Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 114749 dokumen yang sesuai dengan query
cover
Adinda Rifany
"Pengujian kinerja sistem Quantum Dot Sensitized Solar Cell (QDSSC) termodifikasi dengan menggunakan elektroda counter TiO2 nanotubes untuk mendegradasi Methylene Blue pada zona katalisis telah berhasil dilakukan. Metode Successive Ionic Layer Adsorption and Reaction (SILAR) dengan bantuan ultrasonikasi digunakan untuk melekatkan CdS nanopartikel pada permukaan TiO2 nanotubes yang disintesis dengan metode anodisasi. Karakterisasi dilakukan menggunakan Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), dan Fourier Transform Infra Red (FTIR).
Hasil pengukuran photocurrent menggunakan potensiostat menunjukkan bahwa TiO2 nanotubes aktif pada daerah UV sedangkan TiO2 nanotubes/CdS nanopartikel aktif pada daerah visible. Pada uji performa sistem QDSSC termodifikasi dengan menggunakan elektroda counter TiO2 nanotubes untuk mendegradasi Methylene Blue, diperoleh hasil degradasi optimum sebesar 42,67% pada kondisi zona solar cell disinari lampu visible dan elektroda counter TiO2 nanotubes disinari lampu UV.

A performance testing of modified Quantum Dot Sensitized Solar Cell (QDSSC) employing TiO2 nanotubes as a counter electrode to degrade the Methylene Blue at the catalytic zone has been successfully carried out. Successive Ionic Layer Adsorption and Reaction (SILAR) method with ultrasonication used to attach the CdS nanoparticles on the surface of TiO2 nanotubes were grown on titanium plate by anodization method. Characterization was performed using Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), and Fourier Transform Infra Red (FTIR).
The Results of photocurrent measurements using the potentiostat indicates that TiO2 nanotubes were active in the UV region while TiO2 nanotubes/CdS nanoparticles were active in the visible region. In the modified QDSSC system with employing TiO2 nanotubes as a counter electrode performance test to degrade the Methylene Blue, the results indicate an optimum degradation of 42.67% on the condition solar cell?s zone illuminated by visible light while TiO2 nanotubes counter electrode illuminated by UV light.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S62393
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mochammad Rully Indrawan
"Titanium dioksida (TiO2) memiliki sifat yang ramah lingkungan seperti nontoxic, relatif tidak terlalu mahal dan stabil. Karena kelebihannya, TiO2 terus dikembangkan untuk kegiatan yang positif bagi lingkungan, salah satunya untuk mendegradasi polutan organik. Akan tetapi, energi band gap dari TiO2 yang cukup lebar (sekitar 3,2 eV) yang setara dengan cahaya UV sehingga aktifitas fotokatalitiknya hanya terbatas pada daerah UV dan tidak dapat digunakan pada daerah sinar tampak. Sementara itu sistem Dyes Sensitized Solar Cell (DSSC) relatif sukses mengkonversi sinar matahari menjadi energi listrik. Sistem ini kemudian dikembangkan dengan mengganti dye (zat warna) dengan quantum dots CdS, dan memodifikasi bagian TiO2 yang tidak dilapisi TiO2 sebagai zona katalisis. Terkait permasalahan tersebut, peneliti tertarik untuk mengetahui bagaimana preparasi TiO2 termodifikasi dalam degradasi methylene blue dengan sistem zona katalis berbasis QDSSC. Penelitian ini dilakukan dengan metode anodisasi untuk mendapatkan TiO2 dengan morfologi nanotube yang dilanjutkan dengan kalsinasi pada suhu 450⁰C untuk membentuk fasa kristal TiO2. Imobilisasi CdS nanopartikel pada TiO2 nanotube (TNTAs) dilakukan dengan metode SILAR (Succesive Ionic Layer Adsorption and Reaction)-Ultrasonikasi. Karakterisasi terhadap TNTAs/TNTAs-CdS meliputi Field Emmision Scanning Electron Microscope (SEM), UV-Vis Diffuse Reflectance Spectrometry (DRS), X-ray Diffraction (XRD), dan Fourier Transform Infra Red (FTIR). Pada proses degradasi, dengan sistem QDSSC termodifikasi, yang dilakukan selama 30 menit terjadi penurunan konsentrasi methylene blue sebesar 59%.

Titanium dioxide (TiO2) is an environmentally friendly such as nontoxic, relatively inexpensive and stable. Because of its advantages, TiO2 has been being developed for activities that are positive for the environment, one of them is to degrade organic pollutants. However, the energy band gap of TiO2 is quite wide (about 3.2 eV) which is equivalent to UV light so that the photocatalytic activity is confined to the UV region and can not be used in the visible light region. While the Dyes Sensitized Solar Cell (DSSC) system is relatively success converting sunlight to electricity. This system subsequently further developed by replacing dye with CdS quantum dots, and modify parts of TiO2 which is uncoated as catalysis zone. Related to these problems, researcher is interested to know how the modified DSSC can be utilized in degrading methylene blue. The TiO2 nanotube (TNTAs) morphology was obtained by anodizing titanium metal, followed by calcination at 450⁰C temperature to get a crystal phase of TiO2. Immobilization of CdS nanoparticles on TiO2 nanotube (TNTAs) was conducted by using SILAR (Succesive Ionic Layer Adsorption and Reaction) method. Characterization of TNTAs/TNTAs-CdS include Scanning Electron Microscope (SEM), UV-Vis Diffuse Reflectance Spectrometry (DRS), X-Ray Diffraction (XRD) and Fourier Transform Infra Red (FTIR). The catalyze zone of modified QDSSC was applied to degrade methylens blue (MB) in water, where approximately 59% MB was eliminated during 30 minutes."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
S60913
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahmmat Eko Prasetyo
"Pengujian sistem Quantum Dots Sensitized Solar Cell (QDSSC) untuk mendegradasi Fenol menggunakan CdS nanopartikel sebagai sensitizer dan TiO2/UV sebagai counter electrode dengan penambahan reagen Fenton telah berhasil dilakukan. QDSSC termodifikasi terdiri dari dua zona yang terdiri dari TiO2 nanotubes/CdS nanopartikel sebagai zona sensitasi dan TiO2 nanotubes/Pt sebagai zona katalisis. Pada zona katalis digunakan TiO2 sebagai anoda (counter electrode) untuk menggantikan Pt mesh. TiO2 nanotubes ditumbuhkan diatas plat Titanum dengan metode anodisasi sedang CdS dilekatkan pada TiO2 nanotubes menggunakan metode SILAR (succesive ionic layer adsorption and reaction). Karakterisasi yang digunakan adalah FE-SEM untuk mengetahui morfologi permukaan, XRD untuk mengetahui fasa kristal yang terbentuk, FTIR untuk mengetahui vibrasi ikatan dari molekul dan EDX untuk mengetahui elemen yang terkandung. Uji aktifitas fotoelektrokimia menggunakan kurva LSV dan MPA menunjukkan TiO2 aktif dan sensitif pada daerah UV dan TiO2/CdS dapat pada daerah Visible. Dalam uji performa sel untuk mendegradasi Fenol dilakukan uji kondisi tidak dikenai cahaya dan dikenai cahaya, hasilnya sel tidak aktif pada saat kondisi gelap dan aktif pada saat dikenai cahaya dengan penurunan konsentrasi Fenol sebesar 35,81%. Uji degradasi Fenol dengan penambahan reagen Fenton dengan variasi konsentrasi 0,02 M, 0,05 M dan 0,08 M berhasil dilakukan. Hasil yang didapatkan menunjukkan semakin besar konsentrasi Fenton yang ditambahkan akan menambah degradasi Fenol.

Performance testing of modified Quantum Dots Sensitized Solar Cell system for Phenol Degradation using CdS semiconductor nanoparticles as sensitizer and TiO2/UV as counter electrode with Fenton Reagent addition have been successfully conducted. Modified QDSSC consists of two zones consisting of TiO2 nanotubes / CdS nanoparticles as sensitization zone and TiO2 / Pt as catalytic zone. The catalytic zone employing TiO2 as anode (counter electrode) to replace Pt mesh. TiO2 nanotubes were grown by the anodizing Titanium plate and the attachment of CdS into TiO2 nanotubes is using SILAR method (succesive ionic layer adsorption and reaction). Characterization used is FE-SEM to determine the surface morphology, XRD to determine the crystalline phases formed, FTIR to determine the vibration bonding of molecules and EDX to determine the components contained. Photoelectrochemical activity test using LSV curves and MPA showed TiO2 active and sensitive in the UV light and TiO2 / CdS active and sensitive at the Visible light. In a test of the performance of the cell to degrade phenol, the test conditions were (i) not exposed to light and (ii) exposed to light. The result were the cells was not active in the dark conditions and active when exposed to light , where can reduce concentration as much as 35,81%. Phenol degradation test with the addition of Fenton reagent with various concentration of 0.02 M, 0.05 M and 0.08 M successfully performed. The results obtained showed the greater concentration of Fenton added would add to the degradation of phenol."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S62452
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zandini Nurichi
"Fabricate through-hole porous anodic aluminum oxide (AAO) template were made by a two-step anodization method of an aluminum with purity 99,98% in 0,3 M oxalic acid at 45 V with 360 minutes of second anodization time. The effect of duration time on the second anodizing step, voltage and solution of the electrolyte on the porous oxide layer and influence of the pore opening on the structural as a template were studied in detail. Then, the prepared template was used as a template for fabricated of dense array of Cu by using electrochemical deposition process performed by direct current (DC). The composition of AAO was confirmed by x-ray diffraction (XRD) analyses and for the deposition of Cu were performed by energy dispersive x-ray spectroscopy (EDS). The structural features of nanowire were calculated by scanning electron microscopy (SEM) images and compared with the imaging of AAO template as parameter.

Fabrikasi templet Anodic aluminium Oxide (AAO) sebagai nanopori dilakukan dengan proses anodisasi dengan metode two-step anodization menggunakan alumunium dengan kemurnian 99,98 % pada larutan asam oksalat dengan konsentrasi 0,3 M pada voltase 45 V dan waktu anodisasi kedua sebesar 360 menit. Waktu anodisasi kedua dan voltase serta arus yang digunakan menjadi faktor utama dalam pembentukan ketebalan lapisan oksida dan diameter pori yang dihasilkan. Selain itu, pengaruh konsentrasi sangat berpengaruh dalam ketebalan templet AAO. Aplikasi templet AAO ini digunakan sebagai templet deposisi logam Cu, yaitu dengan cara elektrodeposisi dengan pada arus searah (DC). Digunakan pula X-ray diffraction (XRD) untuk melihat templet AAO dan komposisi Cu pada templet dikarakterisasi dengan energy dispersive x-ray spectroscopy. Untuk melihat morfologi nanopori pada cetakan AAO, dikarakterisasi dengan scanning electron microscopy (SEM)."
Depok: Universitas Indonesia, 2016
S64000
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nadya Aryani Putri
"Titanium adalah salah satu material yang paling populer untuk digunakan sebagai material implan karena memiliki sifat biokompatibilitas yang baik karena adanya lapisan oksida tipis di permukaannya yang secara spontan terbentuk, dimana lapisan oksida ini menyebabkan Titanium menjadi pasif sehingga tidak mengalami korosi saat diaplikasikan menjadi material implan. Namun material Titanium ini tergolong sebagai material bio-inert, sehingga masih kurang mendukung dalam pertumbuhan dan perkembangan tulang (osseointegrasi) jika dibandingkan dengan material yang tergolong sebagai bio-active. Salah satu cara untuk meningkatkan biokompatibilitas dari Titanium adalah dengan mengasarkan permukaan, karena berdasarkan studi yang telah dilakukan sel cenderung lebih dapat menempel dan berkembang pada material dengan topografi permukaan yang lebih kasar. Anodisasi adalah salah satu cara yang efektif dan mudah untuk meningkatkan kekasaran permukaan Titanium, sekaligus memproduksi lapisan warna yang dapat digunakan untuk identifikasi material implan. Sehingga pada penelitian ini akan dilakukan anodisasi pada Ti-6Al-4V untuk menghasilkan lapisan warna sekaligus mengevaluasi pengaruh parameter yang diaplikasikan terhadap kekasaran permukaan serta biokompatibilitasnya. Anodisasi dilakukan dalam elektrolit H3PO4 dengan konsentrasi 0.5 M dan 1 M menggunakan tegangan 30, 70, dan 120 V untuk mengevaluasi kekasaran permukaan serta efeknya dalam meningkatkan biokompatibilitas Ti-6Al-4V. Selain itu juga dihasilkan Ti-6Al-4V hasil anodisasi pada tegangan 10 hingga 90 V untuk mengetahui pengaruh tegangan terhadap warna yang dihasilkan. Hasil dari anodisasi ini dievaluasi secara makro, mikro menggunakan SEM, komposisi lapisan oksida yang dihasilkan menggunakan EDS, kekasaran permukaannya menggunakan Accretech Surfcom 2900SD3, dan ketahanan goresnya menggunakan scriber yang kemudian diamati dengan mikroskop optik. Hasil yang didapatkan menunjukan kenaikan kekasaran permukaan pada Ti-6Al-4V yang telah dianodisasi, dimana dengan meningkatnya tegangan dan konsentrasi elektrolit yang diaplikasikan maka kekasarannya juga meningkat.. Lalu hasil EDS juga menunjukan adanya inkorporasi ion Fosfor dalam lapisan oksida. Mekanisme terkait hasil yang didapatkan dan pengaruhnya terhadap biokompatibilitas akan lebih lanjut dijelaskan dalam hasil penelitian ini.

Titanium is one of the most popular materials to be used as implant material because it has good biocompatibility due to the presence of a thin oxide layer that spontaneously forms on its surface, this oxide layer causes Titanium to become passive so it does not corrode when being applied as implant material. But Titanium is only classified as a bio-inert material and still less capable in supporting bone growth and its development (osseointegration) when compared to bio-active material. One way to improve the biocompatibility of Titanium is to roughen its surface, because based on studies that have been carried out cells tend to be more adhere and develop in materials with a more rough surface topography. Anodization is one of the effective and easy ways to increase surface roughness of Titanium, while producing a colour oxide film that can be used to identify implant material. Thus, this study will carried out anodization of Ti-6Al-4V to produce a color oxide film while evaluating the effect of parameters applied to its surface roughness and biocompatibility. Anodization was carried out in H3PO4 electrolytes with concentrations of 0.5 M and 1 M using voltages of 30, 70 and 120 V to evaluate surface roughness and its effect in increasing Ti-6Al-4V biocompatibility. Besides that, this study also anodized Ti-6Al-4V at 10 to 90 V to find out the effect of voltage on the color produced. The results of this investigation were evaluated by macro-image, SEM, EDS, Accretech Surfcom 2900SD3, and its scratch resistance using scriber made out of carbide. The results obtained show an increase in surface roughness in anodised Ti-6Al-4V, where as the voltage and electrolyte concentration increase, the surface roughness also increases. Then, the EDS results also show the presence of incorporation of Phosphorus ions in the oxide layer produced by anodization. The mechanism related to the results obtained and its effect on biocompatibility will be further explained in the results of this study."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nabila Ramadhanti
"ABSTRAK
Kelemahan material implan Ti-6Al-4V adalah bersifat ­bio-inert, sehingga tidak mendukung reaksi jaringan/sel tubuh dengan implan. Penelitian ini bertujuan meningkatkan tendensi pelekatan sel osteoblas pada permukaan implan Ti-6Al-4V melalui modifikasi biokompatibilitas dengan meningkatkan kekasaran permukaan sehingga sel di sekitar implan berkembang. Menggunakan metode anodisasi maka dapat mendukung pula tujuan coloring implan guna memudahkan identifikasi implan ketika pemasangan. Sebelum anodisasi, sampel dipreparasi hingga permukaanya mirror like dan bersih dari kotoran lemak. Anodisasi menggunakan elektrolit H2SO4 0.5 M dan 1 M, pada variasi tegangan 30 V, 50 V, dan 70 V selama 5 menit. Pengaruh tegangan dan konsentrasi elektrolit terhadap kekasaran permukaan diidentifikasi melalui pengujian Surfcom, pengamatan morfologi dan karakterisasi unsur di permukaan dan cross section lapisan TiO2 dengan SEM-EDS, dan kekuatan penempelan lapisan oksida diuji dengan uji ketahanan gores dan diamati dengan OM. Hasil penelitian menunjukkan bahwa semakin tinggi tegangan maka lapisan oksida warna semakin tebal dengan kekasaran permukaan dan ketahanan gores yang lebih tinggi, sehingga hasilnya menunjukkan bahwa kekerasan lapisan oksida meningkat. Fitur kekasaran permukaan didapatkan dari tekstur berupa lembah dan puncak dengan adanya mikropori TiO2 yang terbentuk karena reaksi evolusi oksigen dan inkorporasi ion sulfat dari elektrolit, sehingga biokompatibilitas implan meningkat dengan mekanisme mechanical interlocking antara implan dengan jaringan/sel osteoblas.

ABSTRACT
Ti-6Al-4V implants are bio-inert, it doesnt support tissues or cells reaction with implants. This study was aimed to increase the tendency of attaching osteoblasts to the surface of implants through biocompatibility modification by increased surface roughness, also to get colored implants to facilitate identification of implants when the implants going to be installed, by anodization method. The sample was prepared until had mirror-like surfaces and cleaned from dirt. Anodization used 0.5 M and 1 M H2SO4 electrolytes, 30 V, 50 V, and 70 V for 5 minutes. The effect of voltage and electrolyte concentration on surface roughness was identified through Surfcom, morphological and elemental characterization with SEM-EDS, and the attachment strength of the oxide layer tested by scratch resistance test and observed with OM. The results indicated that the higher the voltage, the color oxide layer gets thicker with higher surface roughness and scratch resistance, so those results indicated that the oxide layers hardness increased. Surface roughness features was obtained by texture of valleys and peaks with TiO2 micropores caused by oxygen evolution reactions and incorporation of sulfate ions from electrolytes, so that implants biocompatibility can be increased by mechanical interlocking mechanism between implants and osteoblast bone cells / tissue."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eliawati Addawiyah
"Karbon dioksida CO2 merupakan gas yang terbentuk dari hasil pembakaran bahan bakar fosil yang dapat menyebabkan efek rumah kaca. konversi CO2 secara fotokatalitik menggunakan semikonduktor TiO2 merupakan salah satu teknologi konversi terbarukan yang sangat menjanjikan, karena mampu mengubah CO2 menjadi metanol. Namun keterbatasan TiO2 yang hanya dapat menyerap cahaya pada daerah UV menjadi salah satu kendala sehingga perlu dilakukan modifikasi TiO2 agar dapat menggeser daerah serapan hingga ke daerah sinar tampak material quantum dot dan sulfide logam adalah salah satu cara yang dilakukan untuk meningkatkan performa fotokatalitik TiO2.Pada penelitian ini Konversi CO2 menjadi metanol menggunakan sistem CdS-QDSSC termodifikasi zona katalisis dengan elektroda counter TiO2/NiS. TiO2 nanotubes yang ditumbuhkan di atas plat titanium menggunakan metode anodisasi sedangkan modifikasi TiO2 nanotube menjadi TiO2/CdS dan TiO2/NiS menggunakan metode Sucsesive ionic Layer Absorbtion Reaction SILAR . Adapun karakterisasi yang dilakukan adalah scanning electron microscopic-energy diffraction X-ray spectroscopy SEM-EDX untuk mengetahui morfologi permukaan dan komposisi senyawa, diffuse reflectance spectroscopy UV-Vis UV-Vis DRS untuk mengetahui nilai energy celah pita band gap , X-Ray Difraction Spectroscopy XRD untuk mengetahui fasa kristal yang terbentuk, FTIR untuk mengetahui vibrasi ikatan dari molekul, Potensiostat digunakan untuk menguji aktifitas fotokatalitik dan GC-FID digunakan untuk mengidentifikasi senyawa metanol yang dihasilkan dari konversi CO2.Berdasarkan hasil yang diperoleh menunjukan bahwa penggunaan elektroda counter FTO/NiS di zona CdS-QDSSC menghasilkan power konversi effisiensi sebesar 0.25 , sedangkan dengan menggunakan FTO/Pt sebesar 0.11 . dengan sistem CdS-QDSSC termodifikasi zona katalisis menggunakan counter elektroda NiS pada zona katalisis terbukti berhasil menkonversi CO2 menjadi metanol dengan konversi sebanyak 2.20 selama 1 jam penyinaran.

Carbon dioxide CO2 is a gas formed from the combustion of fossil fuels that could cause the greenhouse effect. CO2 conversion by photo catalytic using semiconductor TiO2 is one of the renewable conversion technology is very promising, because it is able to convert CO2 into methanol. But the limitations of TiO2 which can absorb light in the UV region into one of the obstacles that need to be modified TiO2 in order to shift the absorption area to the area of visible light. quantum dot material and metal sulfide is one of the ways in which to improve the performance of photo catalytic TiO2. In this study the convertion of CO2 to methanol using CdS QDSSC modified catalysis zone with a counter electrode TiO2 NiS. TiO2 nanotubes were grown on titanium plate using anodizing method, while modification TiO2 nanotube to TiO2 CdS and TiO2 NiS used Successive Ionic Layer Absorption Reaction SILAR method. The characterization used is a scanning electron microscopic energy diffraction X ray spectroscopy SEM EDX to determine the surface morphology and composition of the compound, diffuse reflectance spectroscopy, UV Vis UV Vis DRS to determine the value of the band gap energy, X Ray Spectroscopy Diffraction XRD to determine the formed of crystal phases, FTIR to determine the vibration bonding of molecules, potentiostat is used to test the photo catalytic activity and GC FID is used to identify the methanol from CO2 conversion. The results obtained show that power conversion efficiency PCE of 0.25 is use the counter electrode FTO NiS in the CdS QDSSC zone while using FTO Pt power conversion efficiency PCE of 0,11 . the CdS QDSSC modified catalysis zone using counter electrode TiO2 NiS on catalysis zone successfully to convert CO2 into methanol by conversion as much as 2,20 under illumination for 1 hour."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
T47820
UI - Tesis Membership  Universitas Indonesia Library
cover
Annisa Dewi Pangestuti
"TiO2 merupakan fotokatalis yang telah banyak digunakan sebagai pendegradasi bahan pencemar organik, seperti zat warna. Fotokatalis TiO2 mempunyai nilai energi celah yang sebanding dengan panjang gelombang sinar UV, sehingga fotokatalis ini hanya aktif bila disinari dengan sinar UV dan kurang responsif bila disinari pada panjang gelombang sinar tampak. Dekorasi logam secara fotodeposisi pada permukaan TiO2 dengan memanfaatkan peristiwa Surface Plasmon Resonance (SPR) akan mengaktifkan fotokatalis pada daerah sinar tampak. Absorbsi plasmon logam aktif pada daerah sinar tampak, sehingga bila dikombinasikan dengan TiO2 akan menghasilkan fotokatalis yang dapat digunakan pada daerah sinar tampak. Pada penelitian ini dilakukan preparasi TiO2 nanotube yang didekorasi dengan bimetalik Ag-Cu nanopartikel secara fotodeposisi menggunakan iradiasi sinar UV. TiO2 nanotube dipreparasi menggunakan metode anodisasi secara elektrokimia dilanjutkan dengan kalsinasi selama 3 jam pada suhu 500ºC. Dekorasi logam pada permukaan TiO2 nanotube secara fotodeposisi menggunakan iradiasi sinar UV dilakukan dengan variasi waktu deposisi untuk mendapatkan waktu deposisi terbaik ke permukaan fotokatalis. Ag-Cu/TiO2 yang terbentuk dikarakterisasi menggunakan DRS UV-VIS, FTIR, XRD, FESEM, EDS, dan LSV. Kemudian dilakukan uji fotokatalitik pada daerah sinar tampak dan UV, menunjukkan fotokatalis aktif pada kedua daerah tersebut. Uji fotokatalitik dilakukan dengan melihat penurunan konsentrasi larutan uji yaitu zat warna congo red.
TiO2 is a photocatalyst that has been used for degradation of organic pollutants such as dyes substance. TiO2 photocatalyst has a band gap energy value that equal to UV light`s wavelength. So this photocatalyst is only active in UV light region and less responsive in visible light region. Metal, as nano particle, decoration on TiO2 surface may induce a Surface Plasmon Resonace (SPR) phenomenon and activate the photocatalyst in visible light region. The SPR of metal may active in visible light region, so if we combined metal and TiO2, will eventually create photocatalyst that can be used in visible light region. In this research, TiO2 nanotube were prepared and decorated with bimetallic Ag-Cu nanoparticles, which was prepared by photodeposition method using UV light irradiation. TiO2 nanotube were prepared by anodization method using and followed by calcinations for 3 hours at 500ºC. Metal`s decoration with photodeposition method on TiO2 nanotube surface were prepared by using UV light irradiation at various deposition time to obtain the best deposition time on photocatalyst surface. Ag-Cu/TiO2 photocatalyst were characterized by using DRS UV-VIS, FTIR, XRD, FESEM, EDS, and LSV. Afterward, the prepared photocatalyts were tested under visible light region and UV light region, it showed that the photocatalyst are active in both region."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S55168
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Anton Eka Sakti
"Saat ini nanoteknologi berkembang dengan sangat pesat karena menghasilkan sifat yang menarik dan berbeda dengan teknologi yang dihasilkan dalam ukuran makroskopis. Produk-produk nanoteknologi berbasis nanostructure materials telah banyak dikaji dan dikembangkan, beberapa diantaranya adalah carbon nanotube, quantum dots, dan nano porous membrane. Sintesis nanostructure materials tersebut dapat dilakukan dengan template nano porous aluminum oxide hasil proses anodisasi. Sifat dan struktur nanoporous aluminum oxide tersebut sangat dipengaruhi oleh beberapa variabel proses anodisasi seperti waktu anodisasi, jenis dan konsentrasi larutan elektrolit, tegangan dan rapat arus, dan juga temperatur.
Pembuatan nano porous aluminum oxide dari aluminium foil untuk aplikasi nanostructure materials telah dilakukan dengan metoda anodisasi. Proses anodisasi dilakukan dengan kenaikan temperatur 10 °C, 20 °C, dan 30 °C dalam campuran larutan asam sulfat 3 M dan asam oksalat 0,5 M, pada kondisi tegangan 15 volt, dan waktu anodisasi 30 menit. Pengamatan diameter pori dilakukan dengan alat FESEM sedangkan pengukuran ketebalan dilakukan dengan alat SEM. Hasil pengamatan menunjukkan bahwa pada kondisi temperatur 10 °C dan 20 °C tidak terbentuk lapisan nano porous alumina sedangkan pada temperatur 30 °C terbentuk nano porous dengan keteraturan near-ordered dengan diameter ratarata 25 nm. Pengujian ketebalan oksida menunjukkan bahwa semakin tinggi temperatur menyebabkan kenaikan ketebalan rata-rata oksida. Ketebalan lapisan oksida mengalami kenaikan berturut-turut 351 nm, 652 nm, dan 770 nm pada temperatur 10 °C, 20 °C, dan 30 °C.

Recently, nanotechnology grows fast because it develops interesting features and different from technology produced on macroscopic scale. Nanotechnology products like nanostructure materials have been studied and developed. Some of them are carbon nanotube, quantum dots, and nano porous membrane. Fabrication of nanostructure materials can be done by template of nano porous aluminum oxide from anodizing process. Properties and structure of the nano porous aluminum oxide was influenced by several variables from anodizing process like time, type and concentration of solution, voltage and current density, and temperature.
Fabrication of nano porous aluminum oxide from aluminum foil for nanostructure materials application have been done from anodizing process in this research. Anodizing process was done on different temperature 10 °C, 20 °C, and 30 °C in mixing solution of sulfuric acid 3 M and oxalic acid 0.5 M, voltage 15 volt, anodizing time 30 minute. Observation of pores diameter was done by FESEM and measurement of oxide thickness was done by SEM. The result shows that there is no formation of porous alumina on temperature 10 °C and 20 °C. In other hand, there is formation of near-ordered nano porous aluminum oxide on temperature 30 °C with 25 nm average diameters. Measurement of thickness show that oxide thickness increases when temperature is raised. Oxide film thickness increases 351 nm, 652 nm, and 770 nm on temperature 10 °C, 20 °C, and 30 °C, respectively.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41677
UI - Skripsi Open  Universitas Indonesia Library
cover
Hutasoit, Martino R.
"Modifikasi permukaan aluminium secara elektrokimia merupakan suatu proses yang tengah berkembang pesat saat ini. Modifikasi permukaan secara elektrokimia pada awalnya lebih diarahkan pada peningkatan nilai ketahanan korosi, peningkatan kekerasan, dan juga peningkatan nilai estetika. Namun pada perkembangannya, salah satu proses elektrokimia, yaitu anodisasi, telah berkembang menjadi suatu proses modifikasi permukaan yang bertujuan untuk diaplikasikan pada teknologi berbasis nanoteknologi. Pemanfaatan lapisan oksida pada permukaan aluminium hasil proses anodisasi dilakukan dengan memanfaatkan pori (porous anodic alumina) yang terbentuk sebagai template pada pembuatan material yang berbasis pada nano teknologi seperti quantum-dot arrays, photonic crystals, magnetic memory arrays, nanowire dan berbagai alat mikroelektronik lainnya.
Penelitian ini bertujuan untuk mengetahui pengaruh perubahan konsentrasi larutan elektrolit terhadap ketebalan lapisan oksida yang terbentuk pada permukaan aluminium. Penelitian dilakukan dengan menggunakan sampel logam berupa aluminium foil (pure aluminium, 96.49%Al) dengan permukaan anodisasi sebesar 2X2 cm. Larutan elektrolit yang digunakan adalah asam oksalat dengan variasi konsentrasi 0.4 M, 0.5 M, 0.6 M. Tegangan pada proses adalah 32.5 Volt, temperatur dijaga pada rentang 4°C - 16°C, dan diaduk dengan menggunakan magnetic stirrer 500 rpm.
Hasil yang diperoleh melalui penelitian ini adalah bahwa tidak terjadi perubahan warna yang signifikan pada proses anodisasi dengan larutan asam oksalat. Nilai ketebalan lapisan oksida yang terbentuk akan semakin meningkat pada peningkatan konsentrasi asam oksalat. Nilai kekerasan pada sampel aluminium foil tidak dapat dilakukan dengan menggunakan metode microhardness tester.

Modification of aluminum surface with electrochemistry methods are developing rapidly nowadays. This surface modification were initially intended to increase the corrosion resistance, hardness, properties and improving the aesthetic appearance of aluminum. Recently, one of these electrochemistry methods, anodizing, were developed into one of the surface modification that can be applied in nanotechnology. Oxide layer which formed by anodizing process in the aluminum surface could be used as template for microelectronic nanotechnology material such as quantum-dot arrays, photonic crystals, magnetic memory arrays, nanowire because of it porous anodic alumina texture.
This research is conducted to found the effect of electrolyte concentration changes on thickness of oxide layer formed in aluminum surface. This research is carried out with aluminum foil sample (pure aluminum, 96.49% Al) with anodizing surface measured 2X2 cm. Electrolyte which used in this research is oxalic acid with concentration variation 0.4 M, 0.5 M, 0.6 M. This process using 32.5 Volt potential, temperature were kept in range of 4°C - 16°C, and the electrolyte were stirred electromagnetically at 500 rpm.
The result from this research shows that the colour of oxide layer by anodizing of aluminum in oxalic acid solution was transparent. By anodizing in oxalic acid, the thickness of formed oxide layer was dependent with the increase of concentration. Hardness testing on aluminum foil or oxide layer could?nt use to obtain hardness number in this research.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41633
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>