Ditemukan 46588 dokumen yang sesuai dengan query
Rezi Jennica
"Hazardous material (hazmat) merupakan material yang berpotensi membahayakan manusia, infrastruktur dan lingkungan (US DOT, 2004). Karena berpotensi membahayakan, maka pada pengangkutan hazmat perlu memperhatikan risiko yang mungkin timbul (baik risiko jiwa maupun harta benda) selain mempertimbangkan faktor biaya, sehingga permasalahan pengangkutan hazmat termasuk ke dalam permasalahan multi obyektif.
Salah satu cara untuk menangani permasalahan multi obyektif adalah dengan menerapkan konsep optimasi Pareto, yaitu konsep yang mengatakan bahwa suatu solusi dikatakan optimal jika tidak mungkin lagi meningkatkan suatu nilai fungsi tujuan tanpa mengurangi nilai fungsi tujuan yang lain. Konsep tersebut bekerja untuk menemukan himpunan solusi non-dominated dengan menerapkan aturan dominan pareto (pareto dominance rule).
Pada skripsi ini akan dibahas masalah pemilihan rute kendaraan untuk mengangkut hazmat dengan memperhatikan waktu pelayanan (time windows) yang telah ditentukan yang dimodelkan ke dalam Hazmat Vehicle Routing Problem with Time windows (HVRPTW). Rute yang terpilih merupakan jalur non dominated, yaitu jalur dengan tingkat risiko dan biaya perjalanan yang paling kecil. Untuk memilih rute tersebut digunakan metode Multi-Objective Ant Colony System yang merupakan pengembangan dari metode Ant Colony System, yaitu metode yang mengadaptasi perilaku semut dalam mencari makanan dengan bantuan pheromone (zat kimia aromatik yang dikeluarkan oleh spesies semut).
Hazardous materials (hazmat) is defined by any substance or material which capable of causing harm to human, property and environment (US DOT, 2004). Therefore, in every hazmat transportation needs to pay attention to possible risks (both life and property risk) in addition to considering the cost factor. So that the problem of transporting hazmat belongs to the multi-objective problems.The best approach to deal with multi objective problem is to apply the concept of Pareto optimization. This concept declare that an optimal solution is if there is no possibility to increase the value of objective function without eliminate the value of others objective function. This concept works to determine a set of non-dominated solutions applying conditions of Pareto dominance.This research discuss about the problem of route selection of vehicles for transporting hazmat with focusing on service time (time windows) that has been determined and known as Hazmat Vehicle Routing Problem with Time Windows (HVRPTW). A non-dominated paths as selected path is the path with the smallest amount of risk and scheduled time. The route is selected by using Multi-Objective Ant Colony System algorithm which is the development of Ant Colony System methods that belongs to Ant Colony Optimization. This method adapts the behavior of ants in looking for feed helped by a pheromone (a chemical released by the aromatic species of ants)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
S60925
UI - Skripsi Membership Universitas Indonesia Library
Sri Astuti
"Vehicle Routing Problem with Time Windows (VRPTW) adalah masalah penentuan rute kendaraan dalam pendistribusian barang/jasa ke sejumlah pelanggan yang memiliki biaya minimum dengan tambahan kendala time windows, biaya direpresentasikan oleh total jarak yang ditempuh kendaraan dari depot dan kembali ke depot.
Pada tugas akhir ini, digunakan algoritma genetika hibrida untuk menyelesaikan VRPTW. 50% populasi awal dibentuk dengan menggunakan metode Push Forward Insertion Heuristic (PFIH) dilanjutkan dengan -Interchange, dan 50% lainnya dibentuk secara acak. Tiga operator utama algoritma genetika yang digunakan adalah ranking based selection, merge-heuristic crossover, dan sequence based mutation. Pada tugas akhir ini juga akan diimplementasikan algoritma genetika hibrida pada VRPTW dengan perangkat lunak.
Vehicle Routing Problem with Time Windows (VRPTW) is a problem of determining the route of vehicles that has minimum cost in the distribution of goods /services to a number of customers with addition of time constraint, the cost is represented by the total distance traveled by vehicles from depot and returned to depot.In this final project, a hybrid genetic algorithm used to solve VRPTW. 50% of initial population is generated by Push Forward Insertion Heuristic (PFIH) and then -Interchange, and the other 50% is randomly generated. Three major operator that used in this final project are ranking based selection, merge-heuristic crossover, and sequence based mutation. Hybrid genetic algorithm is implemented on Solomon?s benchmark data of VRPTW."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S43252
UI - Skripsi Open Universitas Indonesia Library
Risya Priwarnela
"Pickup and Delivery Vehicle Routing Problem with Time Windows (PDPTW) adalah suatu permasalahan dalam pencarian rute optimal untuk memenuhi permintaan sejumlah pelanggan dengan setiap permintaan terdiri dari permintaan jemput dan antar. Solusi yang ingin dicapai adalah solusi dengan banyaknya rute yang minimum dan total jarak yang minimum. Tugas akhir ini membahas aplikasi algoritma hibrida dua tahap pada PDPTW dan implementasinya pada data benchmark Li dan Lim dengan menggunakan perangkat lunak. Tahap pertama menggunakan algoritma simulated annealing untuk meminimumkan banyaknya rute dengan pembentukan solusi awal menggunakan metode insertion heuristic dan tahap kedua menggunakan algoritma large neighborhood search untuk meminimumkan total jarak.
Pickup and Delivery Vehicle Routing Problem with Time Windows (PDPTW) is a problem of finding optimal route to serve customer's demands where each demand consists of pickup and delivery service. The optimal solution is the solution with minimum number of routes and minimum total distance. This final project presents an application of two-stage hybrid algorithm for PDPTW and its implementation on Li and Lim benchmark data using software. The first stage uses simulated annealing algorithm to minimize the number of routes with insertion heuristic used in the construction of initial solution. Then, the second stage uses large neighborhood search algorithm to minimize the total distance. That algorithm is implemented for benchmark problem."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S43194
UI - Skripsi Open Universitas Indonesia Library
Herry Kartika Gandhi
"Vehicle Routing Problem with Time Windows menjadi suatu permasalahan bagi perusahaan saat ini dimana biaya logistik yang semakin tinggi. Penentuan rute yang tepat untuk distribusi barang sangat dibutuhkan untuk menekan biaya bahan bakar kendaraan. Penyelesaian VRPTW ini menggunakan algoritma metaheuristic: Tabu Search, Particle Swarm Optimization dan Simulated Annealing. Penelitian ini membandingkan karakter dari ketiga algoritma tersebut. Dimana hasil tabu search memberikan nilai yang mayoritas optimal dibandingkan ketiganya. Tetapi untuk iterasi pendek, PSO memberikan nilai yang cepat menuju optimal.
Vehicle Routing Problem with Time Windows become main problem to company when dealing with distribution cost that comes bigger. Determining best routing to distribute goods or service can help reduce distribution cost. This research using metaheuristic algorithm: Tabu Search, Particle Swarm Optimization dan Simulated Annealing to solve VRPTW. This research benchmark that three algorithm. The conclusion is tabu search bring best solution for long iteration. But for short iteration, PSO bring better solution."
Depok: Fakultas Teknik Universitas Indonesia, 2013
T35626
UI - Tesis Membership Universitas Indonesia Library
Lamtiur
"Aircraft landing problem (ALP) merupakan suatu permasalahan pesawat terbang dalam menemukan jadwal yang optimal untuk pendaratan pesawat terbang. Objektivitas dari ALP adalah meminimumkan total biaya pinalti dari pesawat pada single runway maupun multiple runway. Dalam permasalahan ini terdapat beberapa hal penting yang harus dipertimbangkan yaitu kepentingan pemisahan waktu antara pesawat terbang dan interval waktu (time window) yang harus diperhatikan demi kepentingan keselamatan penumpang. Pertama, akan diberikan pemodelan matematis dari ALP dengan fungsi objektif yang linear. Kedua, akan digunakan pendekatan solusi heuristik yaitu Algoritma Ant Colony Optimization (ACO) dalam mencari solusi ALP yang optimal.
Aircraft landing problem (ALP) describes the aircraft problem of finding an optimal schedule of aircrafts landing. The objective of ALP is to minimize total penalty restrictive cost of aircraft in a single runway or multiple runways. This problem considers few certain constraints, such as the necessary separation time between aircrafts and time window that should be concerned for passenger safety. In the first part, will be presented a mathematical formulation of the problem with linear objective function. The second part is heuristic solution approaches with Ant Colony Optimization Algorithm to solve ALP."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S62419
UI - Skripsi Membership Universitas Indonesia Library
Siska Afrianita
"
ABSTRAKVehicle Routing Problem with Time Windows (VRPTW) merupakan permasalahan kombinatorik yang sering terjadi pada sistem pendistribusian barang. VRPTW adalah masalah penentuan rute sejumlah kendaraan untuk mendistribusikan barang ke sejumlah pelanggan dengan biaya minimum. Kendaraan yang digunakan memiliki kapasitas serta setiap kendaraan memulai dan mengakhiri perjalanan di depot. Setiap pelanggan yang dilayani akan memberikan time windows dan setiap pelanggan hanya boleh dilayani satu kali. Untuk memperoleh tujuan VRPTW, ada dua tujuan yang harus dicapai yaitu meminimumkan banyaknya kendaraan yang digunakan dan meminimumkan total waktu tempuh kendaraan. Pada skripsi ini akan digunakan algoritma Multiple Ant Colony System (MACS) yang dikembangkan dari algoritma Ant Colony System (ACS) yang termasuk dalam Ant Colony Optimization (ACO). ACO merupakan suatu metode metaheuristik yang terinspirasi dari perilaku hewan yaitu semut. Pada algoritma MACS ini, terdapat dua koloni semut yang masing-masing akan mengoptimisasi tujuan yang akan dicapai pada VRPTW.
ABSTRACTVehicle Routing Problem with Time Windows (VRPTW) is one of combinatorial problems which mostly happen in a logistic system. VRPTW is an optimization problem which aims to minimize cost of using fleets of vehicles. The vehicles start and end the route at depot must serve or distribute goods to several customers. Every customer gives time windows and should be visited only once. The objective of VRPTW can be reached by multiple objectives. First, minimizes number of vehicles used, and then minimizes the total travel time. In this final project, it will be used Multiple Ant Colony System algorithm for solving VRPTW. MACS is based on Ant Colony System (ACS) algorithm which is one of Ant Colony Optimization (ACO). ACO is a metaheuristic method inspired by foraging behavior of real colonies of ant. MACS algorithm consider a hierarchical objective for solving VRPTW and these objectives would be optimized by two colonies of ants."
Universitas Indonesia, 2011
S1897
UI - Skripsi Open Universitas Indonesia Library
Amalia Rahmadienna
"Kegiatan berbelanja secara online di e-commerce akhir-akhir ini sedang ramai dilakukan karena dinilai lebih praktis dan tidak membuang banyak waktu. Hal ini berbanding lurus dengan banyaknya permintaan pengiriman yang harus dipenuhi oleh pihak last-mile delivery. Last-mile delivery adalah proses pengiriman langsung ke lokasi pelanggan. Pihak last-mile delivery harus melakukan pengiriman dengan biaya yang seminimal mungkin. Biaya perjalanan dapat semakin meningkat apabila terjadi pengiriman berulang yang disebabkan pelanggan tidak berada di rumah saat dilakukan pengiriman. Alternatif pengiriman roaming delivery dapat menjadi solusi dari permasalahan tersebut karena dapat mengurangi jarak dan waktu tempuh serta mengurangi emisi serta kemacetan. Vehicle Routing Problem with Roaming Delivery Locations adalah permasalahan permintaan transportasi dengan pelanggan dapat memiliki lebih dari satu lokasi pengiriman. Pada skripsi ini, digunakan metode Multiple Ant Colony System (MACS) untuk membentuk solusi yang optimal. Multiple Ant Colony System terinspirasi dari perilaku koloni semut dalam mencari sumber makanan. Dalam membentuk sebuah solusi, dibutuhkan data pelanggan berupa koordinat lokasi pengiriman serta time window masing-masing lokasi dan banyaknya permintaan pelanggan. Sebelum dibentuk solusi terbaik menggunakan MACS, dibutuhkan solusi awal yang akan dibentuk dengan menggunakan Nearest Neighbor Heuristic. Berdasarkan simulasi program yang dilakukan pada skripsi ini, dengan data yang digunakan sebanyak 30 pelanggan dengan masing-masing pelanggan memberikan dua lokasi pengiriman, didapatkan alternatif pengiriman roaming delivery memiliki biaya perjalanan yang lebih kecil dibandingkan home delivery yang merupakan pengiriman yang hanya dapat dilakukan ke rumah pelanggan, dengan selisih sebesar 46%.
Nowadays, online shopping in e-commerce caught more attention than offline shopping because considered more practical and does not waste much time. This has led to increasing the demand for shipments made by last-mile delivery. Last-mile delivery is the final step of the delivery process, the delivery made by sending directly to the customer's house. The package must be delivered using the least-costed routes. Missed deliveries caused by customers are not at home while the deliveries made, can increase the total travel cost. There is an alternative of deliveries that can overcome this problem, i.e., roaming delivery. Roaming delivery can be a solution to these problems because it can reduce distance and travel time as well as reduce emissions and congestion. Vehicle routing problem with roaming delivery location is the variant of vehicle routing problem which each customer can have more than one delivery locations. This thesis proposed multiple ant colony system methods to find the optimum solution of vehicle routing problems with roaming delivery locations. Multiple Ant Colony System is a method inspired by the foraging behavior of colonies of ants. The input of this method is a set of customers' data, i.e., locations' coordinates, time window of each location, and the number of demands. Multiple Ant Colony System requires an initial solution constructed by the nearest neighbor heuristic which is then optimized by reducing the number of vehicles and total travel time. Based on the simulation that use 30 customers where each of the customers gives 2 different locations, the total cost of roaming delivery is cheaper than home delivery up to 46%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Vici Handalusia Husni
"Dynamic Dial a Ride Problem with Time Windows (DDARPTW) merupakan masalah pencarian rute optimal untuk melayani sejumlah pelanggan yang ingin dijemput di suatu tempat dan diantar ke tempat lainnya dengan data permintaan penumpang yang dapat bertambah selama periode perjalanan. Solusi yang ingin didapatkan adalah suatu rute dengan tingkat ketidakpuasan pelanggan yang minimum.
Tugas akhir ini membahas penggunaan algoritma 2 tahap pada DDARPTW serta implementasinya pada data sebanyak 56 pelanggan dengan menggunakan perangkat lunak. Penentuan solusi awal pada tugas akhir ini menggunakan metode insertion heuristic dan tahap pertama menggunakan metode local search yaitu 2-opt arc swap untuk memberikan perbaikan pada nilai fungsi tujuan serta tahap kedua menggunakan metode simple insertion untuk melakukan penambahan pelanggan baru dalam periode perjalanan.
Dynamic Dial a Ride Problem with Time Windows (DDARPTW) is a problem of finding an optimal route to serve a number of customers who want to be picked up in a certaint place and delivered to other place. Data of passenger's demand could be added during the trip period. The obtained solution is a route with minimum level of customer dissatisfaction. This mini thesis explores the use of two phase algorithm and its implementation on the data of 56 customers using a software. The initial solution is constructed by insertion heuristic method and the first phase use 2-opt arc swap local search which provides improvements to the value of the objective function and the second phase uses a simple insertion method to add new customer in the trip period."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S46082
UI - Skripsi Membership Universitas Indonesia Library
Ainna Salsabila
"Crowdsourced delivery merupakan suatu upaya dalam mengatasi masalah peningkatan kebutuhan jasa pengiriman barang akibat dari tren berbelanja online pada masyarakat yang meningkat secara signifikan. Crowdsourced delivery didefinisikan sebagai proses pengiriman barang yang melibatkan individu dengan latar belakang profesi bukan sebagai kurir untuk memenuhi kebutuhan last mile delivery. Diibaratkan kurir tersebut merupakan pekerja lepas (freelance) dari perusahaan pengiriman logistik. Last-mile delivery merupakan tahap akhir dari proses distribusi pengiriman barang dimana barang akhirnya sampai kepada pelanggan. Pada skripsi ini dilakukan perencanaan last-mile delivery dengan menggunakan integrasi crowdsourcing parsial, dimana permasalahan tersebut membutuhkan titik singgah sementara dalam proses pengiriman barang. Crowdsourcing parsial merupakan gabungan permasalahan two-echelon vehicle routing problem (2-EVRP) dan truck trailer routing problem (TTRP). Two-echelon vehicle routing problem adalah pencarian rute vehicle routing problem dengan dua tingkat jaringan distribusi. Tingkat jaringan distribusi pertama berupa rute perjalanan truk dan tingkat jaringan distribusi kedua berupa perjalanan kurir crowdsourced. Truck trailer routing problem merupakan variasi tambahan permasalahan 2-EVRP agar pelanggan dapat dilayani menggunakan truk dan juga kurir crowdsourced, jika hanya 2-EVRP saja maka pelanggan hanya dapat dilayani oleh crowd-worker. Pada permasalahan ini digunakan metode simulated annealing untuk mencari pendekatan terhadap solusi optimal rute pengiriman barang. Proses simulated annealing bekerja dengan mencari suatu posisi pada suatu temperatur tertentu untuk mereduksi rute yang tidak diperlukan dan memperbaiki solusi agar menjadi optimal. Dalam skripsi ini digunakan data sebanyak 63 titik koordinat lokasi, di mana terdiri dari 1 depot, 12 titik transfer, dan 50 pelanggan. Hasil terbaik dari beberapa kasus yang dijalankan yaitu untuk kasus 19 pelanggan dilayani truk dan 31 dilayani oleh crowd-worker, dapat menghemat biaya perjalanan sebesar 25,9748%.
Crowdsourced delivery is an effort to overcome the problem of increasing the need for goods delivery services due to the trend of online shopping in the community, which has increased significantly. Crowdsourced delivery is defined as the process of delivering goods that involve individuals with professional backgrounds not as couriers, to fulfill last-mile delivery needs. The courier is likened to a freelancer from a logistics delivery company. Last-mile delivery is the final stage of the distribution process where the goods finally arrive at the customer. In this thesis, last-mile delivery planning is carried out using partial crowdsourcing integration, where the problem requires a temporary stopover point in the process of delivering goods. Partial crowdsourcing combines the two-echelon vehicle routing problem (2-EVRP) and the truck trailer routing problem (TTRP). The two-echelon vehicle routing problem is a route-finding vehicle routing problem with two levels of distribution network. The first distribution network level is a truck route, and the second distribution network level is a crowdsourced courier. The truck trailer routing problem is an additional variation of the 2-EVRP problem to serve customers using crowdsourced trucks and couriers. If it is only 2-EVRP, then customers can only be served by crowd-workers. In this problem, the simulated annealing method is used to find an approach to the optimal solution of the shipping route. The simulated annealing process works by finding a position at a specific temperature to reduce unnecessary routes and improve the solution to become optimal. In this thesis, the data used are 63 coordinate location points, consisting of 1 depot, 12 transfer points, and 50 customers. The best results from several cases that were carried out were for cases where 19 customers were served by trucks and 31 were served by crowd-workers. It could save travel costs by 25.9748%."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
"[Pada skripsi ini akan dibahas masalah optimisasi rute kendaraan untuk pendistribusian barang dalam suatu interval waktu pelayanan, dimana pelayanan mungkin dilakukan di luar interval waktu yang telah ditentukan tetapi dikenakan suatu biaya denda (penalty). Masalah optimisasi ini disebut juga Vehicle Routing Problem with Soft Time Windows (VRPSTW) yang bertujuan mencari rute kendaraan untuk pendistribusian barang dengan biaya minimum dalam suatu interval waktu pelayanan. VRPSTW merupakan masalah optimisasi kombinatorik berupa program linier, dimana rute kendaraan untuk pendistribusian barang terkait dengan variabel keputusan pada VRPSTW. Semakin banyak jumlah pelanggan yang akan dilayani, menyebabkan semakin banyak rute yang mungkin dilalui. Akibatnya semakin banyak jumlah variabel yang akan digunakan. Metode Column Generation-based Heuristics yang akan digunakan dalam skripsi ini merupakan salah satu metode yang efisien dalam menyelesaikan masalah program linier dengan jumlah variabel yang banyak. Ide dari metode tersebut adalah mencari rute (solusi) yang (atau mendekati) optimal tanpa harus mengetahui semua kemungkinan kombinasi rute (variabel) yang mungkin dilalui. Langkah awal dari metode ini adalah mendekomposisi masalah menjadi master problem dan subproblem, dimana bentuk master problem dari VRPSTW berupa set partitioning problem, sedangkan bentuk subproblemnya berupa insertion heuristics. Selanjutnya solusi yang didapat merupakan solusi heuristik., This skripsi will discuss about the vehicle route optimization problem of goods distribution in time windows, where the services may done outside the time interval but incur a penalty cost. This optimization problem is also called the Vehicle Routing Problem with Soft Time Windows (VRPSTW) which aims to find the vehicle route with a minimum cost route for goods distribution in a time windows. VRPSTW is a combinatorial optimization problem in the form of a linear program, where a vehicle for the distribution of goods associated with the decision variables VRPSTW. The more number of customers to be served, causing more routes that may be used. As a result, their will be more number of variables that will be used. Column generation-based heuristics method that will be used in this paper is a efficient method in solving the problem of linear programming with that much of variables. The idea of the method is to find a route (solutions) that (or near) optimal without knowing all the possible combinations of these (variables) that may be used. The initial step of this method is to decompose the problem into a master problem and subproblem, which the master problem of VRPSTW is a set partitioning problem, and the subproblem is an insertion heuristics subproblem. Furthermore, the obtainable solution is a heuristic solution.]"
Universitas Indonesia, 2014
S57888
UI - Skripsi Membership Universitas Indonesia Library