Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 87377 dokumen yang sesuai dengan query
cover
Novieka Distiasari
"ABSTRAK
Pengelompokan supplier penting untuk memberikan informasi kepada pembeli. Penelitian ini mengusulkan meta-heuristik berbasis algoritma K-modes untuk mengelompokkan dataset dalam bentuk biner. Ada dua metode metaheuristik yang digunakan dalam penelitian ini, yaitu particle swarm optimization (PSO) dan genetic algorithm (GA). Meta-heuristik yang diterapkan untuk memberikan modes awal yang lebih baik untuk algoritma K-modes. Penelitian ini menggunakan pengukuran Jaccard dalam hal pengukuran similarity dan menggunakan tiga dataset untuk memvalidasi algoritma yang diusulkan. Hasil percobaan dan hasil statistik menunjukkan bahwa PSO berbasis algoritma K-modes lebih baik dari GA berbasis algoritma K-modes. Dalam hasil evaluasi menggunakan data dari sebuah perusahaan automobile di Taiwan, PSO berdasarkan PSO berbasis algoritma K-modes memiliki SSE kecil dari pada GA berbasis algoritma K-modes.

ABSTRACT
Supplier clustering is important for providing more important information for the buyer. This study proposes meta-heuristics based K-modes algorithm for clustering binary dataset. There are two metaheuristic methods applied in this study, namely particle swarm optimization (PSO) and genetic algorithm (GA). The meta-heuristics are applied to give better initial modes for the K-modes algorithm. In terms of similarity measurement, this study uses Jaccard measurement since the real data set consists of higher number of value zero than one. In order to validate the proposed algorithms, three benchmark datasets are employed. The experiments results and statistical results show that PSO based K-modes algorithm is better than GA based K- modes algorithm. The data set from a exisibition company in Taiwan. In model evaluation results, PSO based K- modes algorithm has the SSE lowest than GA based K- modes algorithm."
Depok: Fakultas Teknik Universitas Indonesia, 2015
T44694
UI - Tesis Membership  Universitas Indonesia Library
cover
Yuliana Portti
"Penelitian ini mengusulkan tiga algoritma meta-heuristik berbasis Fuzzy K-modes untuk clustering binary data set. Ada tiga metode metaheuristik diterapkan, yaitu Particle Swarm Optimization (PSO), Genetika Algoritma (GA), dan Artificial Bee Colony (ABC). Ketiga algoritma digabungkan dengan algoritma K-modes. Tujuannya adalah untuk memberikan modes awal yang lebih baik untuk K-modes. Jarak antara data ke modes dihitung dengan menggunakan koefisien Jaccard. Koefisien Jaccard diterapkan karena dataset mengandung banyak nilai nol . Dalam rangka untuk melakukan pengelompokan set data real tentang supplier otomotif di Taiwan, algoritma yang diusulkan diverifikasi menggunakan benchmark set data. Hasil penelitian menunjukkan bahwa PSO K-modes dan GA K-modes lebih baik dari ABC K-modes. Selain itu, dari hasil studi kasus, GA K-modes memberikan SSE terkecil dan juga memiliki waktu komputasi lebih cepat dari PSO K-modes dan ABC K-modes.

This study proposed three meta-heuristic based fuzzy K-modes algorithms for clustering binary dataset. There are three meta-heuristic methods applied, namely Particle Swarm Optimization (PSO) algorithm, Genetic Algorithm (GA) algorithm, and Artificial Bee Colony (ABC) algorithm. These three algorithms are combined with k-modes algorithm. Their aim is to give better initial modes for the k-modes. Herein, the similarity between two instances is calculated using jaccard coefficient. The Jaccard coefficient is applied since the dataset contains many zero values. In order to cluster a real data set about automobile suppliers in Taiwan, the proposed algorithms are verified using benchmark data set. The experiments results show that PSO K-modes and GA K-modes is better than ABC K-modes. Moreover, from case study results, GA fuzzy K-modes gives the smallest SSE and also has faster computational time than PSO fuzzy K-modes and ABC fuzzy K-modes.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T44406
UI - Tesis Membership  Universitas Indonesia Library
cover
M. Misbachul Huda
"Categorical data is a kind of data that is used for computational in computer science. To obtain the information from categorical data input, it needs a clustering algorithm. There are so many clustering algorithms that are given by the researchers. One of the clustering algorithms for categorical data is k-modes. K-modes uses a simple matching approach. This simple matching approach uses similarity va-lues. In K-modes, the two similar objects have similarity value 1, and 0 if it is otherwise. Actually, in each attribute, there are some kinds of different attribute value and each kind of attribute value has different number. The similarity value 0 and 1 is not enough to represent the real semantic distance between a data object and a cluster. Thus in this paper, we generalize a k-modes algorithm for catego-rical data by adding the weight and diversity value of each attribute value to optimize categorical data clustering.

Data Kategorial merupakan suatu jenis data perhitungan di ilmu komputer .Untuk mendapatkan infor-masi dari input data kategorial diperlukan algoritma klastering. Ada berbagai jenis algoritma klas-tering yang dikembangkan peneliti terdahulu. Salah satunya adalah K-modes. K-modes menggunakan pendekatan simple matching. Pendekatan simple matching ini menggunakan nilai similarity. Pada K-modes, jika dua objek data mirip, maka akan diberi nilai. Jika dua objek data tidak mirip, maka diberi nilai 0. Pada kenyataannya, tiap atribut data terdiri dari beberapa jenis nilai atribut dan tiap jenis nilai atribut terdiri dari jumlah yang berbeda. Nilai similarity 0 dan 1 kurang merepresentasi jarak antara sebuah objek data dan klaster secara nyata. Oleh karena itu, pada paper ini, kami mengembangkan algoritma K-modes untuk data kategorial dengan penambahan bobot dan nilai diversity pada setiap atribut untuk mengoptimalkan klastering data kategorial."
Surabaya: Institut Teknologi Sepuluh Nopember, Faculty of Information Technology, Department of Informatics Engineering, 2014
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Sarah Syarofina
"Inhibitor dipeptidil peptidase 4 (DPP-4) baru perlu dikembangkan untuk meminimalkan efek samping merugikan yang diakibatkan oleh obat golongan inhibitor DPP-4 yang telah terdaftar. Penelitian ini bertujuan untuk menghasilkan subset molekul inhibitor DPP-4 yang representatif dengan mengaplikasikan algoritma K-Modes clustering dengan Levenshtein distance pada proses clustering dan melakukan analisis pemilihan molekul inhibitor DPP-4 berdasarkan kriteria nilai logP dari aturan Lipinskis Rule of 5. 2053 molekul inhibitor DPP-4 diperoleh dari situs ChEMBL. Clustering dilakukan terhadap fingerprint molekuler inhibitor DPP-4 yang diperoleh dari fitur SMILES (Simplified Molecular Input Line Entry System). Metode MACCS (Molecular Access System) Keys, ECFP (Extended Connectivity Fingerprint) diameter 4 dan 6, dan FCFP (Functional Class Fingerprint) diameter 4 dan 6, digunakan untuk membangun lima dataset fingerprint untuk proses clustering. Prosedur clustering diawali dengan menentukan jumlah klaster dengan menghitung nilai Koefisien Silhouette sebagai metode evaluasi klaster. Penerapan algoritma K-Modes clustering dengan Levenshtein distance pada 2053 molekul inhibitor DPP-4 menghasilkan nilai Koefisien Silhouette maksimal dari dataset MACCS sebesar 0.3947 dengan jumlah klaster 1258. Pemilihan molekul berdasarkan kriteria nilai logP dan aturan Lipinskis Rule of 5 menghasilkan 778 molekul inhibitor DPP-4 dari semua dataset dengan 298 molekul inaktif dan 480 molekul aktif dan nilai logP berkisar antara -1.67 sampai dengan 4.97.


New dipeptidyl peptidase 4 (DPP-4) inhibitors need to be developed to minimize the adverse side effects caused by registered DPP-4 inhibitor drugs. This study aims to produce a representative subset of DPP-4 inhibitor molecules by applying the K-Modes clustering algorithm with Levenshtein distance in the clustering process and analyzing the selection of DPP-4 inhibitor molecules based on the logP value criteria. 2053 DPP-4 inhibitor molecules obtained from the ChEMBL website. Clustering was carried out on the molecular fingerprint obtained from the SMILES feature. The MACCS Keys, ECFP (diameter 4 and 6), and FCFP (diameter 4 and 6) methods were used to construct fingerprint datasets for the clustering process. The clustering procedure begins by determining the number of clusters by calculating the Silhouette Coefficient value. The application of the K-Modes clustering with Levenshtein distance to 2053 DPP-4 inhibitor molecules resulted in the maximum Silhouette Coefficient value of the MACCS dataset of 0.3947 with the number of clusters 1258. Selection of molecules based on logP value criteria and Lipinskis Rule of 5 resulted in 778 DPP-4 inhibitor molecules. of all the datasets with 298 inactive molecules and 480 active molecules and the logP value ranged from -1.67 to 4.97.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nova Yuniarti
"[ABSTRAK
Berdasarkan data WHO tahun 2014, diperkirakan sekitar 15 juta orang di dunia
yang terinfeksi hepatitis B (HBsAg+) juga terinfeksi hepatitis D. Infeksi hepatitis
D dapat terjadi bersamaan (koinfeksi) atau setelah seseorang terkena hepatitis B
kronis (superinfeksi). Penyakit hepatitis B disebabkan oleh virus HBV dan
penyakit hepatitis D disebabkan oleh virus HDV. HDV tidak dapat hidup tanpa
HBV. Hepatitis D erat hubungannya dengan infeksi virus HBV, sehingga sangat
realistis bila setiap usaha pencegahan terhadap hepatitis B, maka secara tidak
langsung mencegah hepatitis D. Pada tesis ini akan dibahas bagaimana hasil
pengelompokan barisan DNA HBV menggunakan algoritma k-means clustering
dengan menggunakan perangkat lunak R. Dimulai dengan mengumpulkan barisan
DNA HBV yang diambil dari GenBank, kemudian dilakukan ekstraksi ciri
menggunakan n-mers frequency, dan hasil ekstraksi ciri barisan DNA tersebut
dikumpulkan dalam sebuah matriks dan dilakukan normalisasi menggunakan
normalisasi min-max dengan interval [0, 1] yang akan digunakan sebagai data
masukan. Jumlah cluster yang dipilih dalam penelitian ini adalah dua dan
penentuan centroid awal dilakukan secara acak. Pada setiap iterasi dihitung jarak
masing-masing objek ke masing-masing centroid dengan menggunakan Euclidean
distance dan dipilih jarak terpendek untuk menentukan keanggotaan objek di
suatu cluster sampai akhirnya terbentuk dua cluster yang konvergen. Hasil yang
diperoleh adalah virus HBV yang berada pada cluster pertama lebih ganas
dibanding virus HBV yang berada pada cluster kedua, sehingga virus HBV pada
cluster pertama berpotensi berevolusi dengan virus HDV menjadi penyebab
penyakit hepatitis D.

ABSTRACT
Based on WHO data, an estimated of 15 millions people worldwide who are
infected by hepatitis B (HBsAg+) are also infected by hepatitis D. Hepatitis D
infection can occur simultaneously with hepatitis B (co infection) or after a person
is exposed to chronic hepatitis B (super infection). Hepatitis B is caused by the
HBV virus and hepatitis D is caused by HDV virus. HDV can not live without
HBV. Hepatitis D virus is closely related to HBV infection, hence it is really
realistic that every effort of prevention against hepatitis B can indirectly prevent
hepatitis D. This thesis discussed the clustering of HBV DNA sequences by using
k-means clustering algorithm and R programming. Clustering processes is started
with collecting HBV DNA sequences that are taken from GenBank, then
performing extraction HBV DNA sequences using n-mers frequency and
furthermore the extraction results are collected as a matrix and normalized using
the min-max normalization with interval [0, 1] which will later be used as an input
data. The number of clusters is two and the initial centroid selected of cluster is
choosed randomly. In each iteration, the distance of every object to each centroid
are calculated using the Euclidean distance and the minimum distance are selected
to determine the membership in a cluster until two convergent clusters are created.
As the result, the HBV viruses in the first cluster is more virulent than the HBV
viruses in the second cluster, so the HBV viruses in the first cluster can potentially
evolve with HDV viruses that cause hepatitis D., Based on WHO data, an estimated of 15 millions people worldwide who are
infected by hepatitis B (HBsAg+) are also infected by hepatitis D. Hepatitis D
infection can occur simultaneously with hepatitis B (co infection) or after a person
is exposed to chronic hepatitis B (super infection). Hepatitis B is caused by the
HBV virus and hepatitis D is caused by HDV virus. HDV can not live without
HBV. Hepatitis D virus is closely related to HBV infection, hence it is really
realistic that every effort of prevention against hepatitis B can indirectly prevent
hepatitis D. This thesis discussed the clustering of HBV DNA sequences by using
k-means clustering algorithm and R programming. Clustering processes is started
with collecting HBV DNA sequences that are taken from GenBank, then
performing extraction HBV DNA sequences using n-mers frequency and
furthermore the extraction results are collected as a matrix and normalized using
the min-max normalization with interval [0, 1] which will later be used as an input
data. The number of clusters is two and the initial centroid selected of cluster is
choosed randomly. In each iteration, the distance of every object to each centroid
are calculated using the Euclidean distance and the minimum distance are selected
to determine the membership in a cluster until two convergent clusters are created.
As the result, the HBV viruses in the first cluster is more virulent than the HBV
viruses in the second cluster, so the HBV viruses in the first cluster can potentially
evolve with HDV viruses that cause hepatitis D.]"
2015
T44666
UI - Tesis Membership  Universitas Indonesia Library
cover
M. Syamsuddin Wisnubroto
"ABSTRAK
Protein memiliki peranan yang sangat penting dalam kehidupan. Setiap protein
berinteraksi dengan protein-protein lain, DNA, dan molekul-molekul lainnya, sehingga
terbentuklah jaringan interaksi protein yang berukuran sangat besar. Untuk memudahkan
dalam menganalisisnya, diperlukan metode clustering. Algoritma Soft Regularized
Markov Clustering (SR-MCL) merupakan pengembangan metode clustering yang
mengurangi kelemahan dari Regularized Markov Clustering dan Markov Clustering.
Namun, SR-MCL masih memiliki kelemahan yaitu parameter inflasi yang selalu
dimasukkan secara manual oleh peneliti. Penelitian ini, SR-MCL digabung dengan
Algoritma Firefly yang selanjutnya disebut Firefly Soft Regularized Markov Clustering,
dimana posisi setiap firefly menggantikan parameter inflasi. Posisi firefly akan terus
diperbaharui dan proses clustering akan terus dilakukan sampai memperoleh global chaos
kurang dari threshold. FSR-MCL akan diterapkan secara paralel menggunakan OpenMP,
yaitu setiap thread menjalankan SR-MCL dengan posisi setiap firefly yang berbeda.
Proses clustering data HIV-1 diperoleh sembilan protein sebagai pusat cluster yang
sangat berpengaruh dalam pembentukan dan penyebaran virus, yaitu TAT, REV, ENV,
GAG, POL, VPU, VPR, NEF, dan VIF, serta didapat parameter inflasi terbaiknya 8,0
dengan speed up 4,66 kali. Proses clustering data SC5314 diperoleh enam protein sebagai
pusat cluster yang merupakan protein penting dalam penyebarannya, yaitu HSP90,
CBK1, MED8, NOP1, CEK1, dan CDC4, serta didapat parameter inflasi terbaiknya 5,5
dengan speed up 3,01 kali.

ABSTRACT
Protein has a very important role in life. Each protein interacts with other proteins, DNA,
and other molecules, resulting in a very large protein-protein interaction. To make it easier
to analyze it, clustering method is needed. Soft Regularized Markov Clustering (SRMCL)
algorithm is a development of clustering method that reduces the weakness of
Regularized Markov Clustering and Markov Clustering. However, SR-MCL still has a
weakness that is the parameter of inflation that is always entered manually by researchers.
This study, SR-MCL combined with Firefly Algorithm, hereinafter called Firefly Soft
Regularized Markov Clustering, where the position of each firefly replace the parameters
of inflation. The firefly position will continue to be updated and the clustering process
will continue until the global chaos is less than the threshold. FSR-MCL will be applied
in parallel using OpenMP, ie each thread runs SR-MCL with the position of each different
firefly. The process of clustering the HIV-1 data obtained by nine proteins as the center
of the cluster is very influential in the formation and spread of the virus, namely TAT,
REV, ENV, GAG, POL, VPU, VPR, NEF, and VIF, and got the best inflation parameter
8.0 with speed up 4.66 times. SC5314 data clustering process obtained six proteins as the
center of the cluster which is an important protein in its spreading, namely HSP90, CBK1,
MED8, NOP1, CEK1, and CDC4, and got the best inflation parameter 5.5 with speed up
3.01 times."
2018
T49442
UI - Tesis Membership  Universitas Indonesia Library
cover
Dewa Ferrouzi Diaz Zhah Pahlevi
"Pasar modal berkembang pesat di Indonesia dengan peningkatan 79 jumlah emiten saham baru dan peningkatan 17,9% jumlah investor baru. Perkembangan ini dipacu oleh Otoritas Jasa Keuangan yang meyakinkan bahwa setiap perusahaan terbuka selalu diawasi dengan cara mewajibkan perusahaan terbuka untuk menyampaikan laporan keuangan secara berkala. Akan tetapi pada kenyataannya, tindakan kecurangan laporan keuangan bukan menjadi hal yang langka. Association of Certified Fraud Examiner melaporkan bahwa 9,2% kecurangan di Indonesia merupakan kecurangan laporan keuangan dengan total kerugian hingga Rp242.260.000.000. Sementara, proses audit konvensional serta laporan yang menjadi 72% dari media deteksi saat ini membutuhkan 12 bulan untuk mendeteksi kasus kecurangan. Penelitian ini akan menggunakan metode ensemble learning berbasis optimasi metaheuristik untuk mengembangkan model deteksi kecurangan pada laporan keuangan. Beberapa metode klasifikasi digunakan untuk mengembangkan model, yaitu Random Forest dan XGBoost. Optimasi metaheuristik dengan metode Genetic Algorithm kemudian digunakan sebagai dasar dari proses hyperparameter tuning pada model tersebut. Hasil deteksi terbaik pada penelitian ini adalah model XGBoost dengan parameter teroptimasi yang menghasilkan akurasi sebesar 98,04% dan sensitivitas 99.02%.

The capital market is growing rapidly in Indonesia, gaining 79 new stock issuers and a 17.9% increase in the number of new investors in 2023. This development is driven by Otoritas Jasa Keuangan, which ensures that every public company is always monitored by requiring them to submit financial statements regularly. However, financial statement fraud is not uncommon. The Association of Certified Fraud Examiners reports that 9.2% of fraud cases in Indonesia involve financial statement fraud, with total losses amounting to Rp242,260,000,000. Meanwhile, conventional audit processes and reports, which account for 72% of current detection methods, take 12 months to detect fraud cases. This study will use an ensemble learning method based on metaheuristic optimization to develop a fraud detection model for financial statements. Several classification methods, namely Random Forest and XGBoost, are used to develop the model. Metaheuristic optimization using the Genetic Algorithm method is then applied as the basis for hyperparameter tuning in this model. The best detection result in this study is achieved by the XGBoost model with optimized parameters, yielding an accuracy of 98.04% and a sensitivity of 99.02%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dimas Prasetyo
"Dalam menyelesaikan masalah elektrifikasi listrik, tujuan umum untuk semua operator sistem tenaga adalah untuk memastikan bahwa pembangkit cukup tersedia hari operasi. Status on-off unit pembangkit atau unit commitment memberikan langkah pertama menuju solusi optimal. Dalam penjadwalan pembangkit listrik, keputusan unit commitment menunjukkan, untuk setiap titik waktu selama penjadwalan, unit pembangkit mana yang akan digunakan. Kemudian, pengiriman yang paling ekonomis atau economic dispatch, yaitu distribusi beban di seluruh unit pembangkit untuk setiap titik waktu, kemudian ditentukan untuk memenuhi beban sistem dan persyaratan cadangan. Berbagai pendekatan untuk solusi masalah unit commitment dan economic dispatch telah diusulkan di mana mereka berkisar dari metode sederhana hingga rumit. Masalah pembangkit listrik adalah masalah optimisasi kombinasional yang kompleks. Beberapa teknik pemrograman matematika telah diusulkan untuk memecahkan masalah yang tergantung waktu ini. Perkembangan algoritma matematika terbaru dan kemajuan dalam teknologi komputasi membuat masalah labih menantang untuk dipecahkan. Penerapan sistem hibrida dalam masalah sistem tenaga telah dikembangkan dalam literatur baru-baru ini, dan itu masih merupakan tren masa depan dalam penelitian sistem tenaga. Penelitian ini awalnya ingin mengkolaborasikan metode deterministik dan metaheuristik untuk melakukan perbaikan dalam komputasi untuk menyelesaikan penjadwalan pembangkit listrik. Algoritma spesifik yang akan digunakan adalah dynamic programming dan particle swarm optimization.

In solving the electricity generation, a common objective for all power system operators is to ensure that sufficient generation is available for hours and days ahead of the operation time. The on-off states of the generation units or the commitment decision provides the first step toward the optimal solution. In power generation scheduling, the unit commitment decision indicates, for each point in time over the scheduling horizon, what generating units are to be used. Then, the most economic dispatch, i.e. the distribution of load across generating units for each point in time, is then determined to meet system load and reserve requirements. Various approaches to the solution of the UC problem have been proposed where they ranged from simple to complicated methods. The electricity generation problem belongs to the complex combinational optimization problems. Several mathematical programming techniques have been proposed to solve this time-dependent problem. Recent mathematical developments and advances in computing technologies made the problem readily solvable. The application of hybrid systems in power system problems has been advanced in recent literature, and it still represents a future trend in power systems research. This research initially want to collaborate the deterministic and metaheuristic to make an improvement in computational for solving electricity generation. The specific algorithm that will be used are dynamic programming and particle swarm optimization."
Depok: Fakultas Teknik Universitas Indonesia, 2019
T53677
UI - Tesis Membership  Universitas Indonesia Library
cover
Yudhinta Dwimar Dhanti
"Masyarakat Indonesia merupakan pengonsumsi susu terendah di Asia Tenggara. Dengan peluang pasar ini, perusahaan susu di Indonesia perlu meningkatkan keunggulan kompetitifnya agar tidak kalah bersaing dengan perusahaan lain dan salah satu caranya adalah pengelolaan hubungan dan pengembangan supplier yang baik. Tujuan dari penelitian ini adalah untuk merancang strategi hubungan dan pengembangan supplier yang melihat dari segmen supplier serta prioritas dari sub-variabel Capability maupun Willingness. Dalam penelitian ini, digunakan metode Delphi untuk memilih variabel dengan memberikan kuesioner kepada 4 orang Expert, lalu digunakan Best Worst Method (BWM) dengan bantuan 3 Expert untuk mencari bobot dari masing-masing sub-variabel hingga pada akhirnya dilakukan segmentasi supplier. Dari segmentasi supplier didapatkan bahwa terdapat delapan supplier dengan nilai Capability serta Willingness yang tinggi, satu supplier yang memiliki nilai Capability tinggi namun Willingness rendah , dan terdapat empat supplier yang memiliki nilai Capability rendah namun Willingness tinggi. Strategi untuk masing-masing supplier dibuat dalam matriks strategi supplier.

Indonesia's milk consumption level is the lowest in Southeast Asia. With this market opportunity, milk based companies in Indonesia need to have competitive advantage and one of the options is to have good management of supplier's relationship and development. The aim of this research is to design supplier's relationship and development strategies that focus on supplier?s segment and priority of Capability and Willingness sub-variabel. In this research, Delphi Method was used to obtain variables by giving out questionnaires to 4 Experts, then Best Worst Method was used with the help of 3 Experts to find weight of each sub-variabel and to segment suppliers. From supplier segmentation, there are 8 supplier which have high Capability and Willingness, 1 supplier has high Capability and low Willingness, and 4 suppliers which have low Capability and high Willingness. The strategy for each supplier then was made by using strategy matrix."
2016
S62076
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ajeng Pramastuty
"Antrian menjadi hal yang tak terpisahkan dari kegiatan sehari- hari, terutama pada rumah sakit yang dengan kompleksitasnya sering membuat pasien terlibat antrian dalam pelayanannya. Kerja antrian tidak terlepas dari algoritma penjadwalan yang bekerja dibelakangnya untuk mengatur antrian atau dalam hal ini dengan kata lain algoritma penjadwalan adalah algoritma berbasis rumah sakit. Penelitian ini memfokuskan diri pada membangun sistem manajeman antrian pada lingkungan rumah sakit dengan memanfaatkan algoritma penjadwalan FCFS, Priority dan SPFuntuk mendapatkan waktu tunggu antrian yang terbaik. Pemanfaatan teknologi ponsel pintar berbasis Android yang saat ini penjualannya mendominasi secara global dapat menunjang flesibilitas aksesnya. Tujuan yang ingin dicapai dari tesis ini adalah bagaimana algoritma penjadwalan dapat dimanfaatkan untuk menghasilkan waktu tunggu antrian yang lebih pendek serta mengaplikasikannya pada sebuah aplikasi ponsel pintar berbasis Android pada lingkungan pelayanan kesehatan rumah sakit. Hipotesis awal mengharapkan bahwa penggunaan algoritma penjadwalan FCFS, Priority dan SPF pada sistem antrian berbasis Android dapat memperpendek total waktu tunggu antrian. Hasil pengujian penggunaan algoritma penjadwalan pada sistem menajemen antrian yang disimulasikan berdasarkan data pengamatan lapangan menunjukkan bahwa ada pengurangan total waktu tunggu antrian, namun nilai signifikansinya menunjukan perbedaan tidak bermakna antara kelompok antrian lama dengan kelompok antrian menggunakan algoritma penjadwalan.

Queue has becomes inseparable from our daily life activities, especially in hospital with its complexity often makes patients involved in the long waiting line. A queues work based on scheduling algorithms that work behind it to manage the queue or in this research scheduling algorithms can also be called Hospital – Based olgorithm. This study focuses on to build queue management system in a hospital environment by utilizing the scheduling algorithm FCFS , Priority and SPF to get the best queue waiting time. Utilization of an Android-based smart phone technology that currently dominates global sales to support the access flexibility. The aim of this thesis is how the scheduling algorithm can be used to generate a shorterqueue waiting time and apply it on an Android-based smart phone application in healthcare environments. Initial hypothesis expects that the use of scheduling algorithms FCFS, Priority and SPF on Android -based queuing system can shorten the total waiting time. Test results that is simulated by a data field observations indicate that there is a reduction in the total queue wait time,but significancy value indicate that diffrences not significant meaning"
Jakarta: Sekolah Kajian Stratejik dan Global Universitas Indonesia, 2014
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>