Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 158683 dokumen yang sesuai dengan query
cover
Guntur Tri Setiadanu
"Telah dilakukan sintesis LiFePO4/C sebagai material katoda baterai lithium ion dengan menggunakan metode hidrotermal dari bahan LiOH, NH4H2PO4, FeSO4.7H2O, carbon black dan sukrosa. Proses hidrotermal dilakukan pada suhu reaktor 180⁰C dengan lama waktu penahanan 20 jam. Penambahan karbon dilakukan dengan 2 cara. Pertama menggunakan sukrosa sebagai sumber karbon yang dilarutkan bersama prekusor dan kedua menggunakan carbon black yang ditambahkan setelah proses hidrotermal sebelum proses kalsinasi. Temperatur kalsinasi divariasikan pada 500, 600 dan 750⁰C selama 5 jam. Proses dekomposisi termal dianalisis menggunakan DTA-TGA analyzer, karakterisasi fasa dilakukan dengan XRD, morfologi dengan SEM/EDX, nilai konduktifitas dan kapasitansi material dengan LCR-EIS, dan performa baterai dengan pengujian charge-discharge menggunakan baterai analyzer. Hasil LiFePO4/C yang murni berbentuk flake berhasil disintesis dengan penambahan carbon black 5 wt%, sedangkan untuk penambahan karbon melalui pelarutan sukrosa masih terdapat pengotor Fe3(PO4)2 pada hasil kalsinasi. Temperatur kalsinasi optimal adalah 750⁰C dengan ukuran kristalit 39,7 nm, tebal butiran flake 80 nm dan besar butiran rata-rata 427 nm. Konduktifitas LiFePO4 murni terukur 5 x 10-7 S/cm dan konduktifitas LiFePO4/C adalah 2,23 x 10-4 S/cm yang dihasilkan dari sampel dengan tambahan carbon black 5wt% kalsinasi 750⁰C. Dari pengujian charge/discharge didapatkan siklus terbaik dihasilkan oleh sampel LiFePO4/C yang dikalsinasi 750⁰C yang stabil dengan tegangan 3,3-3,4 V, kapasitas spesifik dihasilkan pada 0,1 C = 11,6 mAh/g ; 0,3C = 10,78 mAh./g dan 0,5 C = 9,45 mAh/g.

LiFePO4/C has been succesfully synthesized through hydrothermal method from LiOH, NH4H2PO4, and FeSO4.7H2O as starting materials and either carbon black or sucrose as carbon source used as cathode material for lithium ion batteries. In this work, hydrothermal reaction temperature was at 180C for 20 hours.Carbon sources were added in two routes. Firstly, sucrose solution was mixed with precursor solution before hydrothermal reaction. Secondly carbon black was added after hydrothermal reaction before calcination process. Calcination temperatures were performed at 500, 600, and 750C each for 5 hours. Thermal decomposition process was analyzed using DTA-TGA analyzer, phases and morphological were characterized by using XRD and SEM/EDX measurement, conductivity and electrical capacity were characterized by EIS measurement, and batteries performance were tested with charge discharge testing by battery analyzer. Pure LiFePO4/C flake shaped was successfully synthesized with the addition of 5 wt% carbon black, while the addition of carbon through the dissolution of sucrose still contained impurity from Fe3(PO4)2 in calcination product. Optimal calcination temperature was obtained at 750⁰C with crytallite size of 39.7 nm, flake particles diameter of 80 nm with particles average length of 427 nm. Pure LiFePO4 conductivity was measured to be 5 x 10-7 S/cm and conductivity LiFePO4/C was 2.23 x 10-4 S/cm produced from samples with carbon black addition of 5 wt% and calcined at 750⁰C. Charge/discharge cycles test showed that best battery performance was obtained from the sample with carbon black of 5wt% calcined at 750⁰C, with a stable voltage 3.3 to 3.4 V, specific capacity of 0.1 C = 11.6 mAh/g ; 0.3C = 10.78 mAh./g dan 0.5 C = 9.45 mAh/g."
Depok: Fakultas Teknik Universitas Indonesia, 2015
T43933
UI - Tesis Membership  Universitas Indonesia Library
cover
Ratna Permata Sari
"[Telah dilakukan peningkatan konduktivitas listrik LiFePO4 dengan metode penambahan material logam nano Cu dan CNTs. Metode ini menjadi pilihan yang menarik karena mudah dan murah dalam proses pembuatannya. Proses sintesis dilakukan dengan mencampur serbuk LiFePO4 (komersil) dengan variasi presentase berat nano tembaga (komersil) 0, 1, 3, 5, 7 wt. % dan 5 wt. % nano karbon (komersil)
kemudian di proses vacuum mixing dan film applicator. Pengujian XRD, SEM dan EDX dilakukan pada serbuk yang diterima untuk mengkonfirmasi fasa, ukuran butir serta ada tidaknya impurities. Hasil XRD dan EDX pada serbuk nano Cu menunjukkan bahwa telah terjadi oksidasi dan terbentuk menjadi CuO dan Cu2O, serta ditemukan
adanya impurities elemen S sebesar 8.5 wt. %. Komposisi fasa yang dihasilkan dari proses penambahan didapat dari menganalisis pola difraksi XRD menunjukkan bahwa fasa yang terbentuk adalah
LiFePO4 namun ditemukan adanya impurities berupa Cu4O3 pada variasi penambahan 80 wt. % LiFePO4, 5 wt. % Cu, 5 wt. % C, dan 10 wt. % PVDF. Konduktivitas listrik diuji material katoda LiFePO4 dengan EIS, dan hasil uji menunjukkan bahwa konduktivitas listrik LiFePO4 meningkat seiiring dengan penambahan nano Cu namun tidak terlalu signifikan (dalam satu orde), hal ini dikarenakan efek oksidasi pada Cu.
Pada variasi penambahan nano C dan nano Cu terjadi peningkatan sebesar 3 orde dengan nilai konduktivitas sebesar 8.4 x 10-5 S/cm pada variasi penambahan 80 wt. % LiFePO4, 5 wt. % Cu, 5 wt. % C. Penambahan nano karbon pada LiFePO4 lebih efektif dalam peningkatan konduktivitas dibandingkan dengan penambahan nano Cu
dikarenakan efek oksidasi pada Cu yang tidak dapat dihindari. Morfologi material katoda dan distribusi nano Cu dan nano karbon dianalisis menggunakan SEM/EDX, menunjukkan material yang dicampur pada variasi penambahan nano Cu cukup homogen, struktur butir spherical, sedangkan pada variasi penambahan nano Cu dan
nano karbon struktur butir polyhedral dengan ukuran butir berada pada rentang 100- 500 nm. Struktur butir ini mempengaruhi hasil cole plot dimana pada variasi penambahan Cu terbentuk semicircle sedangkan pada penambahan nano C tidak;Improved of Electrical conductivity of LiFePO4 with the method of adding Cu Nano metal material and CNTs has been done. This method is an attractive option because it is easy and inexpensive in the manufacturing process. Synthesis process is
done by mixing the powder LiFePO4 (commercial) with a variation of the percentage by weight of Nano copper (commercial) 0, 1, 3, 5, 7 wt. % and 5 wt. % CNTs (commercial) and then process in vacuum mixing and film applicator. Testing XRD, SEM and EDX performed on the powder to confirm the phase, grain size and the presence or absence of impurities. Results of XRD and EDX on Nano Cu powder showed that there had been oxidation and formed into CuO and Cu2O, and discovered the existence of impurities elements S of 8.5 wt. %.
Phase composition as the result from adding process obtained with analyzing the XRD diffraction pattern showed that the phase formed is LiFePO4 yet found any impurities in the form of Cu4O3 on variations LiFePO4 addition of 80 wt. %, 5 wt. % Cu, 5 wt. % C, and 10 wt. % PVDF. The electrical conductivity of LiFePO4 cathode material was tested by EIS, and the results showed that the electrical conductivity of LiFePO4 increased with the addition of Nano-Cu but not too significant (still on the same order), this is because the effects of oxidation on Cu. On the addition of Nano C and Nano Cu variation there is an increase of 3 order with conductivity value 8.4 x 10-5 S / cm at variations LiFePO4 addition of 80 wt.%, 5 wt.% Cu, 5 wt.% C. The addition of CNTs is more effective in LiFePO4 conductivity increase, compared to the addition
of Nano-Cu due to the effects of oxidation on Cu are unavoidable. Cathode material morphology and distribution of CNTs and Nano Cu analyzed using SEM / EDX, showed mixed material on the variation of the addition of Nano Cu quite homogenous, spherical grain structure, while the variation of the addition of Nano Cu and CNTs structures polyhedral grains with a grain size in the range 100-500 nm. This affects the grain structure results in a variation of Cole plot where the addition of Cu is formed semicircle, while the addition of Nano C is not.;Improved of Electrical conductivity of LiFePO4 with the method of adding Cu
Nano metal material and CNTs has been done. This method is an attractive option
because it is easy and inexpensive in the manufacturing process. Synthesis process is
done by mixing the powder LiFePO4 (commercial) with a variation of the percentage
by weight of Nano copper (commercial) 0, 1, 3, 5, 7 wt. % and 5 wt. % CNTs
(commercial) and then process in vacuum mixing and film applicator. Testing XRD,
SEM and EDX performed on the powder to confirm the phase, grain size and the
presence or absence of impurities. Results of XRD and EDX on Nano Cu powder
showed that there had been oxidation and formed into CuO and Cu2O, and discovered
the existence of impurities elements S of 8.5 wt. %.
Phase composition as the result from adding process obtained with analyzing
the XRD diffraction pattern showed that the phase formed is LiFePO4 yet found any
impurities in the form of Cu4O3 on variations LiFePO4 addition of 80 wt. %, 5 wt. %
Cu, 5 wt. % C, and 10 wt. % PVDF. The electrical conductivity of LiFePO4 cathode
material was tested by EIS, and the results showed that the electrical conductivity of
LiFePO4 increased with the addition of Nano-Cu but not too significant (still on the
same order), this is because the effects of oxidation on Cu. On the addition of Nano C
and Nano Cu variation there is an increase of 3 order with conductivity value 8.4 x 10-
5 S / cm at variations LiFePO4 addition of 80 wt.%, 5 wt.% Cu, 5 wt.% C. The addition
of CNTs is more effective in LiFePO4 conductivity increase, compared to the addition
of Nano-Cu due to the effects of oxidation on Cu are unavoidable. Cathode material
morphology and distribution of CNTs and Nano Cu analyzed using SEM / EDX,
showed mixed material on the variation of the addition of Nano Cu quite homogenous,
spherical grain structure, while the variation of the addition of Nano Cu and CNTs
structures polyhedral grains with a grain size in the range 100-500 nm. This affects the
grain structure results in a variation of Cole plot where the addition of Cu is formed
semicircle, while the addition of Nano C is not., Improved of Electrical conductivity of LiFePO4 with the method of adding Cu
Nano metal material and CNTs has been done. This method is an attractive option
because it is easy and inexpensive in the manufacturing process. Synthesis process is
done by mixing the powder LiFePO4 (commercial) with a variation of the percentage
by weight of Nano copper (commercial) 0, 1, 3, 5, 7 wt. % and 5 wt. % CNTs
(commercial) and then process in vacuum mixing and film applicator. Testing XRD,
SEM and EDX performed on the powder to confirm the phase, grain size and the
presence or absence of impurities. Results of XRD and EDX on Nano Cu powder
showed that there had been oxidation and formed into CuO and Cu2O, and discovered
the existence of impurities elements S of 8.5 wt. %.
Phase composition as the result from adding process obtained with analyzing
the XRD diffraction pattern showed that the phase formed is LiFePO4 yet found any
impurities in the form of Cu4O3 on variations LiFePO4 addition of 80 wt. %, 5 wt. %
Cu, 5 wt. % C, and 10 wt. % PVDF. The electrical conductivity of LiFePO4 cathode
material was tested by EIS, and the results showed that the electrical conductivity of
LiFePO4 increased with the addition of Nano-Cu but not too significant (still on the
same order), this is because the effects of oxidation on Cu. On the addition of Nano C
and Nano Cu variation there is an increase of 3 order with conductivity value 8.4 x 10-
5 S / cm at variations LiFePO4 addition of 80 wt.%, 5 wt.% Cu, 5 wt.% C. The addition
of CNTs is more effective in LiFePO4 conductivity increase, compared to the addition
of Nano-Cu due to the effects of oxidation on Cu are unavoidable. Cathode material
morphology and distribution of CNTs and Nano Cu analyzed using SEM / EDX,
showed mixed material on the variation of the addition of Nano Cu quite homogenous,
spherical grain structure, while the variation of the addition of Nano Cu and CNTs
structures polyhedral grains with a grain size in the range 100-500 nm. This affects the
grain structure results in a variation of Cole plot where the addition of Cu is formed
semicircle, while the addition of Nano C is not.]"
Fakultas Teknik Universitas Indonesia, 2015
T43699
UI - Tesis Membership  Universitas Indonesia Library
cover
Rakha Aditama Anjani
"Lithium Ferro Phosphate (LiFePO4) adalah kandidat yang menjanjikan sebagai bahan sumber energi elektrik yang ramah lingkungan. Penambahan Ni komposit dalam baterai berbasis Li-ion dapat meningkatan performa dari baterai LiFePO4. Dalam penelitian ini, LiFePO4 akan disintesis dengan menggunakan Fe2O3, H3PO4, dan LiOH melalui cara solid-state dan dilakukan perlakuan panas yaitu sintering. Setelah itu, prekursor dikompositkan dengan tiga variasi penambahan konten Nikel dalam % berat, yaitu 5, 7 dan 10% melalui metode solid-state dengan ball mill diberi label LFP/5-Ni, LFP/7.5-Ni dan LFP/10-Ni. Karakterisasi dilakukan menggunakan XRD dan SEM untuk mengamati efek penambahan Nikel pada struktur dan morfologi sampel yang dihasilkan.

Lithium Ferro Phosphate (LiFePO4) is a promising candidate as an environmental friendly electric energy sources. The addition of Nickel composite in Lithium-ion battery based can enhance the performance of LiFePO4 batteries. In this experiment, LiFePO4 was synthesized using Fe2O3, H3PO4, and LiOH by solid-state method and heat treated with sintering process. After that, the precursor were composited with the various Nickel composition, in % wt, 5, 7.5 and 10% with solid-state method by using ball mill and labeled as LFP/5-Ni, LFP/7.5-Ni and LFP/10-Ni respectively. The characterizations were made using XRD and SEM testing. These were performed to observe the effect of Nickel addition on structure and morphology of the resulting samples."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dimas Yunianto Putro
"Telah dilakukan sintesis katoda LiFePO4 dengan penambahan variasi Vanadium sebagai bahan aditif. Dalam penelitian ini bubuk LiFePO4 dibuat dengan LiOH, NH4H2PO4, dan FeSO4.7H2O sesuai stoikiometri melalui proses hidrotermal. Pada tahapan berikutnya, dilakukan pencampuran pelarut dan bubuk H4NO3V sebagai variasi dari katoda aktif bahan dan karbon hitam sebanyak 4% wt. Selanjutnya dilakukan proses hidrotermal untuk membentuk LiFePO4 murni dengan warna abu-abu terang. Setelah proses sintering, didapatkan hasil berwarna abu-abu gelap sebagai karakteristik partikel LiFePO4. Bahan katoda LiFePO4 murni disintesis pada suhu 180 °C dalam autoclave dengan waktu penahanan selama 20 jam dan selanjutnya disintering 750 °C dengan penahanan selama 4 jam. Hasil sintesis dikarakterisasi menggunakan analisis termal (STA), difraksi sinar-X (XRD), mikroskop elektron (SEM), dan sifat listrik melalui spektroskopi impendansi (EIS). Hasilnya memperlihatkan bahwa temperatur pembentukan LiFePO4 dari uji STA adalah antara 653,8 – 750,0 °C. Hasil XRD menunjukkan LiFePO4 memiliki struktur olivin dengan grup ruang ortorombik, sementara hasil SEM menunjukkan bahwa LiFePO4 berbentuk bulat dan teraglomerasi. Hasil uji EIS menghasilkan nilai impedansi atau hambatan sebesar 158 Ω untuk LiFePO4 murni hasil sintesis dan 59 Ω untuk LiFePO4 dengan doping vanadium 5%.

Vanadium-doped LiFePO4 used as cathode for lithium ion battery has been suscessfully synthesized. In this work, LiFePO4 was synthesizwed from LiOH, NH4H2PO4, and FeSO4.7H2O at stoichiometric amount through a hydrothermal method. Vanadium was added in the forms of H4NO3V powder at concentration variations and 4% wt carbon black. The hydrothermal process has been successfully carried out to form a pure LiFePO4 with a light gray color. After the sintering process, a dark gray powder as the characteristics of LiFePO4 particles were obtain. Pure LiFePO4 was synthesized at 180 °C in an autoclave for 20 hours and was sintered at 750 °C for 4 hours. The craharacterization includes thermal analysis (STA), X-ray diffraction (XRD), electron microscope (SEM), and electrical impendance spectroscopy (EIS). The STA results showed that LiFePO4 formation temperature is at 653.8 – 750.0 °C. The XRD results showed LiFePO4 are having olivine structure with orthorhombic space group, whereas the SEM results showed that LiFePO4 has round shape with agglomerated microstructure. EIS test results showed impedance of 158 Ω for pure LiFePO4 and 59 Ω for LiFePO4 doped 5% vanadium."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63806
UI - Skripsi Membership  Universitas Indonesia Library
cover
Chandra Pratama Wiyaga
"Pengembangan baterai listrik sebagai sumber energi utama untuk electricity-vehicle menjadi fokus utama dalam industri otomotif terkini. Salah satu dari sumber energi listrik yang paling banyak dikembangkan adalah baterai ion lithium. Komponen penting pada Baterai Ion-Lihium yakni katoda merupakan salah satu komponen yang banyak dilakukan pengembangan pada bidang industri, katoda yang paling banyak digunakan pada pengembangan industri baterai ion-lihium adalah LiCoO2 dan NMC 622. NMC material memiliki keuntungan dibandingkan LiCoO2 terutama dalam keseimbangan energy density, power capability, dan cost dari produk. Material NMC juga memiliki kesetimbangan termal yang lebih baik dibandingkan LiCoO2 sehinga lebih safety dalam proses sintesis material. Penelitian kali ini, menggunakan NMC 622 sebagai katoda utama dengan disintesis menggunakan metode solution combustion (SCS) dengan variasi suhu sintering. Metode solution combustion digunakan karena metode ini sederhana dalam pengunaannya, cost yang cenderung murah, dan proses sintesis tidak memakan waktu yang lama. Untuk mendapatkan data penelitian, mengenai performa terbaik pada hasil sisntesis dilakukan variasi suhu sintering pada 3 variasi suhu 700 oC, 800 oC, dan 900 oC. Hasil dari uji SEM-EDS menyatakan bahwa material memiliki distribusi partikel yang baik. Hasil XRD menunjukkan hasil struktur material yang berbentuk hexagonal. NMC 622 800 oC memiliki kapasitas 137.24787 mAh/g, NMC 622 700 oC sebesar 101.56644 mAh/g dan kapasitas NMC 622 900 oC sebesar 66.61218 mAh/g.

The development of electric batteries as the main energy source for electricity-vehicles is a major focus in the current automotive industry. One of the most widely developed sources of electrical energy is the lithium-ion battery. An important component in the Ion-Lihium Battery, cathode is one of the components that is widely developed in the industrial field, the cathode that is most widely used in the development of the ion-lihium battery industry is LiCoO2 and NMC 622. NMC material has advantages over LiCoO2 especially in the balance of energy density, power capability, and cost of the product. NMC material also has a better thermal equilibrium than LiCoO2 so that it is more safety in the material synthesis process. This research uses NMC 622 as the main cathode by synthesizing it using the solution combustion (SCS) method with variations in sintering temperature. The solution combustion method is used because this method is simple in its use, the cost tends to be cheap, and the synthesis process does not take a long time. To obtain research data, regarding the best performance in the synthesis results, sintering temperature variations were carried out at 3 temperature variations of 700 oC, 800 oC, and 900 oC. The results of the SEM-EDS test state that the material has a good particle distribution. XRD results show the results of hexagonal material structure. NMC 622 800 oC has a capacity of 137.24787 mAh/g, NMC 622 700 oC of 101.56644 mAh/g and a capacity of NMC 622 900 oC of 66.61218 mAh/g."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Prita Sekaringtyas
"Proses sintesis LiFePO 4/V/C dilakukan untuk membuat katoda baterai lithium ion. Sintesis diawali dengan membuat LiFePO4 melalui proses hidrotermal dengan bahan dasar LiOH, NH4H2PO4, dan FeSO4.7H2O. Setelah proses sintesis, LFP kemudian ditambahkan variasi vanadium dan karbon aktif sekam padi. Ketiga bahan dicampur menggunakan ball-miller kemudian dikarakterisasi analisis termal STA untuk menetukan temperatur sintering. Proses sintering dilakukan pada temperatur 850 C selama 4 jam. Hasil sintering kemudian dikarakterisasi dengan difraksi sinar-X XRD dan morfologi permukaan dianalisa dengan menggunakan mikroskop elektron SEM.
Hasil karakterisasi dengan XRD menunjukkan terbentuknya fasa LiFePO4/V/C. Hasil SEM menunjukkan perbedaan morfologi penambahan vanadium dan karbon aktif. Proses pembuatan baterai dilakukan dengan bahan-bahan hasil sintesis. Pengujian konduktifitas dilakukan dengan menggunakan EIS. Hasil EIS menunjukkan bahwa dengan penambahan karbon aktif sekam padi memiliki konduktifitas yang lebih besar dibandingkan karbon gula dan carbon black. Hasilnya yaitu karbon aktif sekam padi dapat digunakan sebagai pelapis karbon pada katoda baterai lithium ion.

Use of carbon pyrolized from rice husk in the synthesis of LiFePO4 V C used as lithoum ion battery cathode has been carried out. The synthesis was begun by syntesizing LiFePO4 LFP via hydrothermal route using the precursors of LiOH, NH4H2PO4, and FeSO4.7H2O. The as synthesized LFP was then added with variations of vanadium and a fix composition of activated carbon using rice husk as the resource of the carbon. These three ingredients were mixed using a ball miller and was characterized using thermal analyzer to determine the transition temperature from which temperature 850 C was obtained. The LiFePO4 V C was characterized using X ray diffraction XRD whereas the surface morphology was analyzed using scanning electron microscope SEM equipped with energy dispersive X ray spectroscopy EDX.
XRD results show that the LiFePO4 V C has been formed, whereas SEM results showed a difference in morphology of vanadium and activated carbon addition. The battery were prepared from the as synthesized materials and was tested using electrical impendance spectroscopy EIS. EIS results showed that the materials with addition of activated carbon from the rice husk has greater conductivity than that of pure LFP. This prove that the activated carbon from the rice husk can be used as a cheap carbon resource for developing lithium ion battery cathode.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68448
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rifa Satria
"ABSTRAK
Senyawa Li4Ti5O12 atau yang biasa disingkat dengan LTO, adalah salah satu jenis senyawa yang sering digunakan untuk komponen anoda dalam baterai. Kelebihan yang dimiliki adalah usia pakai yang panjang akibat sifat zero strain yang dimiliki saat material mengalami insersi dan ekstraksi ion lithium. Namun kapasitas yang dimiliki masih tergolong rendah, yaitu bernilai 175 mAh/g. Oleh karena itu, untuk dapat meningkatkan kapasitas anoda LTO dilakukan pembuatan komposit LTO. Doping element yang digunakan adalah nano Si, dimana dengan penggunaan partikel berskala nano diharapkan dapat meningkatkan performa baterai lebih jauh sebagai efek dari luas permukaan partikel yang lebih besar. Dalam penelitian ini LTO disintesis dengan metode hidrothermal-mekanokimia sebelum dilakukan pencampuran dengan nano Si. Variasi persentase massa Si yang digunakan adalah 1 , 5 , dan 10 . Karakterisasi yang digunakan adalah XRD, SEM, serta TEM. Sementara untuk pengujian performa baterai dilakukan pengujian EIS, CV, serta CD. Penelitian ini akan membahas efek dari mixing Si pada performa komposit LTO/Si. Hasil pengujian CV menunjukkan bahwa kapasitas terbesar diperoleh pada sampel LTO/Si-10 dengan kapasitas sebesar 216.15 mAh/g.

ABSTRACT
Li4Ti5O12 or LTO is one of many compounds that could be used as anode in lithium battery. One of the main advantages of using LTO as an anode is its long cycle life which is affected by its zero strain property during insertion and extraction of lithium ions. Despite its advantages, LTO still has problems such as limited capacity on 175 mAh g. Researchers have tried many methods to increasing the capcaity of LTO, such as making a composite from LTO host. In this composite, nano Si is used as doping element because its high theoritical capacity could increase the overall capacity of the LTO composite. In this research, LTO was synthesized by hydrothermal mechanochemical methods before we combine it with nano Si. The mass variation of nano Si was 1 , 5 , and 10 in wt. XRD, SEM, and TEM were used for material characterization. For the battery performance testing we used EIS, CV, and CD. This research will explain the effect of Si on the LTO Si composite performance. From the CV testing, it is known that the highest capacity was obtained from LTO Si 10 sample with 216.15 mAh g."
2017
S66667
UI - Skripsi Membership  Universitas Indonesia Library
cover
Said Firdaus
"Litium Titanat (LTO) merupakan salah satu material anoda dengan performa yang baik karena sifatnya yang zero - strain. Pada penelitian ini sintesis LTO dilakukan dengan menggunakan metode solid-state dimana menggunakan serbuk LiOH dan TiO2 sebagai prekursor. Akan tetapi, LTO memiliki kapasitas yang cukup rendah. Penambahan Silikon Karbida (SiC) dilakukan untuk meningkatkan kapasitas dan stabilitas kapasitas pelepasan pada LTO. Penambahan SiC dilakukan setelah proses sintesis LTO selesai menggunakan metode wet ball mill.
Hasil sintesis menghasilkan serbu berwarna keabuan. Serbuk LTO/SiC dikarakterisasi menggunakan difraksi sinar-X (XRD), SEM-EDS dan EIS. Hasil XRD menunjukkan LTO/SiC telah berhasil terbentuk sebagai produk utama. Selain itu, hasil pengujian performa EIS menunjukkan bahwa LTO/SiC 4% memiliki konduktivitas tertinggi dimana ditunjukkan dengan resistivitasnya yang paling rendah dibanding yang lain. Selain pengujian tersebut, untuk menguji performa LTO/SiC dilakukan pengujian CV dan CD.

Lithium Titanate (LTO) is one of the anode materials which possess very good electrochemical performance because of its zero-strain characteristic. In this study, Solid-state synthesis method was used to synthesize LTO using LiOH and TiO2 powder as precursors. However, LTO performance is limited by its low capacity. Addition of Silicon Carbide (SiC) was done using wet ball mill method to enhance its capacity and stability of discharge capacity.
As a result, the powder has greyish color. LTO/SiC powder was characterized using X-Ray Diffraction (XRD), SEM-EDS and EIS. The result of XRD characterization exhibits the formation of LTO/SiC as a major products. Moreover, EIS performance testing showed that LTO/SiC 4% possess highes electrical conductivity which is indicated by its lowest resistivity compared to other sample. Furthermore, to find out performaces of LTO/SiC, CV and CV test was performed.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fajar Rifqi Fadhila
"Baterai lithium-ion sebagai platform penyimpanan energi telah dikembangkan dalam 2 dekade terakhir dengan variasi komposisi elektroda. Baterai ini bisa dioptimalkan hingga 80% dari kemampuannya sebagai energy storage. Material anoda yang umum digunakan pada baterai lithium ion adalah grafit, memiliki struktur berlapis yang dapat memaksimalkan proses interkalasi ion lithium. Grafit berhasil disintesis dari green coke yang merupakan produk sampingan dari proses thermal cracking yang digunakan oleh perusahaan minyak bumi untuk mengubah residu bahan bakar minyak. Sintesis grafit (green coke) dilakukan dengan mencampurkan bahan green coke dengan Super P sebagai karbon konduktif, Polyivinylidine Fluoride (PVDF) sebagai pengikat (8: 1: 1), dan N-N Dimetyl Acetamid (DMAC) sebagai pelarut, kemudian digunakan sebagai lembaran anoda pada tahap pelapisan dengan cu-foil menggunakan doctor blade. Grafit (Sigma Aldrich) juga digunakan sebagai lembaran anoda sebagai pembanding. Anoda green coke dikarakterisasi menggunakan FTIR, XRD, SEM-EDS, TEM dan Raman. Kinerja elektrokimia dikarakterisasi menggunakan CV, GCD, dan EIS. Performa siklus anoda green coke dalam baterai Li-ion menghasilkan kapasitas discharge dan efisiensi coulombic masing-masing 202,59 mAh g-1 dan 79,77%. Anoda green coke menghasilkan efisiensi coulomb yang lebih rendah jika dibandingkan dengan anoda grafit (91,51%). Namun, kombinasi penggunaan limbah minyak bumi sebagai bahan baku dan kinerja elektrokimia yang baik akan membuat grafit (green coke) menjadi bahan yang menjanjikan untuk baterai dengan biaya rendah menghasilkan penyimpanan energi berskala besar.

Lithium-ion battery as an energy storage platform has been developed in the last 2 decades with variations in electrodes composition. This battery could be optimized up to 80% of its ability in storing energy. Anode material that commonly used in lithium ion battery is graphite, having a layered structure that can maximize the intercalation process of lithium ions. Graphite has been successfully synthesized from green coke which is a by-product of thermal cracking process used by petroleum companies to change fuel oil residues. Green coke graphite synthesis was carried out by mixing green coke material with Super P as conductive carbon, Polyivinylidine Fluoride (PVDF) as binder (8:1:1), and N-N Dimetyl Acetamid (DMAC) as solvent, then used as anode sheet on coating stage with copper foil using doctor blade. Commercial graphite were also used as anode sheet as comparison. The green coke anode was characterized using FTIR, XRD and SEM-EDS. Electrochemical performance was characterized using CV, GCD, and EIS. Cycling performance of green coke anode in Li-ion batteries produces reversible capacity and coulombic efficiency of 202.59 mAh g-1 and 79.77 %, respectively. Green coke anode produce lower coulombic efficiency when compared to graphite anode (91.51%). However, the combination of the use of petroleum waste as raw material and good electrochemical performance would make graphite green coke a promising material for a low cost battery for large scale energy storage."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Audiya Dewi Rachmawati
"Telah dilakukan sintesis katoda LiFePO4/V berlapis karbon dari karbon aktif tempurung kelapa untuk katoda baterai lithium ion. Prekursor yang digunakan adalah LiOH, NH4H2PO4, dan FeSO4.7H2O dibuat melalui proses hidrotermal. Selanjutnya, dilakukan pencampuran karbon dari karbon aktif tempurung kelapa sebanyak 4 dan variasi vanadium serbuk yang bersumber dari H4NO3V. Campuran LiFePO4/V/C dikarakterisasi menggunakan analisis termal STA untuk menentukan temperatur sintering. Hasilnya sintesis terjadi pada temperatur di atas 681,950C dan serbuk berwarna abu-abu gelap sebagai karakteristik dari LiFePO4. Kemudian proses sintering dilakukan pada temperatur 8500C selama 4 jam. Serbuk LiFePO4 sintesis dikarakterisasi menggunakan difraksi sinar-X XRD, mikroskop elektron dan pendeteksi unsur SEM-EDS serta sifat listrik melalui spektroskopi impedansi EIS.
Hasil XRD menunjukkan LiFePO4/V/C telah terbentuk dengan struktur berbasis olivin. Hasil SEM-EDS menggambarkan partikel yang teraglomerasi dan LiFePO4/V telah terlapisi karbon. Hasil EIS menunjukkan konduktivitas sebesar 5,33 x 10-5 S/cm untuk LiFePO4/C tanpa vanadium dan 6 x 10-6 S/cm untuk LiFePO4/C dengan doping vanadium 5.

Activated carbon from coconut shell has been used as an additive to form LiFePO4 V C composite for lithium ion battery cathode. Lithium iron phosphate LFP was synthesized from the precursors of LiOH, NH4H2PO4, and FeSO4.7H2O via hydrothermal method. The LiFePO4 V C composite was formed by adding various vanadium concentration 0, 3, 5, 7 at. and a fix concentration of carbon 4 wt. Thermal analysis STA was used to characterize the formation of LFP and the transition temperature of the composite from which a transition temperature of 681.950C was obtained. X ray diffraction XRD was used to characterize the crystal structure, whereas scanning electron microscope SEM equipped with energy dispersive X ray spectroscopy EDX was used to characterize the morphology and composition of the composite. The conductivity of the composite was examined using electrical impendance spectroscopy EIS.
The XRD results showed that LiFePO4 V C has an olivine structure with Pnmb space group. The SEM EDX results depicted aglomerate particles but most LiFePO4 V has been coated by carbon. EIS test results showed a conductivity of 5.33 x 10 5 S cm for LiFePO4 C with no vanadium and 6.0 x 10 6 S cm for 5 wt. vanadium doped LiFePO4 V C.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68917
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>