Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 173231 dokumen yang sesuai dengan query
cover
Arvi Perwira
"Kesuksesan suatu lapangan geotermal sangat ditentukan dari kegiatan eksplorasi untuk menentukan model konseptual geotermal, sehingga dapat diketahui lokasi sumur pemboran yang tepat. Studi pendahuluan dan pemboran pada tahap eksplorasi di lapangan panasbumi “X” telah dilakukan oleh PT. PLN Geothermal. Sumur WE-1 dibor pada tahun 2010-2011 sampai kedalaman 932.67 m namun temperatur stabil sumur sampai saat ini belum diketahui secara pasti. Permasalahan tersebut kemungkinan dikarenakan suhu dibawah permukaan yang telah "mendingin" atau tidak ada permeabilitas, dimana permeabilitas berhubungan dengan struktur geologi. Oleh karena itu penelitian ini dilakukan untuk memastikan keberadaan struktur bawah-permukaan dan zona reservoir dengan menggunakan teknologi remote sensing dan data magnetotellurik.
Dalam penelitian ini, dilakukan penarikan kelurusan berdasarkan remote sensing untuk mengetahui struktur geologi permukaan, sedangkan pencitraan struktur di bawah-permukaan didapatkan melalui analisis pola splitting kurva, serta dengan melihat hasil inversi 3-dimensi magnetotellurik, daerah reservoir diketahui dari batas Base of Conductor. Hasil analisis geokimia digunakan untuk menentukan perkiraan temperatur reservoir, sehingga dapat membantu dalam pembuatan model konseptual dan deliniasi daerah prospek. Konseptual model daerah penelitian menggambarkan sumber panas berasal dari Gunung Eriwakang yang menjadi zona upflow yang dikontrol oleh sesar Banda dan Sesar Banda- Hatuasa. Direkomendasikan 1 sumur eksplorasi sebagai rekomendasi awal pemboran yang ditempatkan diantara sesar Banda dan sesar Banda-Hatuasa yang kemungkinan menjadi prospek permeabilitas.

The success of a geothermal field is determined by exploration activities, to establish the geothermal conceptual model. Therefore, the exact location of drilling wells could be provided. Preliminary survey and drilling in the exploration stage at the geothermal field “X” had been done by PT. PLN Geothermal. WE-1 well was drilled in 2010-2011 to 932.67 m of depth. Unfortunately, the stable well’s temperature has not confirmed for certain until now. The issue is likely due to the subsurface temperature has been cooled down or no permeability, the permeability most likely associated with the structural geology. Therefore, this study was conducted to confirm the presence of subsurface structures and reservoir zone using remote sensing technology and magnetotelluric data.
In this study, the lineament was drawn based on remote sensing data to determine the surface geological structure. While the image of the subsurface structure is obtained by analyzing the pattern of the splitting curve, as well as to see the results of the 3-dimensional magnetotelluric inversion, the reservoir was interpreted by the boundary of BOC (Base of Conductor). Geochemical analysis results are used to determine the approximate temperature of the reservoir, to make the conceptual model and the delineation of the prospect area. The conceptual model of the study area illustrates the heat sources comes from Mt. Eriwakang, as the upflow zone which controlled by Banda fault and Banda-Hatuasa fault. As the initial drilling, one well is recommended to be drilled which is locate between Banda fault and Banda-Hatuasa fault. It is likely to have the prospect of permeability.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T45328
UI - Tesis Membership  Universitas Indonesia Library
cover
Indra Kurniawan
"Lapangan geotermal “x” merupakan salah satu lapangan geotermal di Indonesia yang sedang dalam proses pengembangan. Tahap eksplorasi merupakan tahapan yang paling mempunyai resiko yang besar. Untuk mengurangi resiko tersebut, diperlukan data – data yang saling terintegrasi untuk menggambarkan sistem geotermal bawah permukaan secara representatif. Data magnetotellurik dan gravitasi merupakan data utama dalam pembuatan model konseptual sistem geotermal lapangan “x”. Selain itu juga didukung dengan data geokimia dan data sumur landaian suhu. Dari metode magnetotellurik yaitu berupa analisis fasa tensor dan induction arrow didapatkan arah struktur utama atau bisa disebut dengan geoelectrical strike yaitu berarah Timurlaut – Baratdaya atau lebih tepatnya mempunyai arah N80oE. Hal ini juga diperkuat dari metode gravitasi berupa analisis derivatif dan data geologi regional dimana struktur yang teridentifikasi juga dominan berarah Timurlaut – Baratdaya. Dari hasil pengolahan data gravitasi berupa data complete bouger anomaly mempunyai nilai 53 – 82 mgal dimana daerah yang mempunyai anomali tinggi berada pada daerah sekitar manifestasi hingga ke Timur daerah penelitian. Hasil pemodelan inversi 3D dari data magnetotellurik didapatkan batuan claycap mempunyai ketebalan berkisar antara 400 – 500 m. Batuan yang berperan sebagai heatsource merupakan batuan intrusi yang mempunyai nilai resistivitas hingga mencapai 400 ohm-m. Dari analisis data geokimia menunjukkan daerah outflow pada sistem geotermal yaitu daerah dimana terdapatnya manifestasi yang muncul ke permukaan. Dari semua data tersebut dapat diintegrasikan menjadi model konseptual sistem geotermal dimana dapat digunakan sebagai acuan dalam melakukan pemboran geotermal.

The geothermal field "x" is one of the geothermal fields in Indonesia which is in the process of being developed. The exploration stage is the stage that has the greatest risk. To reduce this risk, integrated data is needed to describe the subsurface geothermal system in a representative manner. Magnetotelluric and gravity data are the main data in making a conceptual model of the field "x" geothermal system. Also besides supported by geochemical data and temperature sloping well data. From the magnetotelluric method, namely in the form of phase tensor analysis and induction arrow, the direction of the main structure is obtained or it can be called a geoelectrical strike, which is in the Northeast - Southwest direction or more precisely has a direction of N80oE. This is also reinforced by the gravity method in the form of derivative analysis and regional geological data where the identified structures are also predominantly northeast-southwest trending. From the results of processing gravity data in the form of complete bouge anomaly data has a value of 53 - 82 mgal where areas that have high anomalies are in the area around the manifestation to the east of the study area. The results of 3D inversion modeling from the magnetotelluric data show that clay cap rocks have a thickness ranging from 400 - 500 m. Rocks that act as heat sources are intrusive rocks that have a resistivity value of up to 400 ohm-m. The geochemical data analysis shows the outflow area in the geothermal system, namely the area where there are manifestations that appear to the surface. From all these data, it can be integrated into a conceptual model of the geothermal system which can be used as a reference in carrying out geothermal drilling."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nasution, Rifa Saifanah
"Walaupun sudah diprediksi dapat menghasilkan sebanyak 20 MW energi listrik, Lapangan Geotermal “T” masih belum dapat mencapai target tersebut bahkan setelah dibornya lima sumur. Dengan data dari lubang bor yang sudah tersedia, dilakukan analisis keberadaan feed zone untuk mencoba memetakan lapisan permeabel serta kemenerusan struktur geologi di Lapangan Geotermal “T”. Hasilnya, lapisan permeabel terduga reservoir berada pada rentang kedalaman 800 – 1400 m, dan dipotong oleh dua sesar normal yaitu Sesar Banda dan Sesar Banda-Hatuhasa yang menerus hingga kedalaman ±1400 m Kedua sesar tersebut memiliki arah kemiringan ke tenggara – selatan, dengan besar kemiringan 50° (Sesar Banda) dan 70° (Sesar Banda-Hatuhasa).  Selain itu, data temperatur bawah-permukaan dan data geokimia Na/K menunjukkan bahwa pusat sistem panas bumi adalah G. Eriwakang. Dari hasil analisis tersebut, diperkirakan lokasi pengeboran terbaik untuk meningkatkan temperatur fluida panas bumi yang diekstraksi adalah dengan membuat sumur yang lebih dekat dengan G. Eriwakang dengan menargetkan sesar baru.

The previously predicted 20 MW electrical energy producing “T” Geothermal Field still has not reached said target even after five wells being drilled. Earlier studies showed that the center of geothermal system in the area was predicted to be below Mt. Eriwakang all along and not below Mt. Salahutu – Mt. Kadera as JICA had reported. Using temperature, pressure, and lithology datas acquired from existing wells, feed zone analysis were done in order to map permeable layers and faults’ continuities beneath the surface. The results showed that the major permeable layer is located at around 800 – 1400 m beneath the surface, being cut by two, 1400 m deep-normal faults named Banda Fault and Banda-Hatuhasa Fault. Both faults has shown south to southeast dip direction, facing the field’s heat source and upflow zone with dip value of ±50° for Banda Fault and ±70° for Banda-Hatuhasa Fault. Through subsurface temperature data and Na/K ratio analysis it is predicted that Mt. Eriwakang is the center of the geothermal system. From this analysis, it is assumed that the best location for drilling to increase extracted fluid’s temperature in the future would be near Mt. Eriwakang while targetting faults other than Banda and Banda-Hatuhasa."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hikmat Nadzaruddin
"Penentuan prospek zona permeabilitas sekuder ditentukan melalui analisis terpadu pengideraan jauh, data geologi, magnetotellurik dan gravitasi. Berdasarkan analisis penginderaan jauh, kelurusan yang berkembang berarah dominan Baratlaut-Tenggara dan Timurlaut-Baratdaya dengan kerapatan 2.5-3.2 km/km2, berkorelasi dengan kemunculan manifestasi dan alterasi yang berkembang didaerah penelitian. Perkiraan zona alterasi dan manifestasi menggunakana Metoda Direct Principal Component DPC pada citra Landsat 7 ETM menghasilkan area terduga seluas 73 km2 dari 160 km2 luasan area penelitian yang terkonfirmasi berdasarkan peta sebaran alterasi dan manifestasi yang berada didalam area terduga. Berdasarkan pemodelan inversi 3D MT dan forward modelling 2D data gravitasi, lapisan claycap bernilai resistivitas < 10 ?m dengan densitas 1.7-1.9 gr/cc merupakan alterasi argilik pada formasi Aimere dan Siutoro. Top of Reservoir TOR ditandai dengan keberadaan alterasi propilitik pada sumur MT-02 berada pada kisaran kedalaman 400-600 mdpl dengan ketebalan reservoar berkisar 800-1000 m dengan nilai resistivitas 10-100 ?m dan densitas 2.1-2.6 gr/cc yang diperkirakan berada pada formasi volkanik tua. Heatsource diperkirakan merupakan tubuh intrusi formasi Bajawa dibagian Timurlaut dan pluton formasi kompleks kerucut breksi volkanik dibagian Baratdaya dengan nilai resistivitas >150 ?m dan densitas 2.7-3.1 gr/cc. Manifestasi berupa mataair panas ML1 dan ML2, fumarol dan kolam lumpur panas diperkirakan merupakan upflow dari sistem geotermal berasosiasi dengan Tinggian Volkanik dengan karakter Fluida 2 Fasa yang berada diatas heatsource dibagian Timurlaut. Perkiraan temperatur reservoar berkisar 200-300°C berdasarkan profil temperatur sumur MT-02 dan geotermometer gas. Delineasi daerah prospek reservoar ditentukan seluas 1.6 km2 berdasarkan hasil depth slice elevasi 400m pemodelan inversi 3D MT. Rekomendasi sumur pemboran trajectory menargetkan sesar F08 Sesar Waeluja mengacu kepada hasil analisis curve splitting, FHD, SVD yang mengkonfirmasi keberadaan struktur bawah permukaan diperkirakan merupakan prospek zona permeabilitas sekuder dengan temperatur dan permeabilitas tinggi.

Prospect identification of secondary permeability zone determined by using integrated analysis of remote sensing, geological, magnetotelluric and gravity data. Lineament pattern characterized the geological structural development dominates on NW SE and SW NE direction with lineament density reach 2.5-3.2 km km2 correlates with the appearance of surface manifestation and alteration zone within research area. Prediction of alteration and manifestation by using Direct Principal Component DPC technique from Landsat 7 ETM image resulting predicted area of 73 km2 out of 160 km2 research area and confirmed by comparing with the alteration and manifestation map from the previous research. 3D MT inversion model and 2D forward modelling gravity resulting geophysical characterization of the geothermal system. Claycap characterize as resistivity value 10 m with density 1.7 1.9 gr cc refer to Aimere and Siutoro argillic altered formation. Top of Reservoar TOR identifies in comparison with log description MT 02 well with the appearance of prophylitic alteration found at elevation of depth 400-600 msl with thickness of reservoir 800 1000m below characterized as resistivity value 10 100 m with density 2.1-2.6 gr cc interpreted as old volcanic formation. Heatsource interpreted as intrusive body of Bajawa formation found on the Northeastern part while at the Southwestern part related with the pluton of the breccia volcanic cone complex with the resistivity value 150 m and the density value 2.7 3.1 gr cc. Surface manifestation lies above the heatsource at Northeastern identified as the upflow zone of the typical Volcanic Associated Geothermal System on High Terrain with the 2 Phase Fluid characteristic. Reservoir temperature predicted 200-300°C based on temperature profile from well MT 02 and gas geothermometer. Delineation of the reservoir prospect area determined 1.6 km2 wide based on depth slice of 3D MT inversion at elevation 400 msl. Recommended trajectory drilling well, targeting F08 fault Waeluja Fault based on the result of confirmation of the occurrence subsurface geological structure using curve splitting, FHD, SVD predicted as the prospect of secondary high permeability zone and high temperature."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47619
UI - Tesis Membership  Universitas Indonesia Library
cover
Annisa Dwi Hafidah
"Pulau Sumatera memiliki potensi panas bumi terbesar di Indonesia yang tersebar di sepanjang zona subduksi antara lempeng Hindia-Australia dan lempeng Eurasia, salah satunya adalah lapangan geothermal ldquo;A rdquo;. Secara umum, litologi di wilayah penelitian didominasi oleh batuan vulkanik yang berumur kuarter dengan manifestasi berupa fumarol dan mata air panas. Struktur geologi berupa patahan dan pendugaan intrusi batuan yang diidentifikasi sebagai heat source menjadi target dalam penelitian ini.
Metode penginderaan jauh dengan analisis Fault Fracture Density FFD dilakukan untuk mengidentifikasi gejala struktur patahan di permukaan yang berasosiasi dengan manifestasi dan metode gravitasi dengan analisis First Horizontal Derivative FHD dan Second Vertical Derrivative SVD dilakukan untuk mengidentifikasi patahan di bawah permukaan.
Hasil dari penelitian ini menunjukkan bahwa kemunculan manifestasi berada pada zona FFD tinggi dengan kerapatan sebesar 4 km/km2. Analisis data FHD dan SVD dapat mengkonfirmasi patahan berarah Barat Daya-Timur Laut, Barat Laut-Tenggara, dan struktur kaldera dengan jenis patahan keseluruhan berupa patahan normal.
Hasil inversi 3D gravitasi mengidentifikasi batuan clay cap memiliki densitas 2.015 gr/cc sampai 2.24 gr/cc, batuan reservoir memiliki densitas 2.3 gr/cc sampai 2.4 gr/cc dan batuan heat source memiliki densitas 2.5 gr/cc sampai 2/8 gr/cc. Zona upflow terletak di bagian Barat wilayah penelitian dengan suhu reservoir berkisar antara 200°C-220°C.

Sumatra Island has the largest geothermal potential in Indonesia spread along the subduction zone between the Indies Australian plate and the Eurasian plate. ldquo A rdquo geothermal field is one of them. In general, lithology in the study area is dominated by quaternary volcanic rocks and it has some manifestations such as fumaroles and hot springs. This study is focus on identify the structure and intrusion that identified as a heat source.
Remote sensing methods with Fault Fracture Density FFD analysis were performed to identify symptoms of surface fractures associated with manifestations and gravity methods with First Horizontal Derivative FHD and Second Vertical Derivative SVD analyzes performed to identify subsurface fractures.
The results of this study indicate that the appearance of manifestation is in the high FFD zone with a density of 4 km km2. Analysis of FHD and SVD data can confirm the Southwest Northeast, Northwest Southeast fault, and caldera structure with the overall fracture type are normal fault.
The result of gravity 3D inversion identifies clay cap rock has density 2,015 gr cc to 2,24 gr cc, reservoir rock has density 2,3 gr cc to 2,4 gr cc and heat source rock has density 2.5 gr cc to 2 8 gr cc . The upflow zone is located in the west of the research area with reservoir temperatures ranging from 200°C 220°C.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T49621
UI - Tesis Membership  Universitas Indonesia Library
cover
Mufidatul Khoiroh
"ABSTRAK
Daerah di sekitar kawasan X merupakan kawasan yang berupa dataran tinggi yang berada di kawasan kompleks vulkanik. Di kawasan ini terdapat kawah panas yang menunjukkan aktivitas hidrotermal, dimana manifestasi utamanya muncul di kawasan X berupa fumarol Cd. Salah satu sasaran dalam eksplorasi panas bumi adalah menemukan titik-titik pemboran yang berkorelasi dengan zona suhu tinggi dan zona yang memiliki kriteria permeabilitas tinggi, dimana zona tersebut berkorelasi dengan struktur geologi. Berdasarkan analisis kurva pemisahan dan diagram kutub, terdapat sesar Wp 1, Ga, Wp 2, Pk, Dg, Cd, dan Jm yang umumnya berarah barat laut-tenggara. Sistem panas bumi wilayah X terutama dikendalikan oleh sesar Cd. Adanya struktur sesar memungkinkan fluida dari kawasan timur Jm, Kaipohan Wp, dan sekitar kawasan Pk mengalir sebagai imbuhan. Selain itu, berdasarkan hasil inversi 3 dimensi, data magnetotelurik menunjukkan bahwa zona alterasi sebagian besar terkonsentrasi pada kedalaman sekitar 1500 m hingga 1000 m dengan indikasi bahwa batas zona konduktor (BOC) sudah mulai terlihat. pada ketinggian sekitar 1000 m dan zona reservoir berada pada kedalaman dibawah 1000. m yang ditunjukkan dengan nilai resistivitas sedang antara 20 - 63 Ωm. Zona resistif basement pada kedalaman -3000 m ditunjukkan dengan sebaran nilai resistivitas yang tinggi, dengan sumber utama didominasi oleh pegunungan Dm, Al, dan Jm dengan satuan litologi dominan berupa lahar andesit. Zona upflow kemungkinan terletak di sekitar prospek zona Cd atau di sekitar titik MT-37, dengan arah outflow ke barat daya. Berdasarkan pengukuran panas bumi, temperatur prospek utama diperkirakan 270 0C. Lokasi sasaran pemboran dapat ditarik di sekitar geothermal Cd dengan kedalaman pemboran yang dapat ditarik sekitar 1000 m sampai 1500 m di bawah permukaan.
ABSTRACT
The area around area X is an area in the form of a plateau located in a volcanic complex area. In this area there are hot craters showing hydrothermal activity, where the main manifestation appears in region X in the form of fumarole Cd. One of the targets in geothermal exploration is to find drilling points that are correlated with zones of high temperature and zones that have high permeability criteria, where these zones are correlated with geological structures. Based on the analysis of the separation curve and polar diagram, there are faults Wp 1, Ga, Wp 2, Pk, Dg, Cd, and Jm which generally run northwest-southeast. The X region geothermal system is mainly controlled by the Cd fault. The existence of a fault structure allows fluid from the eastern region of Jm, Kaipohan Wp, and around the Pk area to flow as a recharge. In addition, based on the results of the 3-dimensional inversion, the magnetotelluric data shows that the alteration zone is mostly concentrated at a depth of about 1500 m to 1000 m with an indication that the conductor zone boundary (BOC) is already visible. at an altitude of about 1000 m and the reservoir zone is at a depth below 1000. m which is indicated by a moderate resistivity value between 20 - 63 Ωm. The basement resistive zone at a depth of -3000 m is indicated by the distribution of high resistivity values, with the main source being dominated by mountains Dm, Al, and Jm with the dominant lithological unit in the form of andesite lava. The upflow zone is likely located in the vicinity of the prospect zone Cd or around the point MT-37, with the outflow direction to the southwest. Based on geothermal measurements, the temperature of the main prospect is estimated to be 270 0C. The drilling target location can be drawn around the geothermal Cd with a drilling depth that can be drawn from about 1000 m to 1500 m below the surface."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faruk Afero
"Metode magnetotelurik merupakan metode yang menggunakan sumber gelombang elektromagnetik natural untuk mencitrakan struktur resistivitas bawah permukaan. Tetapi salah satu tantangan yang dihadapi dalam interpretasi adalah adanya distorsi data yang disebabkan efek galvanik dari heterogenitas konduktivitas dekat permukaan maupun topografi. Salah satu teknik yang dikembangkan untuk mengekstrak data yang tidak terdistorsi adalah analisis tensor fasa. Selain itu digunakan juga data induction arrow sebagai informasi tambahan dalam analisis tensor fasa. Analisis tensor fasa diterapkan ke data lapangan panas bumi ?FH?. Dari analisis tensor fasa dapat dilakukan analisis dimensionalitas serta resistivitas data. Dari analisis dimensionalitas diketahui bahwa data dapat didekati oleh kondisi 2-D pada rentang frekuensi antara 320 Hz sampai 0.5-0.01 Hz dan bersifat 3-D untuk frekuensi lebih rendah.
Hasil analisis menyatakan arah geoelectrical strike dari area pengukuran adalah N0°E-N10°E, dengan ambiguitas sebesar 90°, atau N90°E-N100°E. Hasil analisis tensor fasa diimplementasikan dalam pemodelan resistivitas. Pemodelan 1-D dan 2-D telah menghasilkan model resistivitas sistem panas bumi lapangan ?FH?. Model ini terdiri dari lapisan dengan resistivitas bervariasi yang diinterpretasikan sebagai overburden, merupakan intrusi batuan dioritik sampai granodioritik komplek dengan ketebalan berkisar antara 500-1000 meter. Konduktor kuat dengan ketebalan sekitar 1000-3000 meter yang bervariasi yang diinterpretasikan sebagai geothermal clay cap, lapisan dengan nilai sekitar 15-40 Ohm meter hingga ke kedalaman 3000 meter di bawah permukaan laut yang diinterpretasikan sebagai reservoir panas bumi, dan lapisan dengan nilai lebih dari 500 Ohm meter yang diinterpretasikan sebagai batuan dasar yang merupakan bagian dari sumber panas bumi.

Magnetotelluric is a method using natural electromagnetic wave source to delineate subsurface resistivity structure. However, one of the challenge in data interpretation is galvanic effects produced by heterogeneities in near-surface conductivity distort the regional MT response. One of technique being developed to extract undistorted data is phase tensor analysis. In the other hand, induction arrow data can be applied as additional information for phase tensor analysis. Phase tensor analysis has been applied to ?FH? geothermal field data. Dimensionality and resistivity analysis can be obtained from phase tensor analysis. From dimensionality analysis, it was shown that the dimensionality of the data are 2-D in between frequency of 320 Hz till 0.5-0.01 Hz and 3-D for the lower frequency.
The results of the resistivity analysis has shown that the geoelectrical strike direction of the measurement area is N0°E-N10°E, with 90° ambiguity, or N90°E-N100°E. The results from phase tensor analysis are then applied to 1-D and 2-D resistivity modeling of ?FH? geothermal system. This model consists of layers with varying resistivity which were interpreted as the overburden, derived from the complex of dioritic to granodioritic intrusion with the thickness of 500-1000 meter, strong conductor which was interpreted as geothermal clay cap with the thickness of 1000-3000 meter, a layer with resistivity value of 15-40 Ohm meters up to a depth of 3000 meters which was interpreted as geothermal reservoir, and layer with resistivity values more than 500 Ohm m which was interpreted as a basement which was part of geothermal heat source.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S64657
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Ramdhani
"Dalam eksplorasi geofisika terutama eksplorasi panasbumi, ada dua kriteria dalam memilih target pengeboran yang baik yaitu zona dengan temperatur tinggi dan zona dengan permeabilitas tinggi. Zona dengan temperatur tinggi berasosiasi dengan posisi keberadaan heat source dan juga daerah up flow, sementara zona dengan permeabilitas tinggi disebabkan karena adanya suatu patahan atau rekahan yang berhubungan dengan struktur geologi bawah permukaan.Pada dasarnya, struktur geologi bawah permukaan dapat diindikasikan dengan adanya kontras resistivitas yang disebabkan karena fluida panas dan konduktif yang mengisi zona-zona rekahan dan patahan, atau disebabkan karena perbedaan formasi dengan resistivitas yang berbeda. Berdasarkan hal tersebut, dilakukan pembuatan model sintetik 3D mengenai berbagai struktur geologi permukaan dan dilakukan analisispolar diagram, induction arrow dan splitting curvesehingga diperoleh pemahaman dan karakteristik setiap model sintetik yang kemudian diimplementasikan pada data riil MT.
Penelitian ini menghasilkan bahwa diagram polar dapat menunjukkan adanya kontras resistivitas di bawah permukaan dimana kontras resistivitas ini dapat berhubungan dengan struktur geologi, dan bahwainduction arrow dapat menunjukkan objek yang lebih konduktif di bawah permukaan serta splitting nya kurva MT dapat memberikan informasi dekat atau jauhnya suatu stasiun pengukuran MT terhadap batas kontras resistivitas atau batas suatu struktur.

In geothermal explorations, there are two criteria to determine the best drilling target zone: high temperature zone and high permeability zone. High temperature zone is associated with the position of heat source, while high permeability zone is associated with subsurface geological structure (fault and fracture). In general, subsurface geological structure can be indicated by subsurface resistivity contrast which caused by conductive fluids filling the fracture zone or caused by different formation with different resistivity. The resistivity contrast will produce impedance polarization of MT data as the response of the structure which will be represented graphically by polar diagram. It also will produce splitting on the MT curve. While position of conductive anomaly can be detected by induction arrow. Therefore, 3D forward modeling is carried out to have knowledge about concept and characteristics of polar diagram, induction arrow and splitting curve of various synthetic geological structure to be implemented on real MT data.
This research conclude that elongation of polar diagram could provide information on the strike direction in which polar diagram give the response of relatively parallel or perpendicular to the strike, while the magnitude of induction arrow could show where the conductive zone and the distance between MT stations with the location of structure will affect the frequency at which the splitting MT curve occurs.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S63405
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adam Kurniawan
"Tulehu terletak di bagian Timur pulau Ambon, Maluku. Tulehu merupakan daerah dengan prospek panasbumi yang tinggi. Suhu reservoir dari sistem tersebut diperkirakan mencapai lebih atau sama dengan 230oC. Sudah cukup banyak penelitian yang dilakukan disini untuk mengetahui kondisi geologi, geokimia, dan geofisika, sehingga datanya dapat dijadikan data pendukung pada penelitian ini. Interpretasi geologi tidak lepas dari interpretasi dan analisis struktur geologi dan litologi atau kelompok batuan yang menyusunnya. Penelitian ini akan menggambarkan kondisi geologi daerah Tulehu berdasarkan interpretasi remote sensing dan data hasil observasi lapangan yang sudah dilakukan berupa data struktur dan satuan litologi, selanjutnya akan dipadukan dengan data geokimia dan geofisika untuk membuat model konseptual geotermal WKP Tulehu, penentuan sistem geotermal, delineasi area prospek, hingga rekomendasi titik pemboran. Daerah penelitian berada pada daerah Suli, Tial, Tulehu, dan Waai, Kecamatan Salahutu, Provinsi Maluku. Penelitian ini diawali dengan interpretasi data remote sensing berupa citra Landsat 8, dan DEM yang diproses menggunakan software ArcGIS 10.2.1, untuk mendapatkan peta geologi tentatif. Peta tersebut kemudia digabungkan dengan data geologi untuk mendapatkan peta geologi yang lebih komprehensif sehingga dihasilkan bahwa sesar Banda dan sesar Huwe merupakan sesar normal yang membuat graben dengan area gunung Eriwakang yang mengalami depresi, satuan litologi penyusunnya terdiri atas tujuh satuan yang dibagi berdasarkan genesa dan satuan vulkanostratigrafi. Peta geologi yang lebih komprehensif dengan semua analisisnya kemudian digabungkan dengan data geokimia dan geofisika untuk mendapatkan gambaran model konseptual geotermal sehingga diketahui sistem geotermal WKP Tulehu merupakan system high enthalpy, liquid-dominated system. Berdasarkan hasil analisis WKP Tulehu memiliki luas area prospek sekitar 3,4 Km2 dan potensi geotermal sebesar 17-34 MW.

Tulehu is located in the eastern part of the island of Ambon, Maluku. Tulehu is an area with high geothermal prospects. The reservoir temperature of the system is estimated to be more or equal to 230oC. There has been quite a lot of research conducted here to determine geological, geochemical, and geophysical conditions, so that the data can be used as supporting data in this study. Geological interpretation cannot be separated from the interpretation and analysis of the geological and lithological structures or rock groups that compose them. This study will describe the geological conditions of the Tulehu area based on remote sensing interpretation and field observation data that have been carried out in the form of structural data and lithological units, which will then be combined with geochemical and geophysical data to create a geothermal conceptual model for the WKP Tulehu, determination of the geothermal system, delineation of the prospect area, up to the drilling point recommendation. The research area is in the Suli, Tial, Tulehu, and Waai areas, Salahutu District, Maluku Province. This research begins with the interpretation of remote sensing data in the form of Landsat 8 imagery, and DEM processed using ArcGIS 10.2.1 software, to obtain a tentative geological map. The map is then combined with geological data to obtain a more comprehensive geological map so that the Banda fault and the Huwe fault are normal faults that make the graben with the depressed mount Eriwakang area, the constituent lithology unit consists of seven units divided by genesis and volcanostratigraphic units. A more comprehensive geological map with all the analysis is then combined with geochemical and geophysical data to get a conceptual description of the geothermal model so that it is known that the WKP Tulehu geothermal system is a high enthalpy, liquid-dominated system. Based on the analysis, the WKP Tulehu has a prospect area of about 3.4 km2 and a geothermal potential of 17-34 MW."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Barkah
"

Gunung Tangkuban Parahu yang terletak di sebelah utara Bandung, Jawa Barat mulai dieksplorasi sebagai daerah prospek geothermal sejak awal tahun 1980. Pemboran eksplorasi juga pernah dilakukan hingga kedalaman 620m dengan temperature 50-60oC. Walaupun demikian, hingga saat ini belum ada kemajuan ke tahap pengembangan. Untuk itu, dibutuhkan pemahaman sistem geotermal pada lapangan ini secara rinci dan terintegrasi.

Salah satu aspek penting dalam sistem geotermal adalah zona permeabel yang erat kaitannya dengan keberadaan struktur geologi. Oleh karena itu, penelitian ini dilakukan untuk memetakan keberadaan struktur geologi, estimasi temperature, zona permeabel, zona prospek geotermal serta lokasi optimal untuk pemboran. Namun begitu, penelitian ini lebih menekankan pada zona permeabel.

Untuk mendapatkan informasi terkait hal tersebut, maka digunakan metodologi analisis remote sensing dan gravity. Teknik pencahayaan pada citra DEMNAS diaplikasikan pada penelitian ini dengan menggunakan delapan sudut pencahayaan yang berbeda. Teknik ini mampu merepresentasikan zona high fracture, dan struktur geologi major pada skala besar. Zona high fracture yang menindikasikan zona permeable dominan terbentuk di sekitar patahan major. Penggabungan data DEMNAS dan composite band 432 dan 567 pada Landsat 8 menghasilkan deliniasi litologi pada daerah ini. Lebih lanjut, teknik turunan pada data gravity yaitu First Horizontal Derivative (FHD) dan Second Vertical Derivative (SVD) memberikan informasi strutkur geologi major seperti Sesar Lembang, Sesar Haruman, dan Sesar Ciater di permukaan menerus hingga ke bawah permukaan, adapun beberapa struktur geologi yang tidak nampak di permukaan.

Analisis struktur geologi yang diintegrasikan dengan data MT dan analisis geokimia air menghasilkan model konseptual sistem geotermal di daerah ini. Berdasarkan model konseptual yang dibuat, zona upflow berada di area manifestasi DMS dan CTR, sedangkan zona outflow berada di Utara dan Selatan gunung Tangkuban Parahu. Berdasarkan model MT, zona reservoir berada tepat di bawah puncak gunung Tangkuban Parahu diindikasikan dengan keberadaan dome. Area tersebut memiliki temperature berkisar 240-250oC pada kedalaman BOC -500m di bawah permukaan. Heat source diperkirakan berasal dari sisa intrusi magma. Area optimal untuk pengeboran dari hasil penelitian ini berada pada area sekitar manifestasi DMS dan CTR. Dengan catatan area pemboran ini mempertimbangkan area volcanic hazard (erupsi hidrotermal).


Tangkuban Parahu, located north of Bandung, West Java, has been explored as a geothermal prospect area since the early 1980s. Exploration drilling has also been carried out to a depth of 620m with a temperature of 50-60oC. However, to this day there has been no progress to the development stage. Therefore, understanding detailed and integrated geological conditions are needed.

One of the important aspects of geothermal system is the permeable zone, which is closely related to the existence of geological structures. Therefore, this research was conducted to map the existence of geological structures, temperature estimates, permeable zones, geothermal prospect zone and optimal locations for drilling. However, this study only focus on the permeable zone.

To obtain the information related to permeable zone, a remote sensing and gravity analysis methodology were used. The artificial lighting technique in DEMNAS datasets were applied in this study using eight different sun azimuth angles. This technique is able to represent fracture zones and major geological structures on a large scale. High fracture zone which indicates a permeable zone, predominantly formed around major faults. The combination of DEMNAS data and composite bands 432 and 567 on Landsat 8 have been able to delineate the lithology in this area. Furthermore, the derivative techniques in gravity data, namely First Horizontal Derivative (FHD) and Second Vertical Derivative (SVD) have provide information that some of major geological structures that appear on the surface such as Lembang fault, Haruman Fault and Ciater Fault have continuity to the subsurface, while another geological structures are not visible on the surface.

Integration of structural geological analysis with MT model and water geochemical analysis has produced in a conceptual model of the geothermal system in this area. Based on the conceptual model that has been made, the upflow zone is located in the DMS and CTR areas, while the outflow zone is located in the North and South of Tangkuban Parahu mountain. The reservoir zone is located under the Tangkuban Parahu crater, this is indicated by the presence of a dome in the MT model. The area has temperatures ranging from 240-250oC at a depth of BOC -500m below the surface. The heat source may have been formed from residual magma intrusion. The optimal area for drilling from the results of this study is around the DMS and CTR manifestations. With a note that the drilling location must consider a volcanic hazard area (hydrothermal eruption).

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>