Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4421 dokumen yang sesuai dengan query
cover
Ade Irawan
"Konsumsi energi akan meningkat bersamaan dengan meningkatnya aktivitas manusia. Hingga kini, sumber energi terbesar masih diperoleh dari bahan bakar fosil, namun berdasarkan LAPAN (Indonesia) diperkirakan pada abad 22 akan ada kelangkaan bahan bakar fosil. Dampak lingkungan pun menjadi alasan untuk mencari sumber energi alternatif seperti energi dari angin. Berdasarkan kebijakan energi nasional, Pemerintah Indonesia akan menambah kapasitas terpasang mesin pembangkit energi dari angin (PLTB) sebesar 0,79 GW pada tahun 2025. Dalam rangka mengoptimalkan mesin pembangkit energi, besar kecepatan angin harus ditentukan secara akurat, dan distribusi probabilitas adalah salah satu cara untuk menjelaskan bagaimana penyebaran besar kecepatan angin tersebut. Beberapa tahun yang lalu, ilmuan menggunakan distribusi Weibull untuk memodelkan penyebaran besar kecepatan angin, namun terjadi masalah pada daerah asal dari distribusi Weibull. Tidak adanya besar kecepatan angin sekitar 0 m/s menyebabkan banyak peneliti untuk memikirkan alternatif atau modifikasi dari distribusi weibull. Pada 2013, Ramadan telah memodifikasi distribusi weibull dengan menambahkan parameter shape dan menghasilkan distribusi weighted weibull. Pada skripsi ini akan dijelaskan bagaimana membangun distribusi weighted Weibull dan karakteristik-karakteristiknya. Untuk melengkapi skripsi ini, data kecepatan angin di Bali (Indonesia) akan dianalisis untuk menjelaskan bagaimana distribusi weighted weibull dan distribusi weibull menggambarkan karakteristik kecepatan angin di Bali.
Energy consumption will increase simultaneously with increasing human activity. The most common source of energy used is still derived from fossil fuels, and based on LAPAN(Indonesia) is estimated in the 22nd century there will be scarcity of fossil fuels. Environmental impact becomes a reason to seek alternative energy sources such as wind energy. The Ministry of Energy and Mineral Resources and the Agency for the Assessment and Application of Technology (BPPT, Indonesia) tries to take advantage of wind for electrical power and refers to the national energy policy, the Government of Indonesia will add installed capacity of the power generating machine (PLTB) station of 0.79 GW in 2025. In order to optimize machine used to generate energy, the characteristics of wind speed should be specified accurately, and the probability distribution is one way to describe the characteristics. Many years ago, the scientist used weibull distribution to modelling wind speed but there is problem with the support area of weibull distribution. There is no wind speed around 0 m/s led researchers to think of alternatives or modifications of weibull distribution. In 2013, Ramadan has modifed weibull distribution by adding a shape parameter to generate weighted weibull distribution. In this project will decribes how to construct weighted weibull distribution and characteristics of weighted Weibull distribution. To complete this project, wind speed data from Bali (Indonesia) will be analyzed to explain how weighted weibull distribution and weibull distribution describes about characteristics of the wind speed in Bali."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
S61733
UI - Skripsi Membership  Universitas Indonesia Library
cover
Detasya Avri Magfira
"

Pada sistem reliabilitas atau sistem ketahanan suatu objek penelitian dikenal prinsip sistem seri dimana dari sekumpulan kejadian yang mungkin merupakan penyebab kegagalan pada akhirnya hanya akan ada satu kejadian yang secara nyata berhasil menyebabkan kegagalan pada sebuah sistem. Dalam kehidupan nyata, pada sistem seri, antar kejadian seolah saling berkompetisi untuk dapat menyebabkan kegagalan sistem. Aplikasi sistem seri banyak diimplementasikan pada kasus di bidang medis dan bidang teknik. Oleh karena itu, sebelumnya telah dibangun beberapa distribusi hasil compounding distribusi lifetime yang dapat memodelkan data pada sebuah sistem seri. Namun kelemahannya adalah distribusi-distribusi tersebut tidak dapat memodelkan data dengan fungsi hazard bathtub. Bentuk hazard bathtub sering ditemukan dalam berbagai permasalahan di kehidupan nyata khususnya masalah mortalitas pada manusia. Oleh karena itu dibutuhkan distribusi yang dapat memodelkan data pada sebuah sistem seri dan dapat menganalisis data dengan fungsi hazard bathtub. Distribusi Weibull Lindley merupakan distribusi hasil compounding antara distribusi Weibull dan distribusi Lindley yang dapat memodelkan kegagalan pada sebuah sistem seri dimana objek penelitian dapat mengalami kegagalan disebabkan oleh 2 kemungkinan kejadian dan dapat menganalisis data dengan bentuk hazard naik, turun dan bathtub. Penulisan skripsi ini membahas tentang proses pembentukan distribusi Weibull Lindley, karakteristik dari distribusi Weibull Lindley dan penaksiran parameter dengan metode maximum likelihood. Selain itu, dibahas pula aplikasi distribusi Weibull Lindley pada data masa fungsional mesin yang terdiri dari 2 komponen.

 


In reliability systems there are known two types of systems namely series systems and parallel systems. In the series system, failure will occur if any of the possible event happens. Applications of the series system analysis also varies from inspecting the durability of manufactured products to examining diseases in human. Therefore, several distributions have been introduced to model failure data in series system. However, these distributions cannot model data with bathtub shaped hazard function even though it is the one mostly found in real life situation. As a result, distribution which can model lifetime data in series system with bathtub-shaped hazard function has to be developed. Weibull Lindley distribution, which was introduced by Asgharzadeh et al. (2016), is developed to solve the problem. Weibull Lindley distribution describes lifetime data of an object that can experience failure caused by 2 possible events. It can model data with increasing, decreasing and bathtub shaped hazard function. This paper discusses the process of forming the Weibull Lindley distribution, its properties and parameter estimation using the maximum likelihood method. In addition, the application of Weibull Lindley distribution in lifetime data of machine consists of two independent component paired in series also be discussed.

 

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Marko Chindranata
"Data waktu tunggu merupakan data waktu hingga suatu kejadian (event) terjadi. Salah satu distribusi yang sering digunakan dalam memodelkan waktu tunggu adalah distribusi Weibull. Namun dalam pengaplikasiannya, distribusi Weibull memiliki sebuah kekurangan, yaitu bentuk fungsi hazard yang terbatas pada bentuk monoton. Oleh karena itu, diperlukan suatu metode untuk menggeneralisasi distribusi Weibull sehingga dapat memperluas variasi data yang dapat dimodelkannya. Salah satu perluasan tersebut adalah distribusi Weibull-Frechet (WFr). Distribusi Weibull-Frechet memiliki kelebihan dibanding distribusi Weibull, yaitu kemampuannya memodelkan data dengan fungsi hazard berbentuk unimodal. Metode yang digunakan dalam membentuk distribusi Weibull-Frechet adalah Weibull-G (WG). Metode Weibull-G menggunakan suatu fungsi W[G(x)] untuk menggabungkan distribusi Weibull dengan suatu distribusi sembarang yang memiliki fungsi distribusi kumulatif G(x). Oleh karena itu, penelitian ini membahas proses pembentukan distribusi Weibull-Frechet. Selain itu, dibahas juga karakteristik dari distribusi Weibull-Frechet beserta penaksiran parameter distribusi Weibull-Frechet dengan menggunakan metode penaksiran maksimum likelihood. Pada bagian akhir diberikan sebuah ilustrasi data menggunakan data waktu tunggu hingga pasien kanker lambung meninggal. Data tersebut dimodelkan menggunakan distribusi Weibull-Frechet, dengan distribusi Weibull dan distribusi Frechet sebagai pembanding. Hasil pemodelan menunjukkan bahwa distribusi Weibull-Frechet merupakan distribusi terbaik dalam memodelkan data waktu tunggu hingga pasien kanker lambung meninggal.

Lifetime data is a type of data that consists of waiting time until an event occurs. The distribution usually used for modeling lifetime data is the Weibull distribution. However, Weibull distribution has a limitation in its application : it can only model data with a monotonic hazard function. Therefore, a method for generalizing The Weibull distribution is needed so it can model a greater variety of data. One of those generalizations is the Weibull-Frechet distribution (WFr). The Weibull-Frechet distribution has an advantage over the Weibull distribution, due to its capability in modeling data with unimodal hazard function. The method used in generating the Weibull-Frechet distribution is the Weibull-G (WG). The Weibull-G method combines the distribution of a Weibull distribution with an arbitrary distribution with a cumulative distribution function G(x) using a function W[G(x)]. Hence, this thesis studies how to generate a Weibull-Frechet distribution. Furthermore, it also studies the characteristics of the Weibull-Frechet distribution and how to estimate the distribution’s parameters using the maximum likelihood estimation method. At the end of this thesis, lifetime data of gastric cancer patients is given for illustration purposes. The data is modeled using the Weibull-Frechet distribution, and both the Weibull and Frechet distribution for comparison. The model result shows that the Weibull-Frechet distribution is the best distribution for modeling the lifetime data of gastric cancer patients."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rugun Ivana Monalisa Banjarnahor
"Distribusi Weibull-Poisson merupakan distribusi kontinu yang dapat memodelkan beberapa macam bentuk hazard yaitu monoton naik, monoton turun dan increasing upside-down bathtub shape yang mempunyai bentuk bathtub shape terbalik dan monoton naik. Distribusi ini merupakan suatu distribusi lifetime yang dapat memodelkan kegagalan dalam suatu sistem seri dan merupakan pengembangan dari distribusi EksponensialPoisson. Distribusi ini diperoleh dengan melakukan metode compounding terhadap distribusi Weibull dan distribusi ZT-Poisson. Untuk mendapatkan bentuk akhir dari distribusi tersebut digunakan beberapa sifat matematis seperti order statistik dan ekspansi deret taylor. Selain pembentukan distribusi Weibull-Poisson, skripsi ini menjelaskan fungsi kepadatan peluang, fungsi distribusi, momen ke-r, momen sentral ke-r, mean, dan variansi. Sebagai ilustrasi, dibahas pula aplikasi distribusi Weibull-Poisson pada data survival marmut setelah terinfeksi virus Turblece Bacilli.

The Weibull-Poisson distribution is a continuous distribution that can be modeled various forms of hazard namely monotone up, monotone down and upside-down down bathtub shape which is shaped up. This distribution is a lifetime-distribution that can model failures in a series system and is development of the Exponential-Poisson distribution. This distribution is obtained by perform the compounding method on the Weibull distribution and the ZT-Poisson distribution. To obtain the final form of the distribution, several mathematical properties are used such as statistical order and Taylor's number expansion. In addition to the formation of Weibull-Poisson distribution, this thesis includes the probability density function, distribution function, moment rth, rth central moment, mean, and variance. As an illustration, Weibull-Poisson distribution is applied on guinea pig survival data after being infected with Turblece virus Bacilli."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Julio Majesty Rasjid
"Analisis mengenai data waktu tunggu memiliki peran penting dalam berbagai bidang disiplin ilmu. Pada umumnya data waktu tunggu memiliki pola penyebaran yang menceng. Distribusi Weibull merupakan salah satu distribusi yang sering digunakan untuk memodelkan data waktu tunggu. Namun, distribusi Weibull tidak sesuai digunakan untuk memodelkan data dengan fungsi hazard non-monoton, salah satunya bentuk upside-down bathtub. Menurut Sharma et al. (2015), invers dari beberapa distribusi probabilitas dapat memodelkan data dengan fungsi hazard berbentuk upside-down bathtub, salah satunya adalah distribusi invers Weibull. Pada penelitian ini, dibahas distribusi Alpha Power Invers Weibull (APIW) yang merupakan generalisasi dari distribusi invers Weibull. Distribusi ini dibentuk dengan menggunakan metode Alpha Power Transformation. Modifikasi dilakukan dengan penambahan parameter shape pada distribusi invers Weibull dengan tujuan untuk meningkatkan fleksibilitasnya. Beberapa karakteristik distribusi Alpha Power Invers Weibull yang dibahas meliputi fungsi kepadatan peluang, fungsi distribusi, fungsi survival, fungsi hazard, dan momen ke-r. Fungsi kepadatan peluang dari distribusi APIW berbentuk menceng kiri dan unimodal. Lebih lanjut, fungsi hazard dari distribusi APIW berbentuk upside-down bathtub. Penaksiran parameter distribusi dilakukan dengan menggunakan metode maksimum likelihood. Terakhir, diberikan data waktu hingga pasien penderita kanker lambung meninggal yang dimodelkan dengan distribusi invers Weibull dan distribusi Alpha Power Invers Weibull sebagai ilustrasi. Hasil pemodelan menunjukkan bahwa distribusi Alpha Power Invers Weibull lebih baik dalam memodelkan data waktu hingga pasien penderita kanker lambung meninggal dibandingkan dengan distribusi invers Weibull.

Lifetime data analysis has an essential role in various fields of science. In general, lifetime data have a skewed distribution pattern. The Weibull distribution is one of the frequently used distributions for modelling lifetime data. However, the Weibull distribution is not suitable for modelling data with non-monotonous hazard functions, one of which is an upside-down bathtub shape. According to Sharma et al. (2015), the inverse version of several probability distributions can model the data with an upside-down bathtub shape, one of which is the inverse Weibull distribution. This study explained the Alpha Power Inverse Weibull (APIW) distribution as a generalized version of the inverse Weibull distribution. This distribution is constructed by using the Alpha Power Transformation method. The modification is done by adding a shape parameter to the inverse Weibull distribution to increase flexibility. The characteristics of Alpha Power Inverse Weibull distribution discussed include probability density function, distribution function, survival function, hazard function, and the r-th moment. The probability density function of APIW distribution is left-skewed and unimodal. In addition, the hazard function of APIW distribution has an upside-down bathtub shape. The distribution parameter estimation is done by using the maximum likelihood method. Finally, for illustration purposes, the data about the time until gastric cancer patients die are modelled with the inverse Weibull distribution, and the Alpha Power Inverse Weibull distribution is given. The modelling result shows that the Alpha Power Inverse Weibull distribution is better at modelling the time until gastric cancer patients die data than the inverse Weibull distribution."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Giacinta Alessandra Bastoni
"Distribusi Weibull merupakan distribusi yang sering digunakan dalam menganalisis data mengenai lama waktu suatu objek mampu bertahan hingga pada akhirnnya objek tersebut tidak berfungsi lagi. Akan tetapi distribusi Weibull tidak memberikan kecocokan yang bersesuaian dalam beberapa aplikasi data tersebut. Hal ini terjadi, khususnya, pada saat data memiliki fungsi hazard yang berbentuk bathtub. Sehingga dibutuhkan modifikasi pada distribusi Weibull. Suatu distribusi baru, yang disebut dengan Distribusi Alpha Power Weibull (APW), merupakan distribusi yang dibangun dari distribusi Weibull yang ditransfomasi oleh metode transformasi Alpha Power.
Keutamaan dalam membangun distribusi ini bertujuan untuk dapat memodelkan data dengan dengan pdf yang menceng kiri dan menceng kanan, serta fungsi hazard yang monoton dan non-monoton. Transformasi Alpha Power merupakan metode baru dalam menambahkan parameter pada distribusi yang sudah ada, dan hasil transformasinya memberikan fleksibilitas yang lebih baik dibandingkan distribusi sebelumnya.
Pada skripsi ini, akan dibahas proses pembentukan distribusi APW. Karakteristik-karakteristik yang dibahas meliputi fungsi kepadatan probabilitas, fungsi disribusi, fungsi survival, fungsi hazard, ekspektasi, variansi, moment generating function (mgf), momen ke-r, momen sentral, koefisien skewness dan koefisien kurtosis. Metode penaksiran maksimum likelihood digunakan untuk mengestimasi parameter dari distribusi APW.

Weibull distribution is a very popular distribution for analyzing data sets about length of object is able to survive until the object is not function. But for some of its applications, Weibull distribution does not provide an acceptable fit, especially, when the hazard rates are bathtub shape. Therefore, Weibull distribution needs modification. A new lifetime distribution called Alpha Power Weibull (APW) distribution is constructed from Weibull distribution that transformed by Alpha Power transformation (APT) method. 
The importance of constructing this new distribution comes from the ability to model flexible probability density function, also monotone and non-monotone hazard rate function. APT is a new method for adding parameter to a well-established distribution, and obtain more flexible new distribution compared to the old distribution.
In this study, how to construct APW distribution with APT method is discussed. Furthermore, the important characteristics such as probability density function (pdf), cumulative distribution function (cdf), survival function, hazard function, mean, variance, moment generating function (mgf), r-th moment, central moment, skewness coefficient and kurtosis coefficient are also discussed. The maximum likelihood estimation method is used to estimate the parameters of APW distribution.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deta Putri Prakoso
"Pemodelan data waktu tunggu berperan penting dalam berbagai bidang ilmu. Distribusi Weibull merupakan salah satu distribusi waktu tunggu yang umum digunakan karena dapat menggambarkan kemencengan yang sering kali ditemui pada data waktu tunggu. Namun, distribusi Weibull tidak selalu memberi kesesuaian pada data waktu tunggu, terutama yang memiliki fungsi hazard non monoton. Pada skripsi ini, dibahas pembentukan suatu distribusi baru, yaitu distribusi New Extended Weibull, untuk mengatasi masalah tersebut. Distribusi New Extended Weibull dihasilkan dengan metode modifikasi new extended yang dikenalkan oleh Khosa, et. al (2020). Modifikasi dilakukan dengan menambahkan suatu parameter shape 0 pada distribusi Weibull dua parameter melalui fungsi bobot. Distribusi baru ini cocok untuk memodelkan data yang memiliki fungsi kepadatan peluang dengan kemencengan negatif ataupun positif dan fungsi hazard rate yang monoton maupun yang non monoton. Beberapa karakteristik dari distribusi New Extended Weibull seperti fungsi kepadatan peluang, fungsi distribusi, fungsi survival, fungsi hazard rate, dan momen ke-𝑟 juga dibahas. Kemudian, taksiran parameter dilakukan dengan menggunakan metode maksimum likelihood. Pada bagian akhir, dilakukan pemodelan menggunakan distribusi NE-W pada data masa remisi pada pasien penderita kanker kandung kemih sebagai ilustrasi

Lifetime data modeling plays an important role in various fields of science. The Weibull distribution is one of the most commonly used lifetime distributions because it can describe the skewness that is often found in lifetime data. However, the Weibull distribution does not always fit the data, especially those with non-monotonous hazard rate functions. This study explained the construction of a new distribution, namely the New Extended Weibull distribution, to overcome this problem. The New Extended Weibull distribution is developed using the new extended modification method introduced by Khosa, et. al (2020). Modification is done by adding a shape parameter 0 to the two-parameter Weibull distribution through a weight function. This new distribution is suitable for modeling data with negative or positive skewness probability density function and not only monotonous, but also data with non-monotonous hazard rate functions. Some of the characteristics of the New Extended Weibull distribution, such as probability density function, cumulative distribution function, survival function, hazard rate function, and the 𝑟-th moment are also discussed. Then, parameter estimation is done by using the maximum likelihood method. In the final section, a practical application is discussed using the NE-W distribution model on the remission times data of patients with bladder cancer"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raden Muhammad Alif Bryan Riztama
"Indonesia adalah negara kepulauan yang luas, dimana fitur topografinya dapat membatasi suatu area dengan area lainnya. Hal ini menyebabkan distribusi listrik menjadi sangat bervariasi. Oleh Karena itu, dibutuhkan pembangkit listrik yang dapat ditempatkan di daerah sulit terjangkau, yang dapat memenuhi kebutuhan listrik masyarakat setempat. Energi bayu/angin adalah salah satu energi terbarukan yang mempunyai potensi yang bagus. Energi ini cukup melimpah di daerah pesisir khususnya Kampung Bungin, Muara Gembong, dan total 3 kincir angin telah terpasang di daerah ini.
Saat ini, pengambilan data-data terkait kincir angin tersebut menjadi poin penting, terutama setelah pemasangan bilah blade baru. Data yang diambil berupa kecepatan angin, serta data penghasilan listrik, menggunakan Data Logger yang tersedia di lokasi. Pengolahan data tersebut menggunakan software MagdeTech 4 serta Microsoft Excel. Aproksimasi kecepatan angin menggunakan Distribusi Weibull 2-parameter. Hasil perhitungan kecepatan angin untuk menemukan potensi kincir angin akan dibandingkan dengan hasil aktual di lapangan.

Indonesia is a vast country in which the topographical features can separate areas from one another. This causes electricity distribution to be uneven. Therefore, a standalone power plant placed in remote areas that can fulfill the demand for electricity locally is needed. Wind energy, as one of the renewable energy resource, has a great potential to solve this problem. Wind energy is readily available in Bungin Village, Muara Gembong, and three micro wind turbines have been installed in the village.
Today, it is important to obtain the data related to the wind turbines, especially with the new blades installed, which consists of gathering wind speed and power generation data from the data loggers present on the site. Data processing is done by using MadgeTech 4 and Microsoft Excel. A Two parameter Weibull Distribution is used to approximate wind speed in the future. Also, the result from processing the wind speed data to obtain power generation, will be compared with actual power generation data in forms of voltage and current, and an analysis can be made.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67252
UI - Skripsi Membership  Universitas Indonesia Library
cover
Firly Tamara
"[ABSTRAK
Pada sistem tenaga listrik memiliki bagian yang saling berkaitan antara satu dengan yang lainnya yaitu sistem pembangkitan, sistem transmisi dan sistem distribusi. Untuk menyalurkan listrik ke konsumen dari sistem distribusi digunakan transformator. Apabila transformator terkena gangguan, maka konsumen dapat langsung merasakan dampaknya. Gangguan-gangguan ini dapat merusak transformator. Sehingga memprediksikan waktu kegagalan transformator sangat penting untuk dilakukan. Terdapat beberapa cara untuk memprediksikan waktu kegagalan transformator yaitu dengan menggunakan distribusi weibull dan distribusi eksponensial. Dengan membuat program aplikasi berbasis Microsoft Excel untuk kedua distribusi ini, dapat langsung memprediksikan waktu kegagalan transformator. Hasil dari program ini adalah kapan transformator akan mengalami waktu kegagalan. Apabila kedua distribusi ini dapat digunakan, program ini dapat menentukan distribusi yang paling akurat untuk digunakan. Sehingga waktu kegagalan yang didapat akan lebih akurat.

ABSTRACT
On an electric power system there are three parts interconnected between one and another and that is generation system, transmission system and distribution system. To distribute electricity to consumer from distribution system used transformer. When a transformer affected by disruption, the consumers can feel the impact. This disruption can damage the transformer. So, predicting the time of the failure of a transformer is very important to do. There are several ways to predict the time of the failure of a transformer is to use and distribution of the exponential and weibull distribution. By making an application program based on Microsoft excel for this distribution, a transformer failure can be directly predicted time. The result of this program will have the time when the transformer is going to failure. If both the distribution can be used, this program can determine the most accurate distribution to use. Therefore the time failure which were found would be more accurate., On an electric power system there are three parts interconnected between one and another and that is generation system, transmission system and distribution system. To distribute electricity to consumer from distribution system used transformer. When a transformer affected by disruption, the consumers can feel the impact. This disruption can damage the transformer. So, predicting the time of the failure of a transformer is very important to do. There are several ways to predict the time of the failure of a transformer is to use and distribution of the exponential and weibull distribution. By making an application program based on Microsoft excel for this distribution, a transformer failure can be directly predicted time. The result of this program will have the time when the transformer is going to failure. If both the distribution can be used, this program can determine the most accurate distribution to use. Therefore the time failure which were found would be more accurate.
]"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S57852
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rinne, Horst
Boca Raton: CRC Press, Taylor & Francis Group, 2009
R 519.24 RIN w
Buku Referensi  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>