Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7323 dokumen yang sesuai dengan query
cover
Spear, Chris
"Systemverilog for verification : a guide to learning the testbench language features teaches all verification features of the SystemVerilog language, providing hundreds of examples to clearly explain the concepts and basic fundamentals.
In the third edition, authors Chris Spear and Greg Tumbush start with how to verify a design, and then use that context to demonstrate the language features, including the advantages and disadvantages of different styles, allowing readers to choose between alternatives. This textbook contains end-of-chapter exercises designed to enhance students’ understanding of the material. Other features of this revision include, new sections on static variables, print specifiers, and DPI from the 2009 IEEE language standard, descriptions of UVM features such as factories, the test registry, and the configuration database, expanded code samples and explanations, and numerous samples that have been tested on the major SystemVerilog simulators."
New York: [, Springer], 2012
e20418474
eBooks  Universitas Indonesia Library
cover
Cambridge: Cambridge University Press, 2016
418.007 1 THE
Buku Teks  Universitas Indonesia Library
cover
Brown, James Dean
Cambridge: Cambridge University Press, 2015
418.007 2 THE
Buku Teks  Universitas Indonesia Library
cover
Brown, James Dean
New York: Cambridge University Press, 1988
418.002 1 BRO u
Buku Teks SO  Universitas Indonesia Library
cover
Philipus Kristian Renaldy
"

Emosi merupakan hal penting yang dimiliki oleh manusia. Banyak riset yang sudah dilakukan untuk menganalisis emosi seseorang secara langsung maupun tidak langsung. Salah satu topik dari machine learning yang berkembang adalah sistem yang mampu mempelajari isi suara manusia untuk menentukan emosi seseorang yang dinamakan speech emotion recognition. Banyak riset yang sudah dilakukan masih menggunakan dataset berbahasa Inggris, untuk itu diperlukan penelitian speech emotion recognition dengan menggunakan dataset berbahasa Indonesia. Pada penelitian ini dilakukan analisa speech emotion recognition menggunakan  4 model berbeda yaitu Convolutional Neural Network (CNN), Support Vector Machines (SVM), K-Nearest Neighbor (KNN), dan Logistic Regression (LR). Penelitian ini dilakukan dengan menggunakan hasil ekstraksi dari Mel-frequency Cepstral Coefficient (MFCC) yang dimasukkan ke dalam bentuk matriks 2D sebagai input menuju model percobaan. Dataset yang digunakan merupakan cuplikan dialog berbahasa Indonesia dengan karakteristik emosi tertentu yang sudah dikelompokkan terlebih dahulu. Dari percobaan yang telah dilakukan, didapatkan hasil bahwa model SVM memiliki tingkat rata-rata akurasi tertinggi jika dibandingkan dengan model lainnya, yaitu sebesar 59%. Sedangkan untuk model LR, KNN, dan CNN didapatkan tingkat akurasi rata-rata secara berurutan sebesar 54,5%; 53,5%; dan 47,7%.


Emotions are important things in human life. A lot of research had been done to analyze persons' emotions directly or indirectly. One of the topics of machine learning that is developing is a system that could understand the content of the human voice to determine a person's emotions called speech emotion recognition. Much of the research that had been done still uses English datasets. Therefore, speech emotion recognition research using Indonesian language datasets is needed. In this study, Speech Emotion Recognition analysis was performed using 4 different models, such as Convolutional Neural Network (CNN), Support Vector Machines (SVM), K-Nearest Neighbor (KNN), and Logistic Regression (LR). This study was conducted using the extraction outputs from the Mel-frequency Cepstral Coefficient (MFCC) which was converted into a 2D matrix. The output would be used as an input to the model. The dataset used was a snippet of Indonesian dialogue with several emotional characteristics that had been grouped. Based on this study, the results showed that the SVM model had the highest average level of accuracy around 59%. Meanwhile, for the LR, KNN, and CNN models, the average accuracy rate were 54.5%; 53.5%; and 47.7%.

"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Martin Hizkia Parasi
"

Perkembangan teknologi pemrosesan ucapan sangat pesat akhir-akhir ini. Namun, fokus penelitian dalam Bahasa Indonesia masih terbilang sedikit, walaupun manfaat dan benefit yang dapat diperoleh sangat banyak dari pengembangan tersebut. Hal tersebut yang melatarbelakangi dilakukan penelitian ini. Pada penelitian ini digunakan model transfer learning (Inception dan ResNet) dan CNN untuk melakukan prediksi emosi terhadap suara manusia berbahasa Indonesia. Kumpulan data yang digunakan dalam penelitian ini, diperoleh dari berbagai film dalam Bahasa Indonesia. Film-film tersebut dipotong menjadi potongan yang lebih kecil dan dilakukan dua metode ekstraksi fitur dari potongan audio tersebut. Ekstraksi fitur yang digunakan adalah Mel-Spectrogram dan MelFrequency Cepstral Coefficient (MFCC). Data yang diperoleh dari kedua ekstraksi fitur tersebut dilatih pada tiga model yang digunakan (Inception, ResNet, serta CNN). Dari percobaan yang telah dilakukan, didapatkan bahwa model ResNet memiliki performa yang lebih baik dibanding Inception dan CNN, dengan rata-rata akurasi 49%. Pelatihan model menggunakan hyperparameter dengan batch size sebesar 16 dan dropout (0,2 untuk Mel-Spectrogram dan 0,4 untuk MFCC) demi mendapatkan performa terbaik.


Speech processing technology advancement has been snowballing for these several years. Nevertheless, research in the Indonesian language can be counted to be little compared to other technology research. Because of that, this research was done. In this research, the transfer learning models, focused on Inception and ResNet, were used to do the speech emotion recognition prediction based on human speech in the Indonesian language. The dataset that is used in this research was collected manually from several films and movies in Indonesian. The films were cut into several smaller parts and were extracted using the Mel-Spectrogram and Mel-frequency Cepstrum Coefficient (MFCC) feature extraction. The data, which is consist of the picture of Mel-spectrogram and MFCC, was trained on the models followed by testing. Based on the experiments done, the ResNet model has better accuracy and performance compared to the Inception and simple CNN, with 49% of accuracy. The experiments also showed that the best hyperparameter for this type of training is 16 batch size, 0.2 dropout sizes for Mel-spectrogram feature extraction, and 0.4 dropout sizes for MFCC to get the best performance out of the model used.

"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Cook, Guy W.D.
ew York: Oxford University Press, 2000
402 Coo l
Buku Teks  Universitas Indonesia Library
cover
Illinois: National Council of Teachers of English, 1968
407 LAN
Buku Teks SO  Universitas Indonesia Library
cover
Archer, Russell
New York: Prentice-Hall, 1992
005.369 ARC p
Buku Teks  Universitas Indonesia Library
cover
Cook, Vivian
London: Edward Arnold, 2001
401.93 COO s
Buku Teks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>