Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 183289 dokumen yang sesuai dengan query
cover
Latif Alfansyah
"Indonesia memiliki potensi biomassa yang sangat besar, salah satunya adalah Tandan Kosong Kelapa Sawit (TKKS) yang mengandung lignoselulosa. Penelitian ini bertujuan untuk mengoptimumkan proses konversi TKKS menjadi etanol, furfural, dan listrik melalui prinsip ko-produksi supaya menghasilkan performa ekonomi dan lingkungan yang optimum. Performa ekonomi diukur dengan NPV, sedangkan performa lingkungan diukur melalui emisi CO2 hasil analisis life cycle.
Hasil simulasi proses pada Unisim dan SuperPro kemudian diregresi menggunakan MATLAB ke dalam persamaan-persamaan polinomial yang selanjutnya dioptimisasi oleh GAMS. Optimisasi multi-objektif secara simultan mampu menunjukkan kapasitas dan kondisi operasi optimum yang dihasilkan dalam bentuk kurva Pareto. Daerah optimum didominasi oleh temperatur hidrolisis terendah, yaitu 162 oC di mana biaya produksi etanol sebesar 1,02 $/liter pada solusi NPV maksimum dan faktor emisi 21,698 kg-CO2/kg-furfural; 2,818 kg-CO2/MJ-etanol; serta 3,180 kg-CO2/MJ-listrik pada solusi emisi CO2 minimum.

Indonesia has huge potential in Palm Oil Empty Fruit Bunch (EFB) which is a lignocellulosic biomass. The purpose of this research is to optimize the conversion process of EFB to ethanol, furfural, and electricity through co-production, to achieve optimum economic and environmental performances. Economic performance is measured by NPV, while environmental performance by CO2 emission through life cycle analysis.
The process simulation results from Unisim and SuperPro are regressed using MATLAB into polynomial equations which are optimized using GAMS. The multi-objective optimization simultaneously determines optimum capacity and operating condition, which are represented by Pareto curve. The optimum solutions are dominated by the lowest hydrolysis temperature 162 oC, and reveal production cost of ethanol, which is $1,02/litre for the maximum NPV solution, and emission factor 21,698 kg-CO2/kg-furfural; 2,818 kg-CO2/MJ-ethanol; and 3,180 kg-CO2/MJ-electricity for the minimum emission solution.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S58834
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zulfa Hudaya
"Penelitian ini bertujuan untuk mengoptimumkan konversi TKKS menjadi etanol, furfural, dan listrik yang terintegrasi dengan sistem generasi kukus agar menghasilkan performa ekonomi dan lingkungan yang optimum. Performa ekonomi diukur dengan NPV (net present value) sedangkan performa lingkungan diukur melalui emisi CO2 hasil analisis life cycle. Hasil optimisasi menunjukkan bahwa suhu optimum untuk reaksi hidrolisis adalah 180°C dan pemenuhan fraksi kukus massa dari generasi kukus tenaga surya yang optimum berada pada rentang 0-0,28 yang ditunjukkan oleh kurva Pareto. CSP mampu memenuhi seluruh kebutuhan kukus secara finansial pada pembangunan unit ke-10 dengan proyeksi learning curve. Split fraksi TKKS untuk objektif optimum didapatkan pada fraksi massa TKKS sebesar 0.25 ke unit reaktor hidrolisis.

The purpose of this research is to optimize the conversion process of EFB to ethanol, furfural, and electricity through co-production principal integrated with solar-assisted steam generation system, to achieve optimum economic and environmental performances. Economic performance is measured by NPV, while environmental performance by CO2 emission through life cycle analysis. The multi-objective optimization shows that the optimum temperature of hydrolisis reaction is 180°C and solar-assisted generation system is applicable for fulfilling steam need until 0,28 of mass fraction, which are represented by Pareto curve. CSP can fulfill all demand of steam funancially when the 10th unit established by learning curve projection. Fraction split of EFB into hydrolisis reactor is optimum at 0,25.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63155
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ayip Farouk
"Untuk berkontribusi dalam pengembangan energi terbarukan, penelitian ini bertujuan untuk menemukan keputusan yang tepatdari pemanfaatan Tandan Kosong Kelapa Sawit TKKS sebagai salah satu bahan yang potensial di Indonesia.Produk akhir dari pemanfaatan TKKS pada penelitian ini adalah Etanol, Furfural, dan Listrik. Multi-objektif yang akan di lakukan pada penelitian ini adalah NPV maksimum dan CO2 minimun yang akan diukur dengan Kurva Pareto. Penelitian sebelumnya sudah melakukan optimasi namun NPV yang dihasilkan masih belum ekonomis, salah satunya dikarenakan biaya kapital dari pemasangan sistem gugus tenaga surya yang masih mahal. Oleh karena itu, pada penelitian ini pengembangan yang akan penulis lakukan adalah dengan mengganti sumber kukus dengan bahan bakar gas alam. Sehingga mampu mengurangi biaya kapital dan diharapkan bisa memperbaiki NPV agar lebih ekonomis. Pada penelitian ini, diperoleh suhu operasi yang optimum pada unit praperlakuan sebesar 180o C, dan juga split fraksi 0.25 TKKS masuk kedalam unit hidrolisis. Pada kondisi ini, diperoleh NPV sebesar 43.6 juta dan emisi sebesar 9.237 juta kgCO2 Ekuivalen.

For doing some contribution in development of renewable energy, this study has an objective to find an optimum decision for Empty Fruit Bunch EFB utilization as one of potential raw material in Indonesia. The final products from EFB utilization in this study are ethanol, furfural, and electricity. Multi Objective that will optimize in this study are NPV maximum and CO minimum that will measure with Pareto Curve. The recent study has done the optimizing but the NPV still not economic. It s happen because the capital cost from CSP utilization as a steam generation still expensive. In this study, natural gas will use as a fuel for steam generation, so that can decrease the capital cost and can make the NPV become economic. In this study, the optimum operation temperature was obtained in 180o C and split fraction in 0.25 EFB into hidrolisis reactor unit. In this condition, the result for NPV is 43,6 million and emission 9.237 million kgCO2 equivalent.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Daffa Ibnu Taufiqulhakim
"Di Indonesia, kereta api telah menjadi moda transportasi yang populer dan efisien, menawarkan kenyamanan dan kecepatan bagi pengguna. Dalam operasionalnya, salah satu tantangan utama adalah optimisasi, di mana kereta listrik muncul sebagai solusi yang efektif dengan biaya operasional rendah dan gaya traksi tinggi. Profil trayektori kecepatan yang mengindikasikan kecepatan yang diizinkan pada setiap posisi dapat membimbing pengemudi atau sistem operasi otomatis kereta (ATO) untuk mengoperasikan kereta dengan lebih efisien. Penelitian ini mengkaji pendekatan optimisasi untuk trayektori kecepatan Kereta Rel Listrik (KRL), dengan mempertimbangkan konsumsi energi sebagai ukuran kepuasan perusahaan kereta api dan waktu perjalanan sebagai ukuran kepuasan penumpang. Optimisasi kecepatan kereta dapat menggunakan algoritma Hybrid Evolutionary Algorithm (HEA). Penelitian ini mengusulkan metode multiobjektif untuk mengoptimalkan lintasan kecepatan kereta, dengan mempertimbangkan batasan kecepatan, strategi mengemudi yang meliputi fase accelerating, cruising, coasting, braking, serta adaptasi terhadap kondisi kemiringan, dan kurvatur lintasan. Selain itu, penelitian ini menunjukkan bagaimana Pareto front dari setiap generasi algoritma dapat digunakan untuk mengevaluasi dan memilih strategi operasi yang paling efektif. Dalam penelitian ini didapat bahwa hasil dari solusi yang didapat bisa mengurangi total energi sebesar 21.97% dan total waktu tempuh sebesar 5.11%.

In Indonesia, trains have become a popular and efficient mode of transportation, offering comfort and speed to users. One of the main challenges in their operation is optimization, where electric trains emerge as an effective solution with low operational costs and high tractive force. A speed trajectory profile that indicates the authorized speed at each position can guide the driver or the automatic train operation (ATO) system to operate the train more efficiently. This study examines the optimization approach for the speed trajectory of Electric Rail Trains (KRL), considering energy consumption as a measure of railway company satisfaction and travel time as a measure of passenger satisfaction. Train speed optimization can utilize the Hybrid Evolutionary Algorithm (HEA). This research proposes a multi-objective method to optimize the train speed trajectory, taking into account speed limits, driving strategies including accelerating, cruising, coasting, and braking phases, as well as adaptation to track slope and curvature conditions. Additionally, this study demonstrates how the Pareto front of each algorithm generation can be used to evaluate and select the most effective operational strategy. In this research, it was found that the results of the solution obtained could reduce total energy by 21.97% and total travel time by 5.11%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shanti Mustika
"Melihat besarnya potensi minyak kelapa sawit dan memahami kondisi pemanasan global yang kian meningkat akibat produksi gas rumah kaca oleh pembakaran fosil untuk produksi bahan bakar, produksi bahan bakar dari minyak kelapa sawit dapat menjadi solusi untuk mengurangi produksi gas rumah kaca. Tujuan penelitian ini adalah mendapatkan persentase campuran Fatty Acid Methyl Esters(FAME), Hydrogenated Vegetable Oil(HVO), Solar CN48 (SCN48), dan Solar CN53 (SCN53) agar mendapatkan Levelized Cost of Energy (LCOE) dan GlobalWarmingPotential(GWP) CO2eq yang minimum. Penelitian diawali dengan simulasi proses produksi FAME dan HVO menggunakan perangkat lunak Aspen Plus, dilanjutkan dengan menghitung GWP kemudian melakukan optimisasi multi-objektif untuk mendapatkan persentase campuran bahan bakar dengan spesifikasi bahan bakar solar sesuai dengan ketentuan Euro2 dan Euro4. Optimisasi dilakukan menggunakan perangkat lunak General Algebraic Modelling System (GAMS) menggunakan solver Cplex. Hasil optimisasi memperlihatkan bahwa skenario blendinguntuk Euro2 memiliki persentase campuran FAME 43,9-51,1%, HVO 2,6-40,1%, SCN48 15,3-17,6%, dan SCN53 46,3-100% dengan LCOE sebesar 0,55-0,864 USD/Liter dan GWP sebesar 599,46-3000,78 gCO2eq/Liter. Hasil optimisasi untuk skenario blendingberdasarkan spesifikasi bahan bakar Euro4 memiliki persentase campuran FAME 32,5%, HVO 28,6%, dan SCN53 38,8% dengan LCOE sebesar 0,637-0,786 USD/Liter dan GWP sebesar 902,69-2863,03 gCO2eq/Liter.

Noticing the abundance potential of the palm oil and acknowledging the problem of green house gasses produced by fossils from burning fuels, utilizing the palm oil for fuels could decrease the emission caused by the fossils burning. The focus subject of this research is on the blending composition of Fatty Acid Methyl Esters(FAME), Hydrogenated Vegetable Oil(HVO), Diesel CN48 (DCN48), and Diesel DCN53 (DCN53) through minimizing Levelized Cost of Energy (LCOE) and GlobalWarmingPotential(GWP) CO2eq. The simulation is runned through Aspen Plus software, proceed by calculating the GWP, then the result of the simulations are optimized by using General Algebraic Modelling System (GAMS) with Cplex solver with diesel fuel specification based on the emission regulation stated in Euro2 and Euro 4. The result of the optimization shows the percentage of the blending composition of Euro2 specification consists of FAME 43,9-51,1%, HVO 2,6-40,1%, DCN48 15,3-17,6%, and DCN53 46,3-100% dengan LCOE sebesar 0,55-0,864 USD/Litre dan GWP sebesar 599,46-3000,78 gCO2eq/Litre. The result of of the blending composition of Euro4 specification consists of FAME 32,5%, HVO 28,6%, and DCN53 38,8% dengan LCOE sebesar 0,637-0,786 USD/Litre dan GWP sebesar 902,69-2863,03 gCO2eq/Litre."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arief Surachman
"Dalam rangka upaya memenuhi target pemerintah yaitu pengembangan pembangkit listrik tenaga panas bumi PLTP pada tahun 2025 ditargetkan sebesar 7.242 MW, maka tentu saja akan diperlukan data tentang desain PLTP yang paling optimal yang dapat diterapkan pada seluruh kondisi sumber panas bumi. Dengan demikian, diperlukan panduan desain yang dibuktikan secara ilmiah untuk pembangunan PLTP. Dalam dekade terakhir ini, banyak peneliti yang menganalis atau merancang sistem energi dengan menggabungkan antara analisis energi, exergy dan thermoekonomik. Hal ini dimaksudkan dalam upaya peningkatan efisiensi serta mengurangi kerugian-kerugian yang ditimbulkan oleh ketidakefisienan sistem.
Melalui analisa yang komprehensif dengan menggabungkan analisa energi, exergy, exergoeconomics serta exergoenvironment, maka diharapkan dapat menjadi panduan desain yang paling optimum dengan mempertimbangkan segala aspek, baik aspek teknologi, ekonomi dan lingkungan yang dapat diaplikasikan untuk berbagai kondisi sumber panas bumi di Indonesia. Untuk itulah pada disertasi ini dilakukan analisa dan optimasi 3E exergy,economic,environment. Pemodelan dan optimasi sistem PLTP dilakukan menggunakan software EES dan diintegrasikan dengan MATLAB.
Dari hasil analisis 3E, dapat diketahui bahwa komponen seperti turbin dan cooling tower merupakan komponen yang menyumbang nilai exergy destruction, total cost dan exergoenvironment yang paling besar dibandingkan komponen lainnya.

In order to reach the government 39;s target of building geothermal power plant PLTP in 2025 of 7,242 MW, then it will need data about the most optimal PLTP design that can be applied to all geothermal conditions. Thus, the design required for the construction of PLTP. In the last decade, many researchers have analyzed and discussed energy systems with energy, exergy and thermoeconomic analyzes. This is necessary in an effort to increase and reduce the losses caused by system inefficiencies.
Through a comprehensive analysis with energy analysis, exergy, exergoeconomics and exergoenvironment, it is expected to be the most optimal design with good aspects, economics and environment that can be used for various geothermal conditions in Indonesia. For analysis, it was conducted 3E exergy, economy, environment analysis on this dissertation. By using EES software and integrated with MATLAB, the PLTP system can be modeled and optimized.
From the results of 3E analysis, it can be seen that components such as turbines and cooling towers are the components that contribute the largest value of total exergy destruction, total cost and exergoenvironment compared to other components.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
D2483
UI - Disertasi Membership  Universitas Indonesia Library
cover
Yoshua Ardy Putra
"ABSTRAK
Energi adalah salah satu komponen penting untuk menghasilkan listrik. Penggunaan energi untuk pembangkit listrik di Indonesia saat ini didominasi oleh bahan bakar fosil. Saat ini, ketersediaan bahan bakar fosil menurun karena penggunaan energi secara besarbesaran untuk kebutuhan manusia. Selain itu, penggunaan bahan bakar fosil memiliki
efek negatif bagi lingkungan dan kesehatan manusia akibat partikulat yang dihirup oleh manusia. Salah satu solusi untuk mengatasi efek negatif bahan bakar fosil adalah penggunaan energi terbarukan karena faktor emisi rendah dan ketersediaan energi yang melimpah. Selain itu, penggunaan energi terbarukan dapat meningkatkan ekonomi lokal dengan menyerap tenaga kerja. Pada penelitian ini ditentukan nilai optimal dari produksi listrik di Indonesia berdasarkan aspek ekonomi, lingkungan, kesehatan dan tenaga kerja menggunakan Goal Programming. Dari hasil yang diperoleh, energi listrik yang dihasilkan dari energi batubara sebesar 295.697,702 GWh dan energi minyak sebesar 33.996,399 GWh masih menjadi sumber energi utama untuk memenuhi kebutuhan listrik. Penggunaan energi terbarukan seperti air , panas bumi, dan biomas dapat menjadi energi alternatif bagi kebutuhan listrik di Indonesia hingga tahun 2025 dengan total energi listrik yang dihasilkan sebesar 52.403 GWh.

ABSTRACT
Energy is one important component to produce electricity. The use of energy for electricity generation in Indonesia is currently dominated by fossil fuels. Today, the availability of fossil fuels is decreasing due to the use of energy massively for human needs. In addition, the use of fossil fuels has a negative effect for environment and human health due to particulates inhaled by humans. One solution to solve the negative effects of fossil fuels is the use of renewable energy due to low emission factors and abundant energy availability. Also, renewable energy can increase the local economy by absorbing labor. This research is to determine the optimal value of electricity production in
Indonesia based on economic, environmental, health and labor aspects using Goal Programming. From the results, coal and oil are still the main energy sources to meet the needs of electricity with the total electricity generated from each energy are 295.697,702 GWh and 33.996,399 GWh, meanwhile renewable energy such as water, waste,
geothermal, and biomass can be an alternative energy sources for electricity in Indonesia until 2025 with the total electricity generated is 52.403 GWh."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Ilyas Savier Alfikri
"Karya tulis ini membahas simulasi dan optimasi tujuan ganda proses regasifikasi hidrogen cair. Tujuan penulisan karay tulis ini adalah untuk mengetahui potensi pemanfaatan energi dingin hidrogen cair. Terdapat dua faktor utama yang melatarbelakangi proses pemanfaatan energi dingin hidrogen. Pertama, energi yang dikonsumsi pada proses pencairan hidrogen adalah 3,3 kWh/kg hidrogen cair (Departement of Energy U.S.A., 2009). Kedua, energi yang tergandung dalam hidrogen adalah 120 MJ/kg (Van Hoecke et al., 2021). Proses pemanfaatan energi dingin hidrogen cair yang dibahas adalah kombinasi Siklus Brayton dan ekspansi. Simulasi dilakukan pada Aspen HYSYS V.10 dengan fluid package­ Peng-Robinson. Fluida kerja yang digunakan dalam simulasi adalah fluida kerja Helium dan fluida kerja campuran Helium-Neon. Optimasi dilakukan pada aplikasi MS Excel. Algoritma yang digunakan adalah modifikasi dari I-MODE yang dibuat oleh Sharma & Rangiah, 2013. Optimasi tujuan ganda memaksimalkan energi listrik yang dibangkitkan dan meminimalkan biaya pompa dengan variabel penentu adalah laju alir dan komposisi fluida kerja, serta tekanan penguapan hidrogen cair. Dengan laju alir hidrogen cair 30 ton/hari, diperoleh kondisi operasi yang optimum 1836 kg/jam fluida kerja Helium dengan tekanan penguapan sebesar 68 atm. Energi listrik yang dibangkitkan adalah 0,934 GWh per tahun dan biaya pompa yang dibutuhkan adalah $12.305.142.

This paper discusses simulation and multi-objective optimization of regasification liquid hydrogen. This paper is written to identify the utilization of hydrogen cold energy potency. There are two main factors behind this study. The amount of energy consumed in the liquefaction process is 3.3 kWh/kg of liquid hydrogen (Departement of Energy U.S.A., 2009), and the hydrogen energy content is 120 MJ/kg (Van Hoecke et al., 2021). The process simulation is a combination of the Brayton Cycle and direct expansion. The simulation is conducted on Aspen HYSYS V.10 with Peng-Robinson fluid package. The working fluids that are used in this simulation are Helium and Helium-Neon mixture. The optimization is conducted in MS Excel. I-MODE algorithm (Sharma & Rangiah, 2013) is modified to run the optimization process. Multi-objective optimization will maximize the amount of electricity and minimize the cost of the pump by changing the flow rate and composition of the working fluid, and the regasification pressure. Liquid hydrogen flow rate set to be constant at 30 ton/h, the optimum condition is 1863 kg/h Helium as working fluid and regasification pressure at 68 atm. The amount of electricity generated is 0.934 GWh per year and the cost of the pump is $12.305.142."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Desti Octavianthy
"Indonesia yang memiliki jumlah kota sebanyak 93 kota yang tersebar di banyak provinsi merupakan konsumen energi terbesar di Asia Tenggara yaitu sebesar 36% dari kebutuhan energi kawasan. Selain tingginya permintaan energi, isu lain yang krusial adalah tingginya produksi limbah di Indonesia, terutama pada daerah perkotaan. Penelitian ini dilakukan untuk memperoleh skema teknologi Waste to Energy (WtE) yang dapat diaplikasikan dan paling optimum dalam menghasilkan LCOE dan emisi GHG yang minimum melalui optimisasi multi objektif.
Teknologi yang digunakan di dalam penelitian ini adalah insinerasi, gasifikasi, anaerobic digestion, dan pirolisis dengan teknologi pembangkitan listrik menggunakan gas engine, gas turbin, serta teknologi fuel cell, yakni Solid Oxide Fuel cell (SOFC) dan Molten Carbonate Fuel cell (MCFC). Produksi bahan bakar hidrogen untuk fuel cell menggunakan proses Reforming. Penelitian dilakukan dengan meninjau aspek teknis melalui simulasi produksi listrik dari limbah padat perkotaan di kota Depok dengan menggunakan software ASPEN PLUS.
Dari aspek lingkungan, dilakukan analisis faktor emisi yang dihasilkan dari berbagai teknologi proses WtE melalui metode Life Cycle Assessment (LCA). Dari segi ekonomi, dilakukan perhitungan Levelized Cost of Electricity (LCOE) WtE. Emisi total dan LCOE merupakan fungsi objektif pada optimisasi multi objektif yang dilakukan dengan menggunakan software General Algebraic Modelling System (GAMS).
Hasil penelitan menunjukkan bahwa teknologi digesti anaerob dengan turbin gas sebagai teknologi pembangkitan merupakan teknologi WtE yang optimum pada tahun 2020-2035. Pada tahun 2035 hingga tahun 2050, teknologi gasifikasi dengan SOFC merupakan teknologi yang optimum dari segi teknis, ekonomi, maupun lingkungan. Penelitian ini diharapkan mampu menjadi inspirasi dan membawa pengaruh terhadap perbaikan sistem konversi limbah menjadi energi yang ada di kota Depok.

Indonesia, which has a total of 93 cities in many provinces, is the largest energy consumer in Southeast Asia, around 36% of the region`s energy needs. Besides the high demand for energy, another crucial issue is the high production of waste in Indonesia, especially in urban areas. This research was carried out to obtain the Waste to Energy (WtE) technology scheme that can be applied and optimum in producing minimum LCOE and GHG emissions through multi-objective optimization.
The technologies used in this study are incineration, gasification, anaerobic digestion, and pyrolysis with power generation technology which using gas engines, gas turbines, and fuel cell technology, namely Solid Oxide Fuel cell (SOFC) and Molten Carbonate Fuel cell (MCFC). The production of hydrogen fuel for fuel cells uses the Reforming process. The study was conducted by reviewing the technical aspects through simulating electricity production from municipal solid waste in Depok using the ASPEN PLUS software.
From the environmental aspect, emission factor analysis was produced from various WtE process technologies through the Life Cycle Assessment (LCA) method. From an economic standpoint, Levelized Cost of Electricity (LCOE) of WtE is calculated. Total emissions and LCOE are objective functions in multi-objective optimization that carried out using General Algebraic Modeling System (GAMS) software.
The research results show that anaerobic digestion technology with gas turbines as generation technology is the optimum WtE technology in 2020-2035. In 2035 until 2050, gasification technology with SOFC is the optimum technology from the technical, economic and environmental aspects. This research is expected to be able to inspire and influence the improvement of waste conversion into energy systems in the city of Depok.This research is expected to be able to inspire and influence the improvement of the waste conversion into energy systems in Depok.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
T53968
UI - Tesis Membership  Universitas Indonesia Library
cover
Mohammad Alfian
"ABSTRAK
Ketersediaan gas bumi sebagai bahan baku untuk produksi urea terus menurun dan harganya semakin meningkat, hal ini mendorong pengembangan produksi gas sintesis yang ekonomis dan aman dari aspek lingkungan untuk diterapkan dalam industri green urea dari proses steam reforming, gasifikasi biomassa, PV Elektrolisis, dan kombinasi dari ketiga proses tersebut. Metode Analytical Hierarchy Process AHP digunakan untuk proses seleksi teknologi dan pendekatan Multi-Objective Optimization MOO digunakan untuk meminimalkan biaya produksi dan dampak lingkungan dari produksi urea untuk setiap teknologi dengan memperhitungkan learning curve dari belanja modal Capex , harga bahan baku untuk setiap teknologi dan nilai uang di masa depan hingga tahun 2050. Model mencakup dua fungsi obyektif yang dihitung untuk mencari biaya produksi green urea dan emisi CO2 terendah. Hasilnya menunjukkan bahwa teknologi gasifikasi biomassa dari tahun 2020 hingga 2040 dan teknologi kombinasi gasifikasi biomassa-PV Elektrolisis tanpa baterai dari tahun 2040 hingga 2050 yang paling memenuhi biaya produksi dan emisi CO2 minimum.

ABSTRACT
The availability of natural gas as a feedstock for urea production continues to decline and its price increases, it encourages synthesis gas production development that is easy to implement, economical and relatively safe for the environment to be applied in green urea industry from steam reforming, biomass gasification, PV Electrolysis, and a combination of these three processes. The Analytical Hierarchy Process AHP method for technology selection process and The Multi Objective Optimization MOO approach is used to minimize the production costs and environmental impacts of green urea production for each technology considering the learning curve of capital expenditure Capex and feedstock price for each technology and future value until 2050. The model includes two competing objective functions to seek the lowest cost of green urea production and the lowest CO2 emissions.The result suggests that biomass gasification technology from 2020 to 2040 and combine biomass gasification PV Electrolysis without battery technology from 2040 to 2050 fulfill the minimum production cost and minimum CO2 emissions."
2018
T50890
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>