Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 1952 dokumen yang sesuai dengan query
cover
AbuZeina, Dia
"Cross-word modeling for Arabic speech recognition utilizes phonological rules in order to model the cross-word problem, a merging of adjacent words in speech caused by continuous speech, to enhance the performance of continuous speech recognition systems. The author aims to provide an understanding of the cross-word problem and how it can be avoided, specifically focusing on Arabic phonology using an HHM-based classifier."
New York: [, Springer], 2012
e20418404
eBooks  Universitas Indonesia Library
cover
Elmahdy, Mohamed
"Novel techniques for dialectal Arabic speech describes approaches to improve automatic speech recognition for dialectal Arabic. Since speech resources for dialectal Arabic speech recognition are very sparse, the authors describe how existing Modern Standard Arabic (MSA) speech data can be applied to dialectal Arabic speech recognition, while assuming that MSA is always a second language for all Arabic speakers. "
New York: [, Springer], 2012
e20418294
eBooks  Universitas Indonesia Library
cover
Dib, Mohammed
"This book presents a contrastive linguistics study of Arabic and English for the dual purposes of improved language teaching and speech processing of Arabic via spectral analysis and neural networks. Contrastive linguistics is a field of linguistics which aims to compare the linguistic systems of two or more languages in order to ease the tasks of teaching, learning, and translation. The main focus of the present study is to treat the Arabic minimal syllable automatically to facilitate automatic speech processing in Arabic. It represents important reading for language learners and for linguists with an interest in Arabic and computational approaches."
Switzerland: Springer Nature, 2019
e20506958
eBooks  Universitas Indonesia Library
cover
New York: IEEE Press, c1979
621.381 9 AUT
Buku Teks  Universitas Indonesia Library
cover
Lea, Wayne A.
:Englewood Cliffs, NJ : Prentice-Hall, 1980
621.380 412 LEA t
Buku Teks  Universitas Indonesia Library
cover
"In the current study, two experiments are reported that investigated the effects of simple white noise and mixture of white noise and other sounds on perception of speech. In both experiments, university students were recruited to listen to short sentences under various sound masking conditions. Experiment 1, where standard sets of speakers were used for both speech and masking stimuli, has shown that, compared to baseline where there was no masking sound, the participants had significantly greater difficulties in understanding the sentences where the average level of understanding was 28% for the white noise condition and 20% for the mixed noise condition in which white noise was mixed with pink noise and sounds of running water. In Experiment 2, a test model of the specially designed sound masking speaker was used to present the masking noise. Further, sounds of tweeting birds and healing music were added to the mixed noise from Experiment 1 to create the three masking noise conditions. The average level of understanding for the mixed noise condition was 14%, while that for the bird and music conditions were 24% and 30% respectively. The higher understanding rates for the latter conditions were due to lower volume of the mixed white noise in order to keep the overall volume including the birds and music at 55dB. There were also significant effects of sentence type and reading voice gender, suggesting that auditory legibility does not solely depend on the speech-to-noise sound level ratio, but also on other variables, such as, predictability of the sentences, and clarity of the speech. Feedback at the end of the sessions revealed that the participants found mixed noise less irritating than pure white noise, and they preferred mixed noise with bird tweeting or music even better. Thus, it was concluded that mixed noise with occasional sounds of tweeting birds, was the most suitable masking sound for commercial use, being efficient and not unpleasant."
WAGLFOR
Artikel Jurnal  Universitas Indonesia Library
cover
Mary, Leena
"Extraction and representation of prosodic features for speech processing applications deals with prosody from speech processing point of view with topics including, the significance of prosody for speech processing applications, why prosody need to be incorporated in speech processing applications, and different methods for extraction and representation of prosody for applications such as speech synthesis, speaker recognition, language recognition and speech recognition."
New York: Springer, 2012
e20418411
eBooks  Universitas Indonesia Library
cover
Hanifuddin Malik
"ABSTRAK
Penelitian ini melaporkan tingkat keberhasilan dari sistem speech recognition yang diimplementasikan ke dalam quadcopter sebagai kendali geraknya. Pada sistem speech recognition digunakan metode mel frequency cepstral coefficient MFCC sebagai feature extraction yang kemudian akan di-training menggunakan metode recursive neural network RNN . Metode MFCC sendiri merupakan salah satu metode feature extraction yang paling banyak digunakan untuk speech recognition. Metode tersebut memiliki tingkat keberhasilan yang cukup besar sekitar 80 - 95 . Pada penelitian ini akan digunakan database yang sudah ada dan database yang baru. Database yang sudah ada akan digunakan sebagai media pengukur tingkat keberhasilan metode RNN. Database yang baru akan dibuat menggunakan bahasa indonesia dan kemudian dibandingkan tingkat keberhasilannya dengan hasil dari database yang sudah ada. Suara yang masuk dari microphone akan diolah pada laptop yang telah memiliki modul DSP dengan metode MFCC untuk mendapatkan nilai karakteristiknya. Nilai karakteristik tersebut kemudian akan di-training menggunakan RNN yang hasilnya berupa perintah. Perintah tersebut akan menjadi input kendali bagi single board computer SBC yang hasilnya berupa pergerakan quadcopter.

ABSTRACT
This research reports a success rate of speech recognition systems that are implemented into quadcopter as motion control. Speech recognition system is using mel frequency cepstral coefficient method MFCC as feature extraction that will be trained using recursive neural network method RNN . MFCC method is one of the feature extraction method that most used for speech recognition. This method has a success rates about 80 95 . This research will use the existing database and the new database. Existing database will be used for measure the success rate of RNN method. The new database will be created using Indonesian language and then the success rate will be compared with results from an existing database. Sound input from the microphone will be processed on a laptop that has a DSP module with MFCC method to get the characteristic values. The characteristic values then will be trained using the RNN which result is command. The command will become a control input to the single board computer SBC which result is the movement of quadcopter."
2017
S67037
UI - Skripsi Membership  Universitas Indonesia Library
cover
Holambe, Raghunath S.
"Non-linear aeroacoustic modeling approach is used to estimate the important fine-structure speech events, which are not revealed by the short time Fourier transform (STFT). This book includes advanced topics in non-linear estimation and modeling techniques along with their applications to speaker recognition."
New York: [, Springer], 2012
e20418336
eBooks  Universitas Indonesia Library
cover
Sen, Soumya
"This book offers an overview of audio processing, including the latest advances in the methodologies used in audio processing and speech recognition. First, it discusses the importance of audio indexing and classical information retrieval problem and presents two major indexing techniques, namely Large Vocabulary Continuous Speech Recognition (LVCSR) and Phonetic Search. It then offers brief insights into the human speech production system and its modeling, which are required to produce artificial speech. It also discusses various components of an automatic speech recognition (ASR) system."
Singapore: Springer Nature, 2019
e20506890
eBooks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>