Ditemukan 6970 dokumen yang sesuai dengan query
Matt, Michael A.
"Michael A. Matt constructs two trivariate local Lagrange interpolation methods which yield optimal approximation order and Cr macro-elements based on the Alfeld and the Worsey-Farin split of a tetrahedral partition. The first interpolation method is based on cubic C1 splines over type-4 cube partitions, for which numerical tests are given. The second is the first trivariate Lagrange interpolation method using C2 splines. It is based on arbitrary tetrahedral partitions using splines of degree nine. The author constructs trivariate macro-elements based on the Alfeld split, where each tetrahedron is divided into four subtetrahedra, and the Worsey-Farin split, where each tetrahedron is divided into twelve subtetrahedra, of a tetrahedral partition. In order to obtain the macro-elements based on the Worsey-Farin split minimal determining sets for Cr macro-elements are constructed over the Clough-Tocher split of a triangle, which are more variable than those in the literature."
Wiesbaden: Springer, 2012
e20420045
eBooks Universitas Indonesia Library
Schoenberg, I.J.
"As this monograph shows, the purpose of cardinal spline interpolation is to bridge the gap between the linear spline and the cardinal series. The author explains cardinal spline functions, the basic properties of B-splines, including B- splines with equidistant knots and cardinal splines represented in terms of B-splines, and exponential Euler splines, leading to the most important case and central problem of the book-- cardinal spline interpolation, with main results, proofs, and some applications. Other topics discussed include cardinal Hermite interpolation, semi-cardinal interpolation, finite spline interpolation problems, extremum and limit properties, equidistant spline interpolation applied to approximations of Fourier transforms, and the smoothing of histograms."
Philadelphia: Society for Industrial and Applied Mathematics, 1993
e20450541
eBooks Universitas Indonesia Library
Dundas, Bjørn Ian
"[This book covers the connection between algebraic K-theory and Bökstedt, Hsiang and Madsen's topological cyclic homology and proves that the difference between the theories are ‘locally constant’. The usefulness of this theorem stems from being more accessible for calculations than K-theory, and hence a single calculation of K-theory can be used with homological calculations to obtain a host of ‘nearby’ calculations in K-theory. For instance, Quillen's calculation of the K-theory of finite fields gives rise to Hesselholt and Madsen's calculations for local fields, and Voevodsky's calculations for the integers give insight into the diffeomorphisms of manifolds. In addition to the proof of the full integral version of the local correspondence between K-theory and topological cyclic homology, the book provides an introduction to the necessary background in algebraic K-theory and highly structured homotopy theory; collecting all necessary tools into one common framework. It relies on simplicial techniques, and contains an appendix summarizing the methods widely used in the field. , This book covers the connection between algebraic K-theory and Bökstedt, Hsiang and Madsen's topological cyclic homology and proves that the difference between the theories are ‘locally constant’. The usefulness of this theorem stems from being more accessible for calculations than K-theory, and hence a single calculation of K-theory can be used with homological calculations to obtain a host of ‘nearby’ calculations in K-theory. For instance, Quillen's calculation of the K-theory of finite fields gives rise to Hesselholt and Madsen's calculations for local fields, and Voevodsky's calculations for the integers give insight into the diffeomorphisms of manifolds. In addition to the proof of the full integral version of the local correspondence between K-theory and topological cyclic homology, the book provides an introduction to the necessary background in algebraic K-theory and highly structured homotopy theory; collecting all necessary tools into one common framework. It relies on simplicial techniques, and contains an appendix summarizing the methods widely used in the field. ]"
London: [Springer, ], 2013
e20419276
eBooks Universitas Indonesia Library
Armstrong, James W.
New York: Macmillan, 1976
510 ARM e
Buku Teks SO Universitas Indonesia Library
Armstrong, James W.
London: Macmillan, 1970
510 ARM e
Buku Teks SO Universitas Indonesia Library
Nisrina Ayu Labibah
"Graf G=(V,E) merupakan pasangan terurut dari himpunan V dan E, di mana V adalah himpunan simpul di G dan E adalah himpunan busur di G. Lintasan u-v antara dua simpul u dan v di G adalah barisan simpul dan busur yang berawal di u dan berakhir di v tanpa adanya pengulangan simpul. Jarak antara simpul u dan v adalah panjang terkecil dari semua lintasan u-v di G. Geodesik u-v adalah lintasan u-v dengan panjang sama dengan jarak u dan v. Misalkan diberikan pewarnaan pada busur-busur graf. Lintasan pelangi adalah lintasan di mana warna semua busurnya berbeda. Geodesik pelangi adalah geodesik tanpa pengulangan warna busur. Pewarnaan pelangi kuat lokal-d merupakan pewarnaan semua busur di G di mana setiap pasangan simpul dengan jarak sampai d terhubung oleh geodesik pelangi. Bilangan keterhubungan pelangi kuat lokal-d pada graf G, dinotasikan dengan lsrc_d (G), adalah bilangan terkecil banyak warna yang digunakan dalam pewarnaan pelangi kuat lokal-d. Graf bintang dengan m+1 simpul adalah graf dengan satu simpul berderajat m dan m simpul berderajat 1. Graf lintasan adalah graf dengan n simpul yang membentuk himpunan busur {u_i u_(i+1)|i=1,2,...,n-1}. Graf stacked book merupakan hasil kali Kartesius antara graf bintang dan graf lintasan. Pada penelitian ini, dicari bilangan keterhubungan pelangi kuat lokal pada graf stacked book untuk d=2 dan d=3.
A graph G=(V,E) is an ordered pair of sets V and E, where V is the set of vertices in G and E is the set of edges in G. The u-v path between two vertices u and v in G is a sequence of vertices and edges that starts at u and ends at v without any vertex repetition. The distance between vertices u and v is the minimum length of all u-v paths in G. The u-v geodesic is a u-v path with the length equal to the distance. Suppose all edges of graph is colored. A rainbow path is a path in which the colors of all its edges are different. A rainbow geodesic is a geodesic with no repeating edge colors. A d-local strong rainbow coloring is the coloring of all edges in G where every pair of vertices with a distance of up to d is connected by a rainbow geodesic. The d-local strong rainbow connection number of graph G, denoted by lsrc_d (G), is the smallest number of colors used in the d-local strong rainbow coloring. A star graph with m+1 vertices is a graph with a vertex of degree m and m vertices of degree 1. A path graph is a graph with n vertices and set of edges {u_i u_(i+1)|i=1,2,...,n-1}. A stacked book graph is the Cartesian product between the star graph and the path graph. In this research, we give the local strong rainbow connection number of stacked book graphs for d=2 and d=3."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Evan Muhammad Fachriza
"Suatu graf G=(V,E) terdiri dari himpunan simpul hingga tak kosong V(G) dan himpunan busur hingga E(G). Pelabelan total antiajaib lokal pada graf G didefinisikan sebagai bijeksi f:V(G)UE(G)->{1,2,...,|V(G)|+|E(G)|} sedemikian sehingga untuk semua simpul u dan v bertetanggan berlaku w_t(u)=/w_t(v), dengan w_t(u)=f(u)+sum_(e in E(u))(f(e)) adalah bobot simpul u, dan E(u) adalah himpunan busur yang hadir pada simpul u. Pada pelabelan total antiajaib lokal pada graf G, tiap bobot simpul w_t(u) yang berbeda dianggap sebagai warna yang berbeda, sehingga pelabelan total antiajaib lokal pada graf G menginduksi pewarnaan simpul pada graf G, dengan banyaknya minimum warna yang digunakan atau Bilangan kromatiknya dinotasikan oleh chi_(lat)(G). Graf barbel roda BW_n, dengan n>=3, didefinisikan sebagai graf yang memiliki dua subgraf roda W_n yang dihubungkan oleh satu busur pada masing-masing simpul pusatnya. Penelitian ini dilakukan dengan tujuan untuk mengonstruksi pelabelan total antiajaib lokal pada graf barbel roda BW_n untuk menentukan Bilangan kromatik total antiajaib lokalnya.
A graph G=(V,E) consists of finite nonempty vertices set V(G) and finite edges set E(G). A local antimagic total labeling on graph G defined as a bijective mapping f:V(G)UE(G)->{1,2,...,|V(G)|+|E(G)|} such as for all two adjacent vertices u and v applies w_t(u)=/w_t(v), where w_t(u)=f(u)+sum_(e in E(u))(f(e)) is a weight of vertex u, and E(u) is a set of adjacent edges on vertex u. Each distinct vertex weights in local antimagic total labeling are considered as distinct colors, so that local antimagic total labeling on graph G induces vertex coloring on graph G, with minimum numbers of colors or its chromatic number is denoted as chi_(lat)(G). Barbell wheel graph BW_n, with n>=3, is defined as a graph with two wheel-subgraphs W_n that are connected by one edge at each center vertex. This research was conducted to construct local antimagic total labeling on barbell wheel graph BW_n to determine its local antimagic total chromatic number."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Beauchamp, Murray A.
New Jersey : Random House , 1970
510 BEA e
Buku Teks SO Universitas Indonesia Library
Benson, David J.
"This book presents the solution of a long-standing problem concerning the stable module category (of not necessarily finite dimensional representations) of a finite group. The proof draws on commutative algebra, cohomology of groups and stable homotopy theory. The unifying theme is a notion of support which provides a geometric approach for studying various algebraic structures. "
Basel: Springer, 2012
e20419927
eBooks Universitas Indonesia Library
"New approaches to knot insertion and deletion are presented in this unique, detailed approach to understanding, analyzing, and rendering B-spline curves and surfaces. Computer scientists, mechanical engineers, and programmers and analysts involved in CAD and CAGD will find innovative, practical applications using the blossoming approach to knot insertion, factored knot insertion, and knot deletion, as well as comparisons of many knot insertion algorithms. This book also serves as an excellent reference guide for graduate students involved in computer aided geometric design."
Philadelphia: Society for Industrial and Applied Mathematics, 1993
e20451148
eBooks Universitas Indonesia Library