Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 35706 dokumen yang sesuai dengan query
cover
Reza Darmakusuma
"Analisis Prediksi Gerakan Tangan menggunakan Sinyal Elektroensefalografi. Berbagai pendekatan teknologi telah dikembangkan untuk membantu mereka yang menderita kelumpuhan dalam melakukan aktivitas kesehariannya secara mandiri. Salah satu teknologi tersebut adalah Brain-Computer Interface (BCI). Sistem BCI menggunakan elektro- ensefalografi (EEG) yang dihasilkan dari aktivitas mental seorang subjek sebagai masukan, dan mengubahnya menjadi perintah. Beberapa percobaan sebelumnya telah menunjukkan kemampuan sistem BCI untuk memprediksi gerakan sebelum gerakan tubuh aktual terjadi. Penelitian tersebut memprediksi gerakan yang akan terjadi dengan membedakan data pada kondisi rest, di mana tidak ada intensi gerakan, dengan kondisi pre-movement, di mana terdapat intensi gerakan sebelum gerakan aktual terjadi. Penelitian ini dilakukan untuk melakukan analisis sistem yang dihasilkan dari pembelajaran, yang kemudian diterapkan pada data dengan interval waktu kontinu, antara 3 detik sebelum gerakan terdeteksi sampai 1 detik setelah gerakan sebenarnya terjadi. Hasil percobaan menunjukkan bahwa sistem dapat membedakan kondisi pre- movement dan kondisi rest dengan menggunakan sinyal EEG pada frekuensi 7-30 Hz di mana letak Mu dan ritme Beta dengan nilai rerata true positive rate (TPR) sebesar 0.64 ± 0.11 dan rerata nilai false positive rate (FPR) sebesar 0.17 ± 0.08. Hasil percobaan juga mampu menunjukkan bahwa penggunaan sinyal EEG yang dekat dengan terjadinya gerakan, membuat sistem dapat mendeteksi intensi gerakan dengan nilai TPR atau tingkat deteksi gerakan semakin tinggi.

Various technological approaches have been developed in order to help those people who are unfortunate enough to be afflicted with different types of paralysis which limit them in performing their daily life activities independently. One of the proposed technologies is the Brain-Computer Interface (BCI). The BCI system uses electroencephalography (EEG) which is generated by the subject?s mental activity as input, and converts it into commands. Some previous experiments have shown the capability of the BCI system to predict the movement intention before the actual movement is onset. Thus research has predicted the movement by discriminating between data in the ?rest? condition, where there is no movement intention, with ?pre-movement? condition, where movement intention is detected before actual movement occurs. This experiment, however, was done to analyze the system for which machine learning was applied to data obtained in a continuous time interval, between 3 seconds before the movement was detected until 1 second after the actual movement was onset. This experiment shows that the system can discriminate the ?pre-movement? condition and ?rest? condition by using the EEG signal in 7-30 Hz where the Mu and Beta rhythm can be discovered with an average True Positive Rate (TPR) value of 0.64 ± 0.11 and an average False Positive Rate (FPR) of 0.17 ± 0.08. This experiment also shows that by using EEG signals obtained nearing the movement onset, the system has higher TPR or a detection rate in predicting the movement intention."
Institut Teknologi Bandung. Department of Electrical Engineering, 2014
pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Ester Fatmawati
"Telah dirancang prototype motor imagery dengan memanfaatkan perintah sinyal otak yang dihasilkan oleh Electroencephalography EEG . Sinyal EEG digunakan untuk memberikan informasi sinyal motorik. Bentuk unik dari sinyal EEG menggambarkan perintah untuk menggerakkan lengan. Pada kondisi lumpuh sekalipun, informasi motorik pada sinyal EEG masih akan ditemukan saat seseorang membayangkan menggerakkan lengannya. Dalam penelitian ini informasi motorik pada sinyal EEG digunakan sebagai umpan balik dengan menggabungkan 4 elektrode input F3, F4, FC5, FC6 . Akuisisi sinyal EEG menggunakan Emotiv EPOC portable. Probabilistic Neural Network PNN berfungsi sebagai pemrosesan sinyal. Fungsi ini digunakan untuk pengenalan sinyal motor imagery membayangkan gerakan lengan tangan . Karakteristik komputasi yang dilakukan oleh PNN secara parallel mampu mempersingkat waktu pemrosesan sinyal. Hasil pengolahan PNN adalah power maksimum sinyal mu, Power maksimum sinyal beta, frekuensi mu dan frekuensi beta. Kombinasi keempat fitur ini memberikan nilai akurasi yang cukup tinggi. Hasil percobaan menunjukkan bahwa akurasi untuk training rata-rata adalah 85,49 - 91,32 sedangkan nilai untuk testing 82,6 - 87,6 . Alat terapi yang digunakan nBETTER Upper Limb Feedback. Alat terapi akan aktif, bila nilai testing sinyal EEG lebih besar dari 80 . Ke depan, prototype motor imagery ini dapat dikembangkan sebagai alat terapi pasien stroke yang mampu mengurangi ketergantungan pada seorang fisioterapis saat proses terapi.

A modeling arms post stroke therapy used command brain signals generated by Electroencephalography EEG has been designed. EEG signals used to provide motorics information. The unique form of signal EEG describe commands to move the limbs. On condition paralyzed, motorics information on the EEG signals will still be found when someone tried to move his limbs. In this research, we aim used the motorics information on the EEG signals as neuro feedback with combine 4 input electrode F3, F4, FC5, FC6 . EEG signal acquisition using the Emotiv EPOC portable. Probabilistic Neural Network PNN function as signal processing. This function was applied to the recognition research of motor imagery EEG signals imagining arms movement . The parallel computing characteristic of PNN not only improved the generation ability for network, but also shorted the operation time. The result of PNN are maximum mu power, maximum beta power, mu frequency and beta frequency that provided value to calculate classification accuracy. The experimental results show that the accuracy for training on average is 85.49 91.32 while the value for testing is 82.6 87.6 . Therapy tool used nBETTER Upper Limb Feedback. The therapeutic tool will be active, when the value of the EEG signal testing is greater than 80 . In the future, this modeling post stroke therapy can be reduced dependency from physiotherapist."
Universitas Indonesia, 2017
T47558
UI - Tesis Membership  Universitas Indonesia Library
cover
Nida Amala Syawalia Adriant
"

Elektroensefalografi (EEG), sebagai metode rekaman neurofisiologis yang telah dimanfaatkan secara luas, terutama dalam penelitian dasar tentang fungsi otak dan pemantauan pasien dengan gangguan neurologis. serta sistem Brain Computer Interface (BCI) untuk menerjemahkan sinyal menjadi perintah atau fungsi tertentu. Dalam perekaman sinyal EEG, terdapat tantangan interferensi dan noise akibat amplitudo sinyal yang sangat kecil (mikrovolt [V]) dan frekuensi rendah. Penelitian ini mengeksplorasi pengembangan elektroda aktif sebagai solusi untuk menguatkan sinyal EEG sehingga dapat meminimalisir noise yang mungkin ada. Elektroda aktif dirancang menggunakan filter aktif Sallen & Key orde 2 dengan respon butterworth menggunakan OPA378 sebagai operational amplifier dengan frekuensi cut-off 0 hingga 100 Hz. Untuk meminimalisir jumlah kabel, diterapkan operasi single-supply sehingga hanya 3 kabel yang diperlukan untuk mengoperasikan elektroda aktif. Prototype elektroda aktif diuji menggunakan EEG simulator NETECH MiniSim 330 dan direkam menggunakan ADS1299 PDK sebagai ADC dan Raspberry Pi 4 Model B untuk menyimpan file rekaman. Hasilnya, elektroda aktif mampu melakukan penguatan sinyal sebesar 22 kali dengan cukup stabil pada rentang frekuensi 20 hingga 100 Hz dengan error sebesar 3.53% dari target penguatan yang diinginkan.


Elektroensefalografi (EEG) is a widely used method for recording neurophysiological signals, primarily for research on brain functions and monitoring patients with neurological disorders. The development of active electrodes is being explored as a solution to improve the quality of EEG signals, which are characterized by very low amplitude (microvolts [μV]) and low frequency. The active electrode is designed using Sallen & Key filter or Butterworth filter with OPA378 as the operational amplifier with a cut-off frequency range of 0 Hz to 100 Hz. To minimize the number of wires, single-supply operation is applied, requiring only three wires to operate the active electrode. The prototype of the active electrode was tested using a NETECH MiniSim 330 EEG simulator and recorded using an ADS1299 PDK as an ADC and a Raspberry Pi 4 Model B to save the recorded file. The results show that active electrodes can provide signal attenuation up to 22 times with sufficient stability in the 20 Hz to 100 Hz frequency range, with an error of 3.35% from the expected

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Bustomi
"ABSTRAK
Skripsi ini akan membahas mengenai analisis daya sinyal electroencephalogram (EEG) pada manusia sebagai subjek yang sedang mengerakkan langan kanan bawah kearah atas dan saat subjek dalam kondisi istirahat (resting) dengan sistem brain computer interface (BCI). Proses perekaman sinyal EEG menggunakan alat yang komersil, EMOTIV EPOC+ dengan 16 channel (2 channel sebagai ground). Data hasil perekaman akan diproses untuk mengekstraksi fitur/ciri khas dari sinyal EEG yang dihasilkan sesuai dengan perlakuan subjek, dengan menggunakan wavelet relative power (WRP), dimana sinyal EEG subjek akan ditransformasikan menggunakan discrete wavelet transform (DWT) dengan tipe motherwavelet daubechies4 (db4), untuk menghitung nilai relative power pada semua rentang frekuensi sinyal EEG (alpha, beta, delta, dan theta). Nilai WRP pada setiap rentang frekuensi tersebut akan unik dan spesifik sesuai dengan gerakan subjek, sehingga akan mencirikan apakah subjek menggerakkan lengan kanan bawah kearah atas atau kondisi resting. Pemrosesan sinyal electroencephalogram (EEG) dilanjutkan dengan menjadikan data WRP tersebut sebagai masukan kesistem klasifikasi. Sistem pengklasifikasian akan menggunakan algoritma support vector machine (SVM), yang akan memberikan kesimpulan pada data sinyal EEG random yang dihasilkan subjek tersebut, apakah termasuk dalam kondisi menggerakkan lengan kanan bawah kearah atas atau dalam keadaan istirahat (resting

ABSTRAK
This thesis will discuss about analysis power spectral of electroencephalogram signal (EEG) in humans as subjects that are moving right arms and when the subject is in state of rest using a brain computer interface (BCI) system. EMOTIV EPOC+ as a commercial device will be used to record EEG signal from the subject with 16 channels (2 channel as ground). Data recording results will be processed to extract its features/characteristics of EEG signals that are generated in accordance with the change of movement from the subject, by using wavelet relative power (WRP). These WRP data calculation can be done by transforming data using the discrete wavelet transform (DWT) with motherwavelet daubechies4 (db4), and calculated the value of its relative power on all frequency range (alpha, beta, delta, and theta). WRP values at each frequency range will be unique and spesific in accordance with the movement of the subject, so that WRP will characterize whether the subject move the right arm towards the top or in resting conditions. Using these WRP data information and the impelementation of support vector machine (SVM) algorithm, the system will provide a conclusion on random EEG signals wheater the subject move its arm or in resting condition. The level of accuracy of the system will be tested by looking at the results of the classification of EEG data by as much as 100 trial."
2016
S63134
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yulia Nur Fitriana
"Rancangan sistem kontrol lengan robot dengan menggunakan sinyal elektromiogram (EMG) telah dibuat dengan elektroda permukaan sebagai transduser. Sinyal EMG diolah dengan sistem pengolahan sinyal dan diakuisisi dengan menggunakan mikrokontroler H8/3069F . Data pengamatan ditampilkan dalam bentuk Graphical User Interface (GUI) yang dibuat dengan bahasa pemrograman Python dan disimpan dalam database Microsoft Access. Kontrol lengan robot dilakukan berdasarkan gerakan fleksi-ekstensi pergelangan tangan. Sinyal EMG dikarakterisasi berdasarkan root mean square (RMS) sehingga sinyal EMG dapat diklasifikasikan. Gerakan fleksi memiliki RMS antara 0.01 - 0.13 V dan gerakan ekstensi memiliki RMS antara 0.69 - 1.19 V. Sinyal EMG yang telah diklasifikasi ini digunakan sebagai input untuk mengontrol servo motor pada lengan robot.

Designing control system of arm robot using electromyiogram (EMG) signal have been made with surface electrode as tranducer. EMG signal is processed by signal conditoning system dan acquired by microcontroller H8/3069F. Recording EMG signal is displayed on Graphical User Interface (GUI) with Python as programming language and stored in Microsoft Access database. Arm robot is controlled by flexion-extension of wrist joint movements. Extract feature EMG signal is determined by root mean square (RMS). RMS for each movements is vary, 0.01 - 0.13 V for flexion and 0.69 - 1.19 V for extension. These classification feature of EMG signal is used to control servo motor of arm robot."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S1920
UI - Skripsi Open  Universitas Indonesia Library
cover
Geri Paksi Dirgantara
"ABSTRACT
Pergerakan suatu anggota tubuh adalah hasil dari usaha kolektif yang dilakukan oleh otak, saraf, dan kegiatan otot. Jika salah satu faktor penentu diatas tidak dapat berfungsi, maka pergerakan tidak dapat dilakukan. Hal itu mungkin menjadi sesuatu yang alamiah bagi mereka yang sejak awal kehilangan fungsi tubuhnya, namun mereka yang kehilangan fungsi tersebut setelah pergerakan menjadi bagian mendasar dari keseharian hidup mereka merupakan hal yang berbeda. Pada skripsi ini akan dibahas penelitian untuk merancang bangun alat akuisisi data sinyal Electromyograph EMG dengan menggunakan elektroda surface Ag-AgCl serta analisis kinerjanya. Sinyal 2-channel surface electromyograph SEMG didapatkan dari bagian ekstremitas atas tubuh yaitu Flexor Carpi Radialis yang kemudian akan difilter dengan serangkaian rancangan biopotential amplifier dan band-pass filter sebelum diproses menggunakan mikrokontroler. Selanjutnya sinyal yang didapat akan digunakan untuk klasifikasi dan spesialisasi pola gerakan tangan. Hasil pengujian menunjukan bahwa rangkaian filter yang dirancang telah menunjukan pola keluaran sinyal EMG dengan jelas. Karena karakteristik sinyal EMG yang berbeda pada setiap orang maka untuk melihat kinerja dari perangkat, pola yang dihasilkan dibandingkan dengan hasil jurnal yang sudah ada. Terlihat bahwa pola yang ditunjukan sudah sangat mirip dengan penelitian yang dilakukan sebelumnya dengan fluktuasi sinyal yang sangat intens ketika kerja selain rileks dilakukan.

ABSTRACT
Limb movement is the result of a collective effort done by the brain, nerves, and muscle activity. If one of the above determinants does not work, the movement can not be performed. It may be natural for those who have lost their bodily functions from the very beginning, but those who lose their function after the movement becomes a fundamental part of their daily lives are different. In this research Electromyograph signal data acquisition EMG by using AgCl surface electrode will be designed. The 2 channel surface electromyograph SEMG signal is obtained from the upper extremity of the body, the Flexor Carpi Radialis which will then be filtered with a series of filter before being processed using a microcontroller. Furthermore, the signal obtained will be used for classification and specialization of hand movement patterns. The test results show that the designed filter circuit has shown EMG signal output pattern clearly. Due to the characteristics of different EMG signals in each person, to see the performance of the device, the resulting pattern is compared with the results pattern of an existing journal. It is seen that the pattern shown similarity to previous research with very intense signal fluctuations when muscle being contracted. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agus Winarta
"Industri Pakaian di Indonesia telah berkembang dengan sangat cepat. Peningkatan penggunaan ecommerce di bidang fashion telah menghasilkan kompetisi yang tinggi antar brand global dan brand local. Oleh karena itu diperlukanlah strategi pemasaran yang penting dan baik untuk menjaga pertumbuhan industri lokal. Penelitian ini bertujuan untuk menggunakan RFM model dan Association Rule Mining (ARM) untuk membantu mengetahui segmentasi konsumen. ARM adalah salah satu Teknik paling popular untuk mengetahui pola dari atribut – atribut yang ada pada database, dan RFM model digunakan untuk mengetahui perilaku konsumen. Setelah data dikumpulkan, dilakukan preprocessing, dan dilakukan analisis RFMnya, kemudian dilakukan k-means clustering. Setelah ditemukan cluster dari konsumen, dilakukan ARM untuk mencari pola dari tipe konsumen, promosi diskon dan promosi ongkos kirim yang mereka pakai. Kemudian disusun profil konsumen berdasarkan pola dan nilai RFM konsumen yang didapatkan.

The apparel and fashion industry of local brands in Indonesia has been growing rapidly. A good and strategic marketing strategy is needed to maintain the industry growth and sustain the local industry. This research aims to build marketing strategy with segmentation. The study utilized the Machine Learning using Association Rules Mining (ARM) and Consumer segmentation of RFM model. The ARM is one of the most popular techniques to learn a pattern or associations of attributes of customers. Consumer segmentation of RFM models was used to understand about consumer’s behaviors. The data was collected from a local fashion brands in e- commerce platforms. After data was collected, the data was preprocessed, and then analyzed using RFM model. After the RFM model concluded, the model was used to associate consumers type, discount and delivery promotion by using ARM to understand about the relations about the promotions and the consumers type. The segmentation is done by clustering with k-means algorithm. After customer segmentation concluded, the marketing strategy is then built with a marketing mix approach"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Veronica Angelina Windy Hapsari
"Globalisasi dan era industri 4.0 telah membawa perkembangan luar biasa di
berbagai bidang, termasuk di bidang ekonomi dan keuangan. Pertumbuhan
ekonomi di abad ke-21 bergantung pada partisipasi masyarakat dalam kegiatan
ekonomi (misalnya trading, commerce, dan investasi). Di Indonesia, salah satu
kegiatan ekonomi yang umum dilakukan adalah berinvestasi di pasar saham karena
banyaknya perusahaan yang dapat dipilih oleh investor untuk berinvestasi. Banyak
orang yang ingin menanamkan modalnya di pasar saham karena tingkat
pengembaliannya yang tinggi, meskipun demikian banyak hal kompleks (noisy time
series yang terus bergerak dan sifatnya yang sulit untuk diprediksi karena cepat
bergerak). Oleh karena itu, tulisan ini akan membahas tentang prediksi harga saham
dengan menggunakan Gauss-Newton Representation Based Algorithm (GNRBA).
Metode yang diusulkan menawarkan algoritma yang lebih efektif, implementasi
yang lebih sederhana, dan kerumitan yang lebih sedikit dibandingkan dengan
metode perhitungan tradisional lainnya. Selain itu, penelitian ini menggabungkan
GNRBA dengan Stratified Shuffle Split sebagai metode validasi datanya (data
splitting method). Dengan hasil akurasi di atas 86%, investor dan calon investor
diharapkan dapat menggunakan metode yang dibahas dalam penelitian ini untuk
membuat keputusan yang tepat dalam berinvestasi.

Globalization and industry 4.0 has brought tremendous development in various
fields, including in economics and finance. Economic growth in the 21st century
relies on the participation of the people in economic activities (e.g. trade and
commerce, investing). In Indonesia, one particularly common economic activity is
to invest in the stock market due to the wide array of companies that investors could
choose to invest in. Many people want to invest their capital in the stock market
due to its high return rate, despite its complex movement (noisy time series which
is constantly moving and its unpredictable nature). Therefore, this paper will
discuss about the prediction of stock prices using the Gauss-Newton Representation
Based Algorithm (GNRBA). The proposed method provides users with a more
effective algorithm, simpler implementation, and less complexity compared to the
11 traditional representation. Additionally, this paper combines the GNRBA with
the Stratified Shuffle Split as its data splitting method. With accuracy above 86%,
investors and potential investors could use the methods discussed in this paper to
make an informed decision in investing.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dhea Fairuz Vibranti
"Saham merupakan instrumen investasi yang menawarkan tingkat keuntungan yang menarik, namun memiliki risiko kerugian yang tinggi. Hal ini disebabkan oleh harga saham yang selalu berfluktuasi dan dipengaruhi oleh faktor-faktor tak menentu. Untuk memperoleh keuntungan seperti yang diharapkan, dibutuhkan prediksi pergerakan harga saham yang akurat. Umumnya, investor menggunakan indikator teknikal dalam mengantisipasi pergerakan harga di masa depan. Pada skripsi ini, sebanyak delapan indikator teknikal digunakan dan diproses ke dalam dua pendekatan. Pendekatan pertama memanfaatkan nilai-nilai indikator teknikal yang bersifat kontinu, sementara pendekatan lainnya memanfaatkan kriteria tertentu yang dimiliki oleh setiap indikator teknikal dalam menggambarkan pergerakan harga saham yang bersifat diskrit. Keduanya kemudian dijadikan data input bagi model prediksi dengan menggunakan metode Support Vector Machines yang mengklasifikasi data harga saham ke dalam dua kelas, yaitu naik dan turun. Hasil prediksi tersebut menunjukkan bahwa performa model prediksi yang menerapkan data input bernilai diskrit melampaui performa model prediksi yang menerapkan data input bernilai kontinu, dengan tingkat akurasi tertinggi yang diperoleh ialah sebesar 94,12.

Stock is an investment instrument that offers an attractive rate of return, yet has a high risk of loss. This due to the nature of stock prices that are always fluctuate and influenced by uncertain factors. To obtain the expected profit, an accurate prediction of stock price movement is required. Generally, investors use technical indicators to anticipate the future price movement. In this undergraduate thesis, a number of eight technical indicators are used and processed into two approaches. The first approach use the values of technical indicators that are continuous, while the other utilizes certain criteria owned by each technical indicator in describing stock price movement which is a discrete type of value. Both approaches are then used as input data for prediction model using the Support Vector Machines method which classifies the stock price data into two classes, i.e. up and down. The prediction results indicate that the performace of prediction models applying discrete valued of input data exceeds the performance of prediction models which apply continuous valued of input data, with the highest accuracy obtained at 94.12."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S68125
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jong, M.T. (Mark T.)
New York: McGraw-Hill, 1982
621.381 5 JON m
Buku Teks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>