method begins with a current product analysis based on economic and environmental performances (i.e., total cost and CO2 emissions). Additionally, new materials and assembly methods are incorporated into redesigning a more sustainable product without compromising production performance. To ensure assemblability, the line balance of 60% is served as one of the constraints. This study applies the particle swarm optimization algorithm to calculate an optimal module organization along with assembly methods and assembly sequences. An air purifier case study is presented to demonstrate the benefits of the proposed method. As a result, the redesigned product can be more easily maintained during product usage and be recycled at the end of product life."
London: Taylor and Francis, 2016
658 JIPE 33:2 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Pearl, Judea
Sydney: Addison-Wesley Publishing Comp., 1984
001.535 PEA h
Buku Teks SO  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>