Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 97057 dokumen yang sesuai dengan query
cover
Ahmad Triaji
"Teknologi Body-Centric Wireless Communication dalam beberapa tahun terakhir ini telah menarik perhatian dunia. Tidak hanya dari bidang kesehatan yang memanfaatkan teknologi ini, di bidang olahragapun sudah ada perusahaan besar yang menggunakan teknologi ini. Body-Centric Wireless Communication ini terbagi menjadi 3 bagian yaitu in-body, on-body dan off-body communication. Pada sistem komunikasi ini, kinerja sistem dipengaruhi oleh interaksi gelombang elektromagnetik dengan tubuh. Oleh karena itu, sangatlah penting untuk mengetahui pengaruh tubuh terhadap kinerja antena, karena pada setiap bagian tubuh memiliki karakteristik listrik yang berbeda. Pemodelan karakteristik tubuh biasanya diperlukan untuk mendapatkan hasil kinerja antena yang akurat.
Pada penelitian ini, dirancang antena tag dengan bentuk P-IFA yang dicatu dengan teknik coplanar waveguide (CPW) untuk komunikasi off/on-body pada frekuensi 2,45 GHz. Antena kemudian ditempel pada tubuh manusia atau diletakkan di dekat tubuh pada sekitar jarak 3mm. Antena yang dirancang memiliki ukuran yang kecil agar dapat diinstalasi di dekat tubuh manusia dengan mudah.
Hasil simulasi antena di kondisi udara bebas, antena memiliki frekuensi resonansi pada 2,63 GHz dengan nilai S11 -20,75 dB, bandwidth 169 MHz dan gain 1,22 dB. Ketika antena diletakkan dekat tubuh manusia atau pada phantom 3 lapis frekuensi bergeser ke 2,45 GHz dengan nilai S11 -17,05 dB dengan bandwidth 245,8 MHz. Selanjutnya kondisi antena saat diletakkan dengan phantom ekivalen otot memiliki nilai S11 pada frekuensi 2,45 GHz yaitu sebesar -17,60 dB dengan bandwidth 217 MHz dan gain sebesar -7,41 dB.
Pada pengukuran, nilai S11 saat kondisi antena di udara bebas sebesar -34,87 dB pada frekuensi 2,63 GHz dengan bandwidth 137 MHz dan gain 1,74 dB. Saat antena diletakkan dekat dengan tubuh, frekuensi bergeser ke 2,45 GHz dengan nilai S11 -16,78 dB dan bandwidth sebesar 174 MHz. Setelah itu pengukuran dilakukan pada kondisi antena diletakkan pada phantom ekivalen otot. Hasil pengukuran S11 pada frekuensi 2,45 GHz ialah sebesar -18,29 dB dengan bandwidth 169 MHz dan gain -9,06 dB. Dengan demikian, antena yang dirancang dapat bekerja dengan baik pada frekuensi 2,45 GHz.

The body centric wireless communication technology has in these few years attracted the world's attention. Not only in the medical field it's uses can be , it extends it's reach even towards giant sport companies. Body centric wireless communication is comprised from 3 categories, of which are the in body, on body and off body communication. In this kind of communication system, the performance of the system will be affected by the interactions between the body and electromagnetic wave. Hence, its necessary to understand the effect of body proximity towards antennas performance, as every body parts have different electrical characteristics. As a result, making a simple model of human's body might be necessary to achieve excellent performance from the antenna.
In this research, a tag antenna is being design with a printed inverted f shape, which powered by the coplanar waveguide (CPW) for on/off body communications on the ISM band 2.45 GHz. The tag antenna will then be attached to a human body, as close as 3mm from the skin. The smaller shape is more desired, as it will be easier to attach on human body.
The simulation result in freespace shows that this antenna's resonant frequency is 2.63 GHz with the S11 value as low as -20.75 dB, while the bandwidth is 169 MHz and gain is 1.22 dB. When the antenna is within the proximity of human body or a 3 layered phantom in this case, the frequency will shifts to 2.45 GHz along with the S11 of -17.05 dB. Due to the proximity of the phantom, the bandwidth will be 245.8 MHz wide. Also following, a condition where the antena is attached in a muscle equivalent phantom which resulting in -17.60 dB of S11 value at the frequency of 2.45 GHz with the bandwidth of 217 MHz and -7.41 dB gain.
In measurement, the S11 in freespace is -34.87 dB at the frequency of 2.63 GHz while the bandwidth and gain shows 137 MHz, and 1.74 dB respectively. Then it is brought to the proximity of a human body which resulting in the shifts of resonant frequency to 2.45 GHz, S11 to -16.78 dB and bandwidth tp 174 MHz. As part of the progress, the antena is attached on a muscle equivalent phantom. The measurements shows that S11 is -18.29 dB at the frequency of 2.45 GHz, while bandwidth and gain are in the value of 169 MHz and -9.06 dB respectively. In conclusion, the antenna designed can work excellently at the frequency of 2.45 GHz.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S62166
UI - Skripsi Membership  Universitas Indonesia Library
cover
Willy Yuswardi
"ABSTRAK
Antena mikrostrip merupakan salah satu alternatif antena dalam komunikasi wireless. Hal ini dikarenakan antena mikrostrip memiliki massa yang ringan dan bisa menyesuaikan dengan bentuk perangkat komunikasi. Pada skripsi ini, dibahas teknik untuk meminiaturisasi yaitu dengan metamaterial CRLH. Antena yang dirancang bekerja pada frekuensi 3.3 ? 3.4 GHz. Antena dirancang dan disimulasikan dengan menggunakan software CST Microwave Studio 2011. Dari hasil simulasi, didapat bandwidth 470 MHz dengan VSWR ≤ 2 pada frekuensi 3.3 GHz. Sedangkan hasil pengukuran, frekuensi kerja bergeser menjadi 3.26 namun masih dalam range frekuensi 3.3 ? 3.4 GHz. Bandwidth yang diperoleh 250 MHz dengan VSWR ≤ 2. Dengan teknik CRLH ini bisa mereduksi dimensi antena sebesar 61.11%

ABSTRACT
Microstrip antenna has become one of the alternative antenna design in wireless technology. This is mainly because its characteristics which are light weight and easily adjusted in most of communication devides. This final project propose a miniaturization technique by using CRLH metamaterial element. The antenna design work at frequency 3.3 ? 3.4 GHz and simulated using CST Microwave Studio. The simulation results show a relatively wide bandwidth of 470 MHz with VSWR ≤ 2 at 3.3 GHz, while the measurement has a frequency shift to 3.26 GHz, but still in the 3.3 ? 3.4 GHz frequency range. And the antenna bandwidth is also become narrower to 250 MHz with VSWR ≤ 2. So, with this proposed design, the antenna dimension can be effectively reduced to 61.11%."
Fakultas Teknik Universitas Indonesia, 2011
S1692
UI - Skripsi Open  Universitas Indonesia Library
cover
Taufal Hidayat
"Kebutuhan akan antenna yang bersifat murah, ringan dan low profile namun dapat menghasilkan performansi berupa Gain yang besar dan Half Power Beamwidth (HPBW) yang kecil semakin tinggi. Untuk mencapai spesifikasi tersebut salah satu metode yang dapat dilakukan adalah dengan merancang antena mikrostrip array menggunakan teknik pencatuan berupa aperture coupled dengan slot berbentuk jam pasir. Dengan jenis antena ini berhasil diperoleh antena array yang berkerja pada frekeuensi 2.85 GHz- 2.9 GHz dengan gain array 8 element sebesar 13 dB serta dengan HPBW sebesar 110 .Dengan meningkatkan jumlah array, maka Gain yang diperoleh dapat lebih tinggi serta dengan HPBW yang lebih kecil.

Requirement for low cost, light and low profile antenna but with high gain and very small half power beam width (HPBW) is increasing nowadays. One method to achieve these specification is using microstrip array design using aperture coupled feeding technique with hour glass slot. With this method, an array antenna with eight element has been designed. This antenna works at band frequency 2.85 GHz -2.9 GHz with gain about 13 dB and HPBW about 110. By increasing the number of array element, the gain can be higher with smaller HPBW."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43325
UI - Skripsi Open  Universitas Indonesia Library
cover
Irfandella Pratama
"Kebutuhan masyarakat akan mobilitas yang tinggi pada zaman modern saat ini mendorong diciptakannya alat navigasi GPS Global Positioning System Agar dapat menunjang sistem penerimaan GPS yang baik dan akurat diperlukan antena penerima dengan spesifikasi yang memadai Antena GPS yang banyak digunakan bekerja pada frekuensi L1 GPS yaitu 1 575 GHz dengan parameter gain 2dBi axial ratio 3dB dan polarisasi melingkar ke kanan right handed circular polarization RHCP Untuk mencapai spesifikasi yang diharapkan pada skripsi ini dirancang sebuah antena mikrostrip patch segiempat catu tunggal dengan penambahan lima slot persegi panjang untuk mendapatkan polarisasi melingkar Berdasarkan hasil simulasi dan pengukuran diperoleh antena dengan polarisasi melingkar yang memiliki frekuensi resonansi di 1 575 GHz dengan gain 3 dBi dan axial ratio 1 52 dB.

Along with the community needs for high mobility in current modern era allowing to develop navigation systems like GPS Global Positioning System that presently widely used for supporting daily activities In order to accurately support the GPS reception system the received antenna is required to be sufficiently met the existing specifications Most of the GPS antennas work at the frequency of L1 band that is 1 575 GHz with the gain more than 2 dBi the axial ratio less than 3dB and have the right handed circular polarization RHCP In order to achieve the aforementioned specification in this thesis a single feed square microstrip patch antenna with five rectangular slots on the patch is designed for generating a circular polarization According to the simulated and measured results the antena operates well at the resonant frequency 1 575 GHz with the gain is approximately 3 dBi and the axial ratio by 1 52 dB.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46117
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hartuti Mistialustina
"Dimasa sekarang sistem komunikasi membutuhkan antena dengan versatilitas yang tinggi. Kebutuhan akan antena yang dapat beroperasi pada frekuensi yang berbeda atau dapat dikonfigurasi ulang adalah suatu hal yang bermanfaat karena perubehan sistem mungkin terjadi. Teknologi antena mikrosttip dengan frekuensi ganda berkembang pesat. Salah satu metodenya yang populer adalah Miscellaneousloading diuji frequency. Pada tekuik ini frekuensi ganda dihasilkan dengan menambahkan beban, diantamnya adalah beban stub. Penelitian yang dilakukan oleh Davidson. S.E dan Richards, W.F memperoleh hasil bahwa perubahan panjang studi dapat menala basil frekuensi resonansi. Namun pada penelitian tersebut penalaan hanya dilakukan peda saat simulasi untuk memperoleh frekuensi yang diinginkan, setelah pabrikasi penalaan tidak dilakukan lagi. Pada kundisi lain kemampuan penalaan pada suatu antena memberikan kesempatan untuk melaknkan pengembangan dalam hal fungsi dan kernampuan dari teknologi komunikasi frekuensi tinggi. Pada skripsi ini telah dHakukan rancang bangun antena segiempat frekuensi ganda ditala dengan menggunakan beban stub yang berperan sebagai resonator dan juga penala berupa saluran mikrostrip yang terbuat dari lempengan tembaga yang dapat diubah-ubah posisinya. Penalaan dapat dilakukan hingga tahap pabrikasi. Digunakan lima variasi ukuran beban dengan panjang 0,5/.d dan lebar masing-masing 12 mm, 10 mm, 8 mm, 6 mm, dan 4 mm. Pencatuan yang digunakan adalah dengan menggunakan saiuran mikrostrip dengan inset Antena rancangan pada awalnya merupakan suatu desain antena yang bekerja pada frekuensi sekitar 2,4 GHz, Setelah diberi beban dari hasil pengukuran diperoleh bahwa ukuran beban yang optimal dalam menghasilkan frekuensi resonansi ganda ditala adalah 0,5hd x 4 mm. Beban ini menghasilkan antena dengan daerah frekuensi operasi 2.41 GHz sampai dengan 2,66 GHz untuk frekuensi resonansi pertama dan 1,22 GHz sampai dengan l,94 GHz untuk frekuensi resonansi kedua. Gain antena hasil rancangan adalah 4,49 dE untuk frekuensi resonansi 2,37 GHz dan 4.48 dB untuk frekuensi resonansi 1,55 GHz dan 2,48 GHz."
Depok: Fakultas Teknik Universitas Indonesia, 2004
S39994
UI - Skripsi Membership  Universitas Indonesia Library
cover
Subhan
"Pada skripsi ini telah dirancang antena mikrostrip p\anar array segiempat 16 elemen dengan teknik pencatuan direct. Antena ini memiliki frekuensi kerja 1.7 GHz. Antena bentuk array ini terdiri dari 4 sub-array yang masing-masing sub-array terdiri dari 4 elemen.
Karakteristik yang diamati pada skripsi ini adalah bandwidth, Return Loss/VSWR, dan gain. Perancangan antena menggunakan simulasi dengan soiiware microwave office 2002 v5.00 dengan simulasi pada PCAAD 3.0 menggunakan metode cavity.
Dari hasil simulasi dan pengukuran diperoleh bahwa antena bentuk planar array segiempat ini memiliki bandwidth sebesar 19.14 MHz dengan impedansi karakteristik sebesar 36.58 - j 17.95 dan gain yang didapatkan sebesar 16.89 dB, naiuk 9.00 dB dari antena planar array 4 elemen dengan gainnya 7.89 dB."
Depok: Fakultas Teknik Universitas Indonesia, 2004
S40170
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gindy Nuansa
"ABSTRAK
Mengintegrasikan transceiver seluruhnya dalam sebuah chip tunggal merupakan visi masa depan dari sistem nirkabel. Namun demikian, antena dapat dikatakan komponen berukuran terbesar pada sistem ini, sehingga miniaturisasi antena adalah proses yang diperlukan untuk memperoleh rancangan yang optimal. Dan metode yang dipilih untuk miniaturisasi antena adalah dengan pemanfaatan elemen metamaterial Complementary Split-Ring Resonator (CSRR) permitivitas negatif, yang dicetak pada bidang ground antena mikrostrip yang diaplikasikan pada frekuensi kerja 2,6 ? 2,7 GHz. Hasil simulasi menunjukkan ukuran antena dapat direduksi sampai 32% dengan bandwidth (-10dB) sebesar 140 MHz (2,58 ? 2,72 GHz) dan return loss 32,4dB di frekuensi 2,646 GHz. Sedangkan hasil pengukuran mengalami penurunan lebar bandwidth (90MHz) namun masih berada pada frekuensi kerja yang ditentukan. Ini menunjukkan bahwa penempatan elemen metamaterial CSRR pada bidang ground antena mikrostrip dapat memperkecil dimensi antena.

ABSTRACT
Integrating a transceiver entirely in a single chip is the future vision in wireless system. However, antenna is the largest component in this system, so it makes antenna miniaturization an important thing to do to achieve the optimal design. The chosen method for antenna miniaturization is by using negative permittivity Complementary Split-Ring Resonator (CSRR) metamaterial structure, printed on a ground plane at working frequency 2.6 ? 2.7 GHz. From the simulation, the final design has successfully reduce 32% of the microstrip dimension, which has 140 MHz of bandwidth (-10dB) centered at 2.646 GHz with a return loss of 32.4dB. From the measurement, the antenna has narrower bandwidth (90 MHz), but still inside the working frequency of antenna. This proves that CSRR metamaterial structure placed on the ground plane can make the antenna miniaturization possible."
Fakultas Teknik Universitas Indonesia, 2011
S1673
UI - Skripsi Open  Universitas Indonesia Library
cover
Nasihin
Depok: Fakultas Teknik Universitas Indonesia, 1991
S38029
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nugroho Adi Saputro
"Saat ini, antena mikrostrip telah mendapatkan perhatian yang sangat besar dalam desain antena untuk sistem komunikasi nirkabel. Hal ini dikarenakan bentuknya yang kompak, kecil, ringan, serta mudah diintegrasikan dengan devais yang lain. Oleh karena itu, dalam skripsi ini dirancang antena mikrostrip dengan penambahan struktur Left-Handed Metamaterial (LHM) untuk tujuan miniaturisasi dan peningkatan gain. Frekuensi kerja antena dalam perancangan ini adalah 2,35 GHz dengan bandwidth 100 MHz. Finite Integration Technique (FIT) digunakan untuk melakukan analisis numeris terhadap desain antena.
Hasil simulasi menunjukkan bahwa antena single elemen bekerja pada frekuensi 2,30 - 2,39 GHz dengan bandwidth 90 MHz (3,8 %), return loss -27,44 dB pada frekuensi tengah, dan gain 4,51 dBi. Sedangkan untuk antena array dua elemen bekerja pada frekuensi 2,29 - 2,42 GHz dengan bandwidth 128 MHz (5,4 %), return loss -28,98 dB pada frekuensi tengah, dan gain 8,2 dBi. Kemudian, dilakukan validasi antena dengan pengukuran di ruang anechoic chamber.
Hasil pengukuran untuk single elemen menunjukkan bahwa antena bekerja pada frekuensi 2,26 - 2,38 GHz dengan bandwidth 114 MHz (4,89 %), return loss - 21,53 dB pada frekuensi tengah, dan gain 4,62 dBi. Sedangkan untuk antena array dua elemen, antena bekerja pada frekuensi 2,26 - 2,41 GHz dengan bandwidth 146 MHz (6,21 %), return loss -25,92 dB, dan gain 8,97 dBi. Dengan menggunakan struktur LHM, dimensi antena dapat dikurangi hingga 51 % untuk single elemen dan 39 % untuk array dua elemen. Bahkan untuk antena array dua elemen, gain antena dapat ditingkatkan hingga 8,97 dBi.

Currently, the study of microstrip antenna has been great interest in most of antenna design for wireless communication due to its characteristics, such as light weight, compact, small, and easy to be integrated with other devices. This research will investigate a microstrip antenna which is constructed of Left-Handed Metamaterial (LHM) structure aiming at miniaturization and gain enhancement as well. In this research, a single element and a two element array antennas are proposed in order to have the resonant frequency at 2.35 GHz with the bandwidth 100 MHz. The antennas are numerically analyzed by using the Finite Integration Technique (FIT).
The simulation results show that the antenna works at 2.30 - 2.39 GHz with the bandwidth 90 MHz (3.8 %), return loss -27.44 dB at the center frequency and the gain 4.51 dBi for a single element. As for two element array antenna, the frequency operation is 2.29 - 2.42 GHz with the bandwidth 128 MHz (5.4 %), return loss -28.98 dB at the center frequency and the gain 8.2 dBi. The antennas are validated by the measurement that is conducted in an anechoic chamber.
The results show that the antenna works at frequency 2.26 - 2.38 GHz with the bandwidth 114 MHz (4.89 %), return loss -21.53 dB at the center frequency and the gain 4.62 dBi for single element. In addition, as for two element array antenna, it works at 2.26 - 2.41 GHz with the bandwidth 146 MHz (6.21 %), return loss -25.92 dB and the gain 8.97 dBi. Therefore, by using a LHM structure, the antenna dimension can be effectively reduced up to 51% and 39 % for single element and two array element, respectively. Moreover, the gain of two element array can be increased up to 8.97 dBi.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44694
UI - Skripsi Membership  Universitas Indonesia Library
cover
Trimo Sugeng Prihatin
"ABSTRAK
MICS(Medical Implant Communications System) adalah salah satu teknologi yang sedang berkembang dalam bidang kesehatan. Dimana Implant Devices dalam hal ini adalah antena, dimasukan kedalam tubuh manusia diantara lapisan kulit dan lemak. Salah satu aplikasi nya yaitu untuk memonitoring kondisi pasien seperti : memonitor tekanan darah, temperatur, serta menonitor posisi pasien/hewan yang hilang. Sistem kerja dari antena implan adalah antena akan mengirimkan sinyal informasi yang akan di tangkap oleh Penerima RF yang berada disekitar nya (External RF Receiver). Antena mikrostrip pada aplikasi MICS bekerja pada rentang frekuensi yang rendah yaitu 402-405 MHz, besarnya frekuensi kerja akan mempengaruhi ukuran fisik dari antena. Semakin besar frekuensi kerjanya, semakin kecil bentuk fisik dari antena dan sebaliknya. Frekuensi kerja yang rendah akan menghasilkan ukuran panjang gelombang yang besar, sehingga bentuk fisiknya juga besar sehingga di perlukan teknik miniaturisasi. Antena implan yang dirancang disimulasikan dengan menggunakan perangkat lunak CST berbasis Finite Integration Technique (FIT) dan bekerja pada frekuensi 403 MHz, dengan menggunakan teknik miniaturisasi slot dan shorting pin yaitu menghubung singkatkan patch dan ground pada ujung antena nya. Antena akan ditanamkan pada model lengan bagian atas

ABSTRACT
MICS (Medical Implant Communication System) is one of the developed technologies which is used in medical applications. Antenna is one of implant devices which is implanted inside human body between skin and fat layer. Implantable devices are becoming widely researched for different field of applications, both for humans and animals. Some examples of applications are: monitoring blood pressure, temperature, tracking dependent people or lost pets. Antenna implant is transferring diagnostic information to external RF receiver. The allocation frequencies regarding on ITU for MICS application is 402 MHz until 405 MHz. The low frequencies which is used, the bigger dimension of antenna that we get and vice versa. The model of antenna is Microstrip plannar with slot and shorting pin miniaturization techniques. Antenna design was simulated using CST software with Finite Integration Technique (FIT) base.."
Fakultas Teknik Universitas Indonesia, 2014
S57464
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>