Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 92447 dokumen yang sesuai dengan query
cover
"Perubahan resistivitas relatif (respon) setiap sensor dal= sistem sensor penciuman (berupa susunan 6 macam sensor gas dari bahan semikonduktor) terhadap 4 macam aroma kopi (arabica, rabusta, frezee-dried dan spray-dried) yang pemah dilakukan oleh Tetsuo Aisima (1990), membentuk pola yang khas dan sulit diidentifikasi dengan metoda konvensional. Salah satu alternatif metoda identifikasi yang dilakukan adalah dengan membangun sistem jaringan syaraf tiruan propagasibalik (JSTPP). Pola-pola respon tersebut, digunakan untuk melatih dan menguji JSTPP. Hasil identifikasi, menunjukkan bahwa JSTPP mampu mengklasifikasi semua pola yang dilatihkan dan pola-pola kritis dari pola latih (asalkan deviasi standarnya kurang dari 10% dari respon rata-ratanya)."
JURFIN 2:5 (1998)
Artikel Jurnal  Universitas Indonesia Library
cover
Ario Sunar Baskoro
"Dalam penelitian ini telah dikembangkan sistem pengelasan otomatis Tungsten Inert Gas (TIG) dengan menggunakan sensor vision pada pengelasan pipa aluminum. Penelitian ini mempelajari proses pengelasan cerdas pipa paduan aluminum 6063S-T5 dalam posisi tetap dengan obor las (welding torch) bergerak dan menggunakan mesin las AC. Model Jaringan Syaraf Tiruan (neural network) untuk pengendalian kecepatan pengelasan telah dikembangkan agar dapat bekerja secara otomatis. Untuk melatih Jaringan Syaraf Tiruan ini diperlukan cukup banyak data dari penelitian sehingga memerlukan waktu dan dana yang cukup besar. Penelitian ini menawarkan proses baru untuk memperkirakan dan mengendalikan penetrasi pengelasan dalam pengelasan pipa paduan aluminum. Penetrasi las diperkirakan dengan menggunakan metode perkiraan secara hibrida yaitu dengan mengombinasikan simulasi pengelasan dan pengamatan visual menggunakan sensor vision. Dari hasil eksperimen didapatkan bahwa sistem pengendalian cukup efektif untuk mendeteksi kolam las (molten pool) dan menghasilkan pengelasan yang baik.

This research has developed an automatic welding system Tungsten Inert Gas (TIG) using sensor vision on aluminum pipe welding. This research studied the process of intelligent welding of alloy pipe aluminum 6063S-T5 in a fixed position with a welding torch to move and use the AC welding machines. The neural network model to control the speed of the welding has been developed in order to work automatically. The neural network train need quite a lot of data from studies that require time and substansial funds. This research offers a new process for estimating and controlling welding penetration in welding of aluminum alloy pipe. Weld penetration was estimated by using the approximate hybrid method that combines the simulations of welding and visual inspection using sensor vision. The experiment results that the control system is effective enough to detect the molten pool and produce a good weld.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Wahidin Wahab
Depok: Fakultas Teknik Universitas Indonesia, 1998
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
M. Ilham Fauzi
"ABSTRAK
Tesis ini membahas identifikasi sistem kiln semen dengan Jaringan Syaraf Tiruan (JST), yang meliputi penentuan parameter yang dibutuhkan untuk pemodelan sistem tersebut, dan perancangan JST yang digunakan untuk identifikasi tersebut. Dalam tesis ini digunakan struktur Multi-Layer Feedforward Network yang terdiri dari lapisan masukan, lapisan keluaran dan 2 buah lapisan tersembunyi. Data diperoleh dari kiln semen yang sebenarnya yaitu dari Pabrik Tuban-II PT. Semen Gresik (Persero) tbk., kemudian data tersebut digunakan untuk melatih JST. Untuk melakukan identifikasi menggunakan model masukan-keluaran dengan struktur serial-paralel dan pelatihan JST tersebut menggunakan algoritma Error Back Propagation. Hasil identifikasi selanjutnya disimulasikan dan dibandingkan dengan plant yang sebenarnya.

ABSTRACT
This thesis discuss about system identification of cement kiln using Artificial Neural Network (ANN). The process of system identification using ANN requires to define of the input and output parameters, and to decide ANN's structure. In this thesis, the Feedforward Multi-Layer Network is used which contain input layer, output layer and two hidden layers. The data are collected from the real cement kiln at Pabrik Tuban-II PT. Semen Gresik (Persero) tbk, then good data are selected for training the ANN. In this thesis is using Serial-Parallel Structure and training algorithm is using Error Back Propagation method. The result of the identification is then simulated and compared to the real plant.
"
Fakultas Teknik Universitas Indonesia, 2001
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
James
"Skripsi ini dibuat untuk merancang perangkat lunak yang dapat mengidentifikasi plat nomor mobil melalui proses image processing dengan ekstraksi fitur skeletonisasi menggunakan metode pengenalan Neural Network.
Selama ini pencatatan plat nomor setiap mobil yang memasuki area parkir secara umum masih dilakukan secara manual oleh manusia, namun saat ini mulai muncul suatu sistem baru sehingga identifikasi plat nomor dapat dilakukan secara otomatis. Skripsi ini bertujuan untuk menganalisa pengenalan plat nomor mobil dalam bentuk Image dengan mengekstrak fitur/karakter pada plat dengan proses skeletonisasi menggunakan metode pembelajaran Neural Network (jaringan syaraf tiruan) yang selanjutnya akan dihasilkan output dalam bentuk tulisan karakter yang terdapat dalam plat nomor tersebut. Proses pengenalan ini dilakukan dengan memasukkan citra/image ke dalam pemrogaman MatLabTM dan proses ini dilakukan dalam 2 tahap, yaitu: pembentukan basis data untuk training serta proses recognition/identifikasi.
Pada proses pembuatan basis data, gambar akan dibagi-bagi per karakter terlebih dahulu agar lebih memudahkan proses. Setiap karakter tersebut kemudian diekstrak dengan proses skeletonisasi sehingga dihasilkan skeleton/kerangka dari setiap karakter tersebut. Selanjutnya dilakukan proses training terhadap jaringan syaraf tiruan dengan memasukkan nilai-nilai piksel skeleton yang dihasilkan dari proses skeletonisasi untuk mendapatkan nilai bobot yang tepat. Nilai bobot ini kemudian akan disimpan untuk dapat digunakan pada proses selanjutnya yaitu proses recognition plat nomor. Proses recognition plat nomor yang dilakukan menggunakan metode pembelajaran ini mencapai tingkat akurasi sebesar 80%.

This final assignment is made to design a program that could be used to identify cars’ licensed plates through image processing with skeletonization feature extraction using Neural Network recognition method.
Up to these days, licensed plate identification to every car entering the parking area is still commonly run by humanbeing, but nowadays there comes a new system that enables the identification to be run automatically. The aim of this final assignment is to analyse this automatic process in the image format by extracting features/characters using skeletonization and also applying Neural Network learning method to produce output consisting of the characters as mentioned on the plate. This identification is run by inserting an image into the MatLabTM program which is run in 2 stages comprises the making of training database and the recognition/identification itself.
In making the database, the image is divided into characters to make the next process easier. Each of these characters is then extracted with skeletonization to produce the skeleton and then continued by training the Neural Network by inserting the values of the skeletons in order to produce the right weights. The weights themselves are furthermore saved to be used in the identification/recognition. The recognition using Neural Network run in this final assignment yields the percentage of accuracy up to 80%."
2008
S40426
UI - Skripsi Open  Universitas Indonesia Library
cover
Benyamin Kusumoputro
"Makalah ini membahas pengembangan Sistem Penciuman Elektronik menggunakan 16 buah sensor kuarsa terlapis membran sensitif. Penulis telah mengembangkan Sistem Penciuman Elektronik dengan jumlah sensor sebanyak 4 buah, akan tetapi sistem ini hanya mampu membuat klasifikasi aroma campuran dengan tingkat pengenalan dibawah 40%. Pengembangan sistem dilakukan dengan meningkatkan jumlah sensor untuk memperbesar dimensi ruang pengamatan dan peningkatan frekuensi dasar sensor untuk mendapatkan akurasi yang lebih tinggi.
Hasil penelitian menunjukkan bahwa sistem 16 sensor mempunyai kapabilitas yang tinggi untuk klasifikasi aroma campuran. Tingkat pengenalan sistem dengan 16 sensor untuk aroma campuran dengan 6 tingkat konsentrasi alkohol berkisar 89.9%, bila diproses secara terpisah, sedangkan apabila dilaksanakan secara ?batch? akan menghasilkan tingkat pengenalan sekitar 82.4%.

An artificial odor recognition system is developed for discriminating odors. This artificial system consisted of 16 quartz resonator crystals as the sensor array, a frequency modulator and a frequency counter for each sensor that are connected directly to a microcomputer. We have already shown that the artificial odor recognition system with 4 sensors is high enough to discriminate simple odor correctly, however, when it was used to discriminate compound odors, the recognition capability of this system is dropped significantly to be about 40%.
Results of experiments show that the developed artificial system with 16 sensors could discriminate compound aroma based on 6 gradient of alcohol concentrations with high recognition rate of 89.9% for non batch processing system, and 82.4% for batch processing of the classes of odors."
Depok: Lembaga Penelitian Universitas Indonesia, 2002
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Veronica
Depok: Fakultas Teknik Universitas Indonesia, 1999
S39004
UI - Skripsi Membership  Universitas Indonesia Library
cover
Athasya Kandhiya
"Kehadiran aroma telah menjadi bagian dari keseharian manusia. Namun, belum banyak manusia yang memaknai kehadiran aroma dalam ruang. Hal ini diakibatkan karena wujudnya yang tidak kasat mata dan sifatnya yang perseptif. Aroma dapat dihadirkan secara sengaja dan tidak disengaja dengan strategi separation, deodorisation, scenting dan masking. Aroma memiliki peran dalam menentukan perilaku manusia seperti pikiran dan gerakan. Pull-in, push-out, dan netral, adalah tiga gerakan dari respon manusia terhadap kehadiran aroma dalam ruang. Studi pada skripsi ini dilakukan sebagai upaya untuk mengetahui seberapa jauh indera penciuman berperan dalam mengalami ruang urban. Pengamatan yang dilakukan pada akhirnya menunjukkan bahwa adanya kaitan antara strategi kehadiran aroma, respon gerak dari strategi tersebut, yang kemudian akan dikaitkan dengan teori pembentukan wilayah secara acak.

The presence of aroma has becoming a part of human daily life. However, there are still many people who have not interpreted the presence of aroma in space. This is due to its invisible form and perceptive characteristic. Aroma can be presented intentionally and unintentionally with the separation, deodorisation, scenting and masking strategies. Aroma has a role in determining human behavior such as thoughts and movements. Pull-in, push-out, and neutral, are three movements of human response toward the presence of aroma in space. The study in this thesis was conducted in an effort to find out how far the sense of smell plays a role in experiencing urban space. The observations showed that there was a link between the strategy of the presence of aroma, the movement responses due to the strategy, which would then be linked to the theory of random territorial walk."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Radityo Ardi Nugroho
"Fish schooling yaitu pergerakan sekelompok ikan tertentu dengan pola, arah (polarisasi), irama dan struktur yang sama untuk setiap individu serta bersifat unik untuk setiap ikan. Fish shooling dapat dijadikan dasar untuk pembuatan sistem identifikasi ikan dengan dengan menggunakan metode jaringan syaraf tiruan. Proses ini dilakukan dengan menerapkan Pengolahan citra pada citra tampilan echogram fish finder yang didapat dari database hasil observasi Balai Penelitian Departemen Kelautan dan Perikanan di laut Jawa pada bulan Desember 2005. Citra fish schooling dari fish finder tersebut diubah menjadi matriks melalui proses sampling dan graylevel quantization, kemudian dileveling pada range nilai tertentu. Citra hasil leveling tersebut akan diambil beberapa potongan bagiannya sebagai sampel untuk dicari nilai parameter karakteristiknya, yaitu nilai rata-rata dari matriks sampel tersebut. Nilai rata-rata tersebut selanjutnya akan dijadikan input bagi proses training jaringan syaraf tiruan untuk membuat sistem identifikasi jenis ikan. pola rata-rata matriks sampel yang digunakan pada proses training tersebut menjadi dasar proses identifikasi jenis ikan oleh jaringan syaraf tiruan. Sistem ini mampu mengenali jenis ikan dengan tingkat akurasi sebesar 88%."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S40246
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>