Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 21275 dokumen yang sesuai dengan query
cover
cover
Koller, Daphne
Cambridge, UK: MIT Press, 2009
519.542 KOL p
Buku Teks SO  Universitas Indonesia Library
cover
Erdefi Rakun
"ABSTRAK
SIBI merupakan bahasa isyarat resmi bagi penyandang tunarungu di Indonesia. Dalam pembentukan isyarat, SIBI mengikuti aturan tata bahasa Indonesia. Untuk membentuk isyarat kata berimbuhan, maka isyarat imbuhan awalan, akhiran dan partikel ditambahkan ke isyarat kata dasar. Karena banyak isyarat SIBI merupakan isyarat kata berimbuhan dan belum ada penelitian tentang kata tersebut, maka penelitian ini fokus pada membangun sistem penerjemah kata berimbuhan SIBI ke teks. Gerakan isyarat ditangkap oleh kamera Kinect yang menghasilkan data color, depth dan skeleton. Data Kinect ini diolah menjadi fitur yang dipakai oleh model untuk mengenali gerakan. Sistem penerjemah memerlukan teknik ekstraksi fitur, yang dapat menghasilkan sebuah feature vector set dengan ukuran yang minimal. Penelitian ini berusaha untuk dapat memisahkan isyarat imbuhan dan kata dasar pada isyarat kata berimbuhan. Dengan kemampuan ini, sistem penerjemah menghasilkan 3 feature vector set: kata dasar, awalan dan akhiran. Tanpa pemisahan, feature vector set yang harus disediakan adalah sebanyak perkalian cartesian dari ketiga feature vector set tersebut. Perkalian ketiga set ini tentunya akan menghasilkan feature vector set total yang berukuran sangat besar. Model yang dicoba pada penelitian ini adalah Conditional Random Fields, Hidden Markov Model, Long Short-Term Memory Neural Networks LSTM dan Gated Recurrent Unit. Akurasi yang terbaik yang dicapai oleh untuk LSTM 2-layer 77.04 . Keunggulan dari LSTM terletak pada inputnya yang berupa sequence-of-frames dan setiap frame direpresentasi oleh fitur lengkap, bukan fitur hasil clustering. Model sequence-of-frames lebih cocok untuk SIBI, karena gerakan isyarat SIBI memiliki long-term temporal dependencies. Error hasil prediksi banyak terjadi pada kelompok awalan dan akhiran. Hal ini karena miripnya gerakan pada isyarat-isyarat imbuhan SIBI tersebut. LSTM 2-layer yang dipakai untuk mengenali kata dasar saja memberikan akurasi yang tertinggi 95.4 .

ABSTRACT
SIBI is the official sign language system for the Indonesian language. The formation of SIBI gestures follow Indonesian grammar rules, including inflectional words. Inflectional words are root words with prefixes, infixes, and suffixes, or a mix of the three. Inflectional gestures are made from root word gestures, with prefix, suffix and particle gestures added in the order in which they appear, all of which is unique to SIBI. This research aims to find a suitable model that can quickly and reliably perform SIBI to text translation on inflectional word gestures. The hand movement of the signer is captured by a Kinect camera. The Kinect data was then processed to yield features for the models to use recognize the gestures. Extant research have been able to translate the alphabet, root words, and numbers from SIBI to text, but none has been able to translate SIBI inflectional word gestures. In order for the translation system to work as efficiently as possible, this research developed a new method that splits an inflectional word into three feature vector sets root, prefix, suffix . This ensures that a minimally descriptive feature sets are used. Without using this, the feature sets would otherwise be as big as the Cartesian product of the prefixes, suffixes and root words feature sets of the inflectional word gestures. Four types of machine learning models were tested Conditional Random Fields, Hidden Markov Model, Long Short Term Memory Net, dan Gated Recurrent Unit. The 2 layer LSTM, with an accuracy of 77.04 , has been proven to be the most suitable. This model 39 s performance is due to the fact that it can take entire sequences as input and doesn 39 t rely on pre clustered per frame data. The 2 layer LSTM performed the best, being 95.4 accurate with root words. The lower accuracy with inflectional words is due to difficulties in recognizing prefix and suffix gestures."
2016
D2244
UI - Disertasi Membership  Universitas Indonesia Library
cover
Højsgaard, Søren
"This book attempts to give the reader a gentle introduction to graphical modeling using R and the main features of some of these packages. In addition, the book provides examples of how more advanced aspects of graphical modeling can be represented and handled within R. Topics covered in the seven chapters include graphical models for contingency tables, Gaussian and mixed graphical models, Bayesian networks and modeling high dimensional data."
New York: [Springer, ], 2012
e20419475
eBooks  Universitas Indonesia Library
cover
Baker, G.A.
Michigan: Edwards Brothers, 1962
519.2 BAK s
Buku Teks SO  Universitas Indonesia Library
cover
Solozhentsev, E.D.
"This book presents intellectual, innovative, information technologies (I3-technologies) based on logical and probabilistic (LP) risk models. The technologies presented here consider such models for structurally complex systems and processes with logical links and with random events in economics and technology. The volume describes the following components of risk management technologies : LP-calculus, classes of LP-models of risk and efficiency, procedures for different classes, special software for different classes, examples of applications, methods for the estimation of probabilities of events based on expert information. Also described are a variety of training courses in these topics. The classes of risk models treated here are : LP-modeling, LP-classification, LP-efficiency, and LP-forecasting. Particular attention is paid to LP-models of risk of failure to resolve difficult economic and technical problems. Amongst the discussed procedures of I3-technologies are the construction of LP-models, LP-identification of risk models; LP-risk analysis, LP-management and LP-forecasting of risk. The book further considers LP-models of risk of invalidity of systems and processes in accordance with the requirements of ISO 9001-2008, LP-models of bank operational risks in accordance with the requirements of Basel-2, complex risk LP-models for preventing ammunition depot explosions, enterprise electric power supply systems, debugging tests of technical systems, etc. The book also considers LP-models of credit risks, securities portfolios, operational risks in banking, conteraction of bribes and corruption, etc. A number of applications is given to show the effectiveness of risk management technologies. "
Dordrecht: Springer Science, 2012
e20398332
eBooks  Universitas Indonesia Library
cover
Larson, Harold J., 1934-
New York: John Wiley & Sons, 1979
620.001 5 LAR p
Buku Teks SO  Universitas Indonesia Library
cover
Larson, Harold J., 1934-
New York: John Wiley & Sons, 1979
620.001 5 LAR p
Buku Teks SO  Universitas Indonesia Library
cover
"The handbook consists of two sections. Models and extensions, and applications. Each section includes many interesting works in the respective domain. Section I presents papers on topics like the multi-product newsvendor problems, the newsvendor problem with law invariant coherent measures of risk, a Copula approach to inventory pooling problems with newsvendor products, repeated newsvendor games with transshipments, cooperative newsvendor games, an economic interpretation for the price-setting newsvendor problem, newsvendor models with alternative risk preferences within expected utility theory and prospect theory frameworks, and newsvendor problems with VaR and CVaR consideration. Section II presents papers on such topics as a two-period newsvendor problem for closed-loop supply chain analysis, the remanufacturing newsvendor problem, inventory centralization in a newsvendor setting when shortage costs differ, production planning on an unreliable machine for multiple items, analysis of the newsvendor problem under carbon emissions policies, optimal decisions of the manufacturer and distributor in a fresh product supply chain involving long distance transportation, a newsvendor perspective on profit target setting for multiple divisions, and a portfolio approach to multi-product newsvendor problem with budget constraint.
"
New York: Springer, 2012
e20396895
eBooks  Universitas Indonesia Library
cover
Unpingco, José
"This book, fully updated for Python version 3.6+, covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas. All the figures and numerical results are reproducible using the Python codes provided. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Detailed proofs for certain important results are also provided. Modern Python modules like Pandas, Sympy, Scikit-learn, Tensorflow, and Keras are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples.
This updated edition now includes the Fisher Exact Test and the Mann-Whitney-Wilcoxon Test. A new section on survival analysis has been included as well as substantial development of Generalized Linear Models. The new deep learning section for image processing includes an in-depth discussion of gradient descent methods that underpin all deep learning algorithms. As with the prior edition, there are new and updated *Programming Tips* that the illustrate effective Python modules and methods for scientific programming and machine learning. There are 445 run-able code blocks with corresponding outputs that have been tested for accuracy. Over 158 graphical visualizations (almost all generated using Python) illustrate the concepts that are developed both in code and in mathematics. We also discuss and use key Python modules such as Numpy, Scikit-learn, Sympy, Scipy, Lifelines, CvxPy, Theano, Matplotlib, Pandas, Tensorflow, Statsmodels, and Keras.
This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowledge of Python programming."
Switzerland: Springer Cham, 2019
e20510997
eBooks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>