Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 174443 dokumen yang sesuai dengan query
cover
Muhammad Mazarino Zhafir
"ABSTRAK

Proses deteksi tumor otak dengan komputer dilakukan melalui empat tahapan utama. Pada tahap awal dilakukan pra-proses dengan median filter untuk memperbaiki kualitas citra. Kemudian dilanjutkan dengan ekstraksi fitur menggunakan dekomposisi wavelet haar bertingkat tiga agar ukuran citra tidak terlalu besar, hanya 1/8 dari ukuran citra asalnya. Setelah itu dilakukan proses reduksi dimensi menggunakan Principal Component Analysis (PCA). PCA menentukan komponen penting dari citra dengan melihat dari varians yang direpresentasikan oleh nilai eigen, sehingga jumlah komponen yang akan dimasukkan ke proses pembelajaran tidak terlalu banyak, untuk menghindari curse of dimentionality. Baru setelah itu dilakukan proses pembelajaran menggunakan metode Backpropagation Neural Network (BPNN) dengan 10 hidden neuron, dimana proses pelatihan dan pengujian dilakukan untuk mendapatkan bobot dan bias yang terbaik dan kemudian diuji. Hasil akurasi pengenalan pada kondisi awal ini mencapai 87%, sementara pada kondisi ideal yang menggunakan dekomposisi wavelet haar bertingkat empat dan 3 hidden neuron pada BPNN mencapai akurasi pengenalan 100%.


ABSTRACT

Brain tumor detection process by the computer is going through four main step. First is pre-processing that using median filter to enhance the image quality. The second is feature extraction using level-3 haar wavelet decomposition, so that the image is not too big, only 1/8 of the original size . The third is dimentionality reduction using Principal Component Analysis (PCA). PCA determine the principal component of the image from variances, which represented by eigen value. So the component that will be used in learning step is much fewer, to avoid the curse of dimentionality. And the last step is learning, using Backpropagation Neural Network (BPNN) with 10 hidden neuron. The BPNN going through training and testing phase. BPNN will find its optimal weight and bias, and those weight and bias are being tested. The result from BPNN could distinguish images into normal and tumor, with accuracy 87% in default condition. In ideal condition, which is using level-4 haar wavelet decomposition and 3 hidden neuron in BPNN, the accuracy is 100%.

"
Fakultas Teknik Universitas Indonesia, 2015
S60000
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mohammad Hakim Mustaqim
"ABSTRAK

Kanker Payudara (KPD) merupakan salah satu penyakit penyebab kematian terbesar. Indonesia merupakan negara dengan jumlah KPD cukup besar. KPD ini merupakan benjolan. Benjolan ini dapat diperiksa menggunakan cara manual yaitu diraba bagian dekat dengan putting susu. Jika benjolan tidak kunjung mengecil dianjurkan untuk memeriksa ke dokter. Pendektesian KPD ini dapat dilakukan dengan menggunakan proses pencitraan. Data yang digunakan pada penelitian ini diambil dari website Pilot European Image Processing Archive (PEIPA) yaitu dataset Mammographic Image Analysis Society (MIAS). Pendektesian dilakukan dengan menganalisa gambar payudara (mammography) pasien dengan menggunakan metode Principal Component Analysis (PCA) mengubah gambar dalam bentuk matriks. Matriks ini akan digunakan sebagai data yang akan digunakan dalam Neural Network (jaringan saraf tiruan) dengan metode Backpropagation Neural Network (BNN). Dari hasil Percobaan dapat diketahui bahwa metode ini menghasilkan nilai akurasi pembelajaran dari deep learning supervised sebesar 98%.


ABSTRACT
Breast Cancer is one of the biggest causes of death. Indonesia is a country with a large number of KPDs. This KPD is a lump. This lump can be examined using a manual method that is palpated near the nipple. If the lump does not go away it is recommended to see a doctor. This breast cancer assessment can be done using the imaging process. . The data used in this study was taken from the website of the Pilot European Image Processing Archive (PEIPA) namely the Mammographic Image Analysis Society (MIAS) dataset. The assessment is done by analyzing the breast image (mammography) of the patient using the Principal Component Analysis (PCA) method to change the image in the form of a matrix. This matrix will be used as data to be used in Neural Networks with the Backpropagation Neural Network (BNN) method. From the results of the Experiment it can be seen that this method produces the value of accuracy of learning from supervised deep learning about 98%.

"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arif Rakhman Hakim
"ABSTRAK
Watermarking merupakan teknik penyisipan data atau informasi yang bersifat rahasia ke dalam media data digital lainnya. Watermarking pada citra digital dibutuhkan sebagai perlindungan terhadap kepemilikan citra digital. Tujuan penelitian ini adalah merancang simulasi algoritma watermarking dengan menggunakan transformasi wavelet diskrit dari beberapa mother wavelet seperti diskrit meyer, daubechies, symlet, dan haar. Hasil pengujian penyisipan citra watermark dengan beberapa dimensi yang berbeda, citra watermark dengan dimensi 64 x 64 piksel memiliki hasil yang paling baik. Proses watermarking dengan dekomposisi yang paling baik pada percobaan ini terjadi pada dekomposisi satu level. Pengujian penyisipan watermark dengan sub-band LL,LH,HL, dan HH, didapat bahwa penyisipan pada sub-band LL memiliki nilai PSNR yang paling baik. Citra asli yang telah disisipkan dengan citra watermark juga di uji secara subjektif. Hasil dari citra yang terwatermark tidak dapat dideteksi secara langsung oleh koresponden karena perubahan citra terwatermark tidak jauh berbeda dengan citra asli. Pengujian citra terwatermark terhadap robustness dengan ?salt & pepper? terjadi penurunan kualitas citra yang sangat tinggi. Pengujian citra terwatermark terhadap robustness dengan AWGN, tidak banyak mempengaruhi kualitas citra terwatermark. Nilai power noise dari AWGN yang diujikan dari 10-40 db, dengan nilai maksimum power noise dari AWGN adalah 40 db. Dari hasil percobaan beberapa jenis keluarga wavelet yang paling baik adalah diskrit meyer.

ABSTRACT
Watermarking is a technique of embedding the data or information that is confidential to the other digital data media. Digital image watermarking is needed as a protection against the ownership of digital images. The purpose of this study is to design a simulated watermarking algorithm using discrete wavelet transform of a mother wavelet such as discrete meyer, daubechies, symlet, and haar. Test results with the embedding a watermark image several different dimensions, watermark image with dimensions of 64 x 64 pixels have the best result. The best decomposition process of watermarking in this study occurred at a single level of decomposition. Watermark embedding testing with sub-bands LL, LH, HL, and HH, found that the embedding in sub-band LL has the best PSNR values. The original image has been embedded with a watermark image was tested subjectively. The results of the watermarked image can not be detected directly by the correspondents because the change of watermarked image is not much different from the original image. The robustness of watermarking image with "salt and pepper" shows decrease in quality greatly. However, the test by adding the AWGN showed that the robustness did not affect the quality of watermarked image. The experimental result by varying power noise, ranged from 10 db to 40 db, with a maximum power noise of AWGN is 40 db. From the experimental results, the discrete meyer is the best type among the wavelet family."
Fakultas Teknik Universitas Indonesia, 2012
S43322
UI - Skripsi Open  Universitas Indonesia Library
cover
Rahmat Arasy
"Tekanan darah tinggi pada retina Hypertensive Retinopathy merupakan penyakit yang timbul akibat tingginya tekanan darah yang mengalir pada pembuluh darah retina, mengakibatkan penebalan dinding pembuluh darah, sehingga debit aliran darah pada retina berkurang. Komplikasi yang timbul dari penyakit ini beragam dan membahayakan, mulai dari oklusi pembuluh darah retina, kerusakan saraf mata, bahkan kebutaan. Skripsi ini membahas tentang pendeteksian tekanan darah tinggi pada retina, sehingga dapat digunakan sebagai media untuk membantu diagnosis dan pencegahan penyakit tekanan darah tinggi pada retina Hypertensive Retinopathy . Pendeteksian dilakukan dengan menganalisa gambar retina Fundus Image pasien dengan metode Principal Component Analysis PCA dan Backpropagation Neural Network BNN , sehingga outputnya berupa klasifikasi citra ke salah satu dari dua golongan; yaitu retina normal dan retina dengan tekanan darah tinggi. Dari hasil perancangan diperoleh tingkat akurasi pengujian dan pengujian neural network hingga 85,5 dan 63,6 .

Hypertensive Retinopathy is a disease caused by high blood pressure flowing in the retinal blood vessels, resulting in thickening of blood vessel walls and reduced blood flow in the retina. Complications arising from these diseases are diverse and dangerous, ranging from retinal vein occlusion, nerve eye damage, even blindness. This paper discusses the detection of high blood pressure in the retina, so it can be used as a medium to help diagnosis and prevention of Hypertensive Retinopathy disease. Detection is done by analyzing the patient 39 s retinal image Fundus Image with Principal Component Analysis PCA method and Backpropagation Neural Network BNN , so that the output is image classification to one of two classes namely the normal retina and retina with high blood pressure. The result shows that this proposed model have leaning and testing accuracy up to 85,5 and 63,6 ."
Depok: Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Herry Swastika
Depok: Fakultas Teknik Universitas Indonesia, 2002
S38743
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rifqy Mikoriza Turjaman
"Data yang didapat dari Polda Metro Jaya, pada arus mudik 6 hari sebelum Hari Raya Idul Fitri tahun 2017 ada sekitar 73 kasus kecelakaan lalu lintas yang disebabkan oleh rasa kantuk pada saat berkendara. Yang dimana 6 orang meninggal dunia, mengalami luka berat sebanyak 17 orang, dan luka ringan sebanyak 82 orang. Jumlah ini meningkat 16 persen dari tahun 2016 yang tercatat sebanyak 63 kejadian. Sistem pendeteksi dan prediksi kantuk dikembangkan untuk mengatasi masalah ini.
Metode peramalan untuk time series yang banyak menimbulkan proses prediksi cukup sulit dilakukan. Sistem prediksi kantuk dibangun dengan algoritme backpropagation neural network yang diharapkan mampu untuk mempelajari dan beradaptasi pada setiap pola dari data historis yang diberikan. Dengan mengenali pola dari data historis, sistem dapat memberikan prediksi dan respons yang akurat dengan akurasi sebesar 100.

Data obtained from Polda Metro Jaya, on the homecoming traffic 6 days before Idul Fitri 2017 there are about 73 cases of traffic accidents caused by drowsiness at the time of driving. Where 6 people died, severe injuries as many as 17 people, and light injuries as many as 82 people. This number increased 16 percent from the year 2016 recorded as many as 63 events. Drowsiness and prediction systems were developed to address this problem.
Forecasting methods for time series caused a lot of prediction process quite difficult. The sleep prediction system is built with backpropagation neural network algorithm expected to be able to learn and adapt to each pattern of given historical data. By recognizing patterns from historical data, the system is expected to provide accurate predictions and responses with 100.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Yusuf Irfan Herusaktiawan
"Penelitian ini mengembangkan dan menganalisa sistem pendeteksi plagiarisme dua bahasa berbasis Latent Semantic Analysis untuk karya tulis berbahasa Indonesia dan referensi berbahasa Inggris. Sistem pendeteksi plagiarisme menggunakan algoritma backpropagation neural network untuk melakukan klasifikasi pasangan karya tulis berbahasa Indonesia dan Inggris yang sudah dinilai tingkatan plagiarismenya secara manual. Sistem dapat memperoleh klasifikasi akurasi F-measure sampai dengan 92.75.
Hasil percobaan menunjukkan bahwa akurasi tertinggi dapat diperoleh jika menggunakan metode term frequency binary dalam penghitungan jumlah kata dan penggunaan frobenius norm, vector angle slice, dan vector angle pad sebagai pilihan fitur untuk masukan backpropagation neural network.

This research aims to develop and analyse dual language plagiarism detection system based on Latent Semantic Analysis for papers with Indonesian language and reference text with English language. The plagiarism detection system uses backpropagation neural network algorithm to classify pairs of Indonesian and English papers which plagiarism levels has been graded manually. The system has reached classification accuracy using F measure metric up to 92.75.
Experiment results show that the highest accuracy obtained when using term frequency binary method in counting frequency of words and using frobenius norm, vector angle slice, and vector angle pad features for backpropagtion neural network input.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farid Prasaja Putera
"ABSTRAK
Peningkatan kualitas citra medis khususnya untuk bagian kepala manusia terus dikembangkan, termasuk dengan pemodelan 3D. Hal ini dilakukan untuk mengurangi kesalahan dalam proses diagnosa dan memfasilitasi pendeteksian tumor otak dengan pendekatan 3D. Dalam prosesnya, citra MRI otak dianalisa secara 3D sehingga diperoleh bagian tumor otak. Citra MRI dikonversi dari citra berformat MINC. Citra diklasifikasi untuk mendeteksi objek menggunakan K-Means Clustering yang akan memisahkan bagian tumor dan otak. Proses filter dilakukan menggunakan Non-Local Means sehingga noise hasil pengolahan dapat berkurang dari proses sebelumnya. Hasil citra pengolahan disegmentasi untuk meningkatkan dan mendukung proses rekonstruksi menggunakan Thresholding. Terakhir adalah merekonstruksi citra dalam bentuk 3D menggunakan metode Marching Cube. Evaluasi akurasi sistem meliputi pengurangan resolusi, pengujian citra normal, uji perbandingan, penggantian format citra dan penambahan noise. Hasil akurasi pendeteksian tumor otak mencapai 100% untuk format PNG dan resolusi 512x512, 97,7% untuk resolusi 256x256, 96,9% untuk citra normal tanpa tumor dan 97,96% berdasarkan perbandingan data olah dengan data referensi. Format PNG memiliki akurasi dibandingkan format JPEG dengan perbedaan sebesar 4%. Pengujian dengan menambahkan noise menghasilkan akurasi 87,6% untuk densitas 0,01, 83,6% untuk 0,05 dan 74,5% untuk 0,09.

ABSTRACT
Medical image enhancement especially for human brain imageries is rapidly developed, including 3D modeling. This research is aimed to reduce the error of diagnosis process and facilitate brain tumor detection using 3D approach. In the process, 3D brain from MRI imageries is analyzed to detect brain tumors. MRI image is converted from MINC format. Then, the image is classified to detect objects using K-Means Clustering to divide each part of brain. Filtering is performed using Non-Local Means to remove noise from previous processes. The result of imageries are segmented to enhance and support reconstruction process using Thresholding. Finally, 3D image reconstruction is performed using Marching Cube method. The accuracy of brain tumor detection is evaluated of resolution reduction, non tumor image testing, comparison testing, modifying image format, and adding noise. The accuracy rate of brain tumor detection is 100% for PNG format and 512x512 resolution, 97,7% for 256x256 resolution, 96,9% for non tumor image and 97,96% for comparison between ideal image and reference data. PNG format has better accuracy with JPEG by 4% improvement. The accuracy of adding noise is 87,6% for 0,01 density, 83,6% for 0,05 and 74,5% for 0,09."
2016
S64517
UI - Skripsi Membership  Universitas Indonesia Library
cover
Liani Budi Rachman
"ABSTRAK
Kadar kolesterol yang tinggi dalam darah dapat memicu timbulnya penyakit jantung koroner. Berdasarkan data yang diperoleh dari Kementerian Kesehatan Republik Indonesia, penyakit jantung koroner merupakan penyebab kematian tertinggi kedua setelah stroke dengan persentase 12.9% pada tahun 2014. Selain kolesterol tinggi, kondisi stres yang tinggi juga dapat memicu berbagai penyakit seperti gangguan pencernaan, kecemasan, dan gangguan jantung. Sehingga pemeriksaan kesehatan sedini mungkin baik dengan metode alternatif maupun pemeriksaan secara medis perlu dilakukan.
Penelitian ini membahas mengenai deteksi kolesterol dan stres melalui pengamatan citra iris. Endapan lemak yang telah terbentuk di jaringan kornea menghasilkan keburaman di area terluar iris. Tanda ini merupakan indikasi dari ketidakseimbangan tubuh sebagai tanda kolesterol berlebih. Sedangkan tidak terbentuknya endapan lemak
mengindikasikan kondisi kolesterol tidak tinggi. Sehingga dari pengamatan karakteristik iris ini, dapat dideteksi kondisi kolesterol tinggi dan kolesterol tidak tinggi. Lingkaran-lingkaran yang terbentuk pada iris atau yang disebut dengan cincin saraf mengindikasikan adanya ketegangan saraf berlebih. Cincin saraf terbentuk karena adanya iritabilitas, insomnia, ketidakseimbangan mental dan emosi seseorang. Sehingga tanda ini dapat mengindikasikan kondisi stres seseorang berupa bergejala stres atau tidak bergejala.
Deteksi kolesterol dan stres ini dibuat menggunakan metode Morphology Reconstruction untuk mengubah karakteristik penyakit lain pada ROI yang sama, Gray Level Co-occurence Matrix (GLCM) sebagai metode ekstraksi ciri, dan Backpropagation Neural Network (BNN) sebagai metode klasifikasi. Ciri yang digunakan dalam penelitian ini adalah entropy, contrast, correlation, energy, homogeneity, variance, dan difference variance. Dari hasil perancangan dengan jumlah citra pelatihan masing-masing sebesar 59 untuk deteksi kolesterol dan 53 untuk deteksi stres, diperoleh tingkat akurasi pengujian mencapai 96.49% untuk deteksi kolesterol dan 85.96% untuk deteksi stres dengan jumlah citra uji sebesar 57 citra.

ABSTRACT
High cholesterol levels in the blood can trigger coronary heart disease. Based on data obtained from the Ministry of Health of the Republic of Indonesia, coronary heart disease is the second highest cause of death with a percentage of 12.9% in 2014. Besides high cholesterol, high stress conditions can also trigger various diseases such as digestive disorders, anxiety, and heart problems. So people need to do health
examinations as early as possible.
This study discusses the detection of cholesterol and stress through observation of iris images. Fat deposits that have formed in the corneal tissue produce blur in the outer area of the iris. This sign is an indication of body imbalance as a sign of excess cholesterol. While the formation of fat deposits does not indicate the condition of cholesterol, it is identified as not high cholesterol. So from observing the characteristics of this iris, high cholesterol and not high cholesterol conditions can be detected. The circles that form on the iris or called as nerve ring indicate excessive nervous tension. The nerve ring is formed due to irritability, insomnia, mental and emotional imbalance in a person. So this sign can indicate a person's stress condition in the form of symptomatic stress or asymptomatic.
This cholesterol and stress detection is made using the Morphology Reconstruction method to change the characteristics of other diseases on the same Region of Interest, Gray Level Co-occurrence Matrix (GLCM) as a feature extraction method, and Backpropagation Neural Network (BNN) as a classification method. The characteristics used in this study are entropy, contrast, correlation, energy, homogeneity, variance, and difference variance. From the results of the design with the number of training images respectively 59 images for cholesterol detection and 53 images for stress detection, the accuracy of the test is 96.49% for cholesterol detection and 85.96% for stress detection with the number of testing images is 57 images."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
RR. Adhitya Widyaningrum
"Salah satu teknologi yang banyak diaplikasikan untuk mengolah data citra sebagai sumber informasi utama adalah teknologi penginderaan jauh atau remote sensing. Beberapa aplikasi remote sensing menuntut citra yang berkualitas baik, namun dalam ukuran yang lebih kecil mengingat ukurannya yang sangat besar. Kebutuhan inilah yang mendorong berkembangnya teknologi pemampatan citra atau image compression.
Skripsi ini membahas tentang teknik kompresi citra gabungan antara prediksi linier antarband (kompresi spektral) dengan transformasi wavelet dan Discrete Cosine Transform (DCT) sebagai kompresi spasial. Jenis transformasi wavelet yang digunakan adalah LS 9/7, CDF 9/7, dan multiwavelet Daubechies 10 (Db10) + LS 9/7.
Dari hasil ekperimen data MODIS berukuran 2048 x 2048, dapat disimpulkan rasio kompresi berbanding terbalik dengan nilai PSNR yang dihasilkan, sementara tingkat level dekomposisi sebanding dengan nilai PSNR dengan level ideal 5. Meskipun memiliki PSNR yang tinggi, metode DCT tidak menghasilkan kualitas citra hasil kompresi yang memadai, terbukti dengan rendahnya nilai co-histogram simetri (SCH). Metode kompresi yang paling baik adalah multiwavelet (Db10+LS9/7) karena menghasilkan PSNR yang stabil di atas 50 dB hingga rasio kompresi 100 dengan nilai SCH rata-rata 0.99.

An image/picture could contain thousands of information. Remote sensing is a technology which uses an image in the form of satellite imagery as the main source of information. Remote sensing applications require good quality of image, represented by smaller size, since satellite sensors have wide measurement coverage of Earth surface. In this regards, image compression is needed.
This thesis report covered image compression techniques using combination of interband prediction (as spectral compression) and discrete cosine transform (DCT) and wavelet transform (as spatial compression). Several wavelet transforms are applied in the experiment, such as LS 9/7, CDF 9/7, and multi-wavelet Daubechies 10 (Db10) + LS 9/7.
The experiment results showed that the higher the compression ratio, the smaller PSNR values. This applies to all four methods of compression which were tested in this study. The higher level of decomposition of wavelet transformation, resulted in better PSNR. While the ideal level of decomposition for wavelet transformation is level 5. Even the DCT method resulted in high PSNR, but the quality of compression image is poor, which is shown in low Symmetrical Co-Histogram (SCH) value. The best result was obtained by combined method (Db10+LS9/7) which resulted in high PSNR (up to 50 dB), high compression ratio (up to 100), and average SCH values of 0.99.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51401
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>