Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 12354 dokumen yang sesuai dengan query
cover
Nassirharand, Amir
"[Computer-aided nonlinear control system design provides such an approach based on the use of describing functions. The text deals with a large class of nonlinear systems without restrictions on the system order, the number of inputs and/or outputs or the number, type or arrangement of nonlinear terms. The strongly software-oriented methods detailed facilitate fulfillment of tight performance requirements and help the designer to think in purely nonlinear terms, avoiding the expedient of linearization which can impose substantial and unrealistic model limitations and drive up the cost of the final product.
Design procedures are presented in a step-by-step algorithmic format each step being a functional unit with outputs that drive the other steps. This procedure may be easily implemented on a digital computer with example problems from mechatronic and aerospace design being used to demonstrate the techniques discussed. The author?s commercial MATLAB®-based environment, available separately from insert URL here, can be used to create simulations showing the results of using the computer-aided control system design ideas characterized in the text.;Computer-aided nonlinear control system design provides such an approach based on the use of describing functions. The text deals with a large class of nonlinear systems without restrictions on the system order, the number of inputs and/or outputs or the number, type or arrangement of nonlinear terms. The strongly software-oriented methods detailed facilitate fulfillment of tight performance requirements and help the designer to think in purely nonlinear terms, avoiding the expedient of linearization which can impose substantial and unrealistic model limitations and drive up the cost of the final product.
Design procedures are presented in a step-by-step algorithmic format each step being a functional unit with outputs that drive the other steps. This procedure may be easily implemented on a digital computer with example problems from mechatronic and aerospace design being used to demonstrate the techniques discussed. The author?s commercial MATLAB®-based environment, available separately from insert URL here, can be used to create simulations showing the results of using the computer-aided control system design ideas characterized in the text.;Computer-aided nonlinear control system design provides such an approach based on the use of describing functions. The text deals with a large class of nonlinear systems without restrictions on the system order, the number of inputs and/or outputs or the number, type or arrangement of nonlinear terms. The strongly software-oriented methods detailed facilitate fulfillment of tight performance requirements and help the designer to think in purely nonlinear terms, avoiding the expedient of linearization which can impose substantial and unrealistic model limitations and drive up the cost of the final product.
Design procedures are presented in a step-by-step algorithmic format each step being a functional unit with outputs that drive the other steps. This procedure may be easily implemented on a digital computer with example problems from mechatronic and aerospace design being used to demonstrate the techniques discussed. The author?s commercial MATLAB®-based environment, available separately from insert URL here, can be used to create simulations showing the results of using the computer-aided control system design ideas characterized in the text., Computer-aided nonlinear control system design provides such an approach based on the use of describing functions. The text deals with a large class of nonlinear systems without restrictions on the system order, the number of inputs and/or outputs or the number, type or arrangement of nonlinear terms. The strongly software-oriented methods detailed facilitate fulfillment of tight performance requirements and help the designer to think in purely nonlinear terms, avoiding the expedient of linearization which can impose substantial and unrealistic model limitations and drive up the cost of the final product.
Design procedures are presented in a step-by-step algorithmic format each step being a functional unit with outputs that drive the other steps. This procedure may be easily implemented on a digital computer with example problems from mechatronic and aerospace design being used to demonstrate the techniques discussed. The author’s commercial MATLAB®-based environment, available separately from insert URL here, can be used to create simulations showing the results of using the computer-aided control system design ideas characterized in the text.]"
London: [Springer, ], 2012
e20410767
eBooks  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1989
03 Wah c
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Pressman, Roger S.
New York: John Wiley & Sons, 1977
621.902 PRE n
Buku Teks  Universitas Indonesia Library
cover
Kue Tjui Susilo
Depok: Fakultas Teknik Universitas Indonesia, 1993
S38375
UI - Skripsi Membership  Universitas Indonesia Library
cover
Encarnacao, Jose L.
Berlin: Springer-Verlag, 1990
620.004 202 85 ENC c
Buku Teks  Universitas Indonesia Library
cover
Dhar, R. N.
New Delhi: Tata McGraw-Hill, 1984
621.319 DHA c (1)
Buku Teks  Universitas Indonesia Library
cover
Encarnacao, Jose L.
New York: Springer-Verlag, 1983
620.004 25 ENC c
Buku Teks  Universitas Indonesia Library
cover
Rahmi Seftina
"Penelitian ini mengembangkan Computer Aided Diagnosis CAD radiografi paru anak dengan menggunakan metode segmentasi Deformable Models untuk membantu mendeteksi abnormalitas. Metode Deformable Models mencari abnormalitas berdasarkan nilai piksel citra. Metode Deformable Models dikerjakan dengan dua variasi yaitu median filter Deformable Models dan wiener filter Deformable Models. Nilai piksel paru-paru abnormal dengan segmentasi wiener filter Deformable models adalah 186-255 dan median filter Deformable Models adalah 191-255. Metode wiener filter Deformable models menghasilkan nilai ROC lebih tinggi dibandingkan metode median filter dengan nilai akurasi 78,5, sensitivitas 74,5, spesifitas 80, presisi 90,0 dan overall error 21,0.

This study developed a correlation test Computer Aided Diagnosis CAD radiographic of children pulmonary using segmentation Deformable Models method for detecting Abnormalities. Deformable models method searched abnormalities by value of the image pixel. Deformable models method used two variations, namely median filter Deformable Models and wiener filter Deformable Models. Abnormal result lung pixel values with segmentation Wiener filter Deformable models is 186 255 and median filter Deformable Models is 190 255. Wiener filter Deformable models method have ROC result relatively higher than median filter Deformable models with value of accuracy 78,5, sensitivity 74,5, specificity 80.0, precision 90,0 and overall error of 21,0.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47662
UI - Tesis Membership  Universitas Indonesia Library
cover
Eddy Kurniawan
"Kanker paru merupakan kanker yang paling banyak ditemukan dan paling mematikan di dunia. Penentuan stadium kanker paru umumnya dilakukan oleh dokter radiologi dengan melihat pembesaran kelenjar getah bening (KGB) mediastinal. KGB mediastinal cukup sulit dideteksi secara visual dikarenakan memiliki kontras yang rendah  terhadap jaringan di sekitarnya, ukuran dan bentuknya yang bervariasi, serta tersebar di berbagai lokasi. Oleh karena itu, akhir – akhir ini dikembangkan sistem computer-aided detection (CADe) sebagai alat bantu bagi dokter radiologi untuk mendeteksi KGB mediastinal secara otomatis. Metode terbaik saat ini dalam sistem CADe KGB mediastinal tersebut menggunakan 2D convolutional neural network (CNN) yang diterapkan dari 3 sudut pandang (axial, coronal, sagittal). Namun, sifat 3D dari KGB mediastinal dihipotesakan akan lebih terwakili jika menggunakan 3D CNN. Oleh karena itu, dalam penelitian ini digunakan 3D CNN yang kemudian diubah menjadi 3D fully convolutional network (FCN)  untuk mendeteksi kandidat KGB mediastinal di dalam suatu tumpukkan citra CT. Kandidat KGB mediastinal tersebut kemudian dianalisa untuk mengurangi false positive (FP) menggunakan 3 metode, yaitu perhitungan mean HU, deteksi kontur menyerupai lingkaran, dan klasifikasi menggunakan 3D CNN. Performa terbaik dari sistem CADe KGB mediastinal ini diperoleh ketika menggunakan 3D CNN dalam tahap pengurangan FP dengan sensitivitas 77% dan 12 FP/pasien.

Lung cancer is the most common and the deadliest cancer in the world. Lung cancer staging usually was done by radiologist by detecting mediastinal lymph node (LN) enlargement. Mediastinal LN is difficult to be detected visually due to its low contrast to the surrounding tissues, various size and shape, and sparse location. Therefore, computer-aided detection (CADe) system has been developed as a tool for radiologist to detect medistinal LN automatically. The state of the art mediastinal LN CADe system used 2D convolutional neural network (CNN) from 3 planar views (axial, coronal, sagittal). However, the 3D features of mediastinal LN are hypothesized to be more reprenseted if 3D CNN is used. Therefore, in this experiment we used 3D CNN which is converted to 3D fully convolutional network (FCN) to detect mediastinal LN candidate in a stack of CT images. Then, the mediastinal LN candidates were analyzed using 3 methods to reduce the false positive (FP), which are the calculation of the mean HU, the blob detection, and the classification using 3D CNN. The best performance of this CADe system was achieved when the 3D CNN was used in the FP reduction stage which has 77% of sensitivity and 12 FP/ patient."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T54516
UI - Tesis Membership  Universitas Indonesia Library
cover
Ahmad Novian Rahman Hakim
"Kanker payudara adalah salah satu kanker paling umum terjadi di kalangan wanita dan tingkat kelangsungan hidupnya cenderung rendah ketika stadiumnya ditemukan sudah tinggi. Untuk meningkatkan kelangsungan hidup kanker payudara, deteksi dini sangat penting. Ada dua cara untuk mendeteksi kanker payudara: diagnosis dini dan skrining. Untuk membuat diagnosa yang akurat pada stadium awal kanker payudara, munculnya massa dan mikro-kalsifikasi pada citra mamografi merupakan dua indikator penting. Beberapa Computer-Aided Detection (CADe) telah dikembangkan untuk mendukung ahli radiologi karena pendeteksian mikro-kalsifikasi penting dalam menegakkan diagnosis dan perawatan yang direkomendasikan berikutnya. Sebagian besar sistem CADe yang ada saat ini mulai menggunakan Convolutional Neural Network (CNN) untuk mengimplementasikan deteksi mikro-kalsifikasi pada mammogram dan hasil kuantitatifnya sangat memuaskan, rata-rata tingkat akurasinya lebih dari 90%. Penelitian ini melakukan pendekatan otomatis untuk mendeteksi lokasi setiap mikro-kalsifikasi pada citra mammogram yang lengkap dan secara sederhana. Total lebih dari 350 gambar dari dataset INbreast digunakan dalam studi penelitian ini serta implementasi menggunakan data lokal Rumah Sakit (RS) sebanyak 23 citra. Proses ini dapat membantu ahli radiologi untuk melakukan diagnosis dini dan meningkatkan akurasi deteksi wilayah mikro-kalsifikasi. Performa sistem yang diusulkan diukur berdasarkan nilai error Mean Squared Logarithmic Error (MSLE) sebagai teknik untuk mengetahui perbedaan antara nilai yang diprediksi oleh model yang diusulkan dan nilai sebenarnya, didapat nilai loss terbaik yang diperoleh adalah 0,05. Hasil validasi daring mendapatkan nilai sensitivitas sebesar 88.14%, presisi 91.6% dan akurasi sebesar 90.3%. Hasil implementasi pada data lokal RS menunjukkan model CADe dapat mendeteksi mikro-kalsifikasi dengan cukup baik.

Breast cancer is one of the most common cancer among women and the survival rate tends to be low when its stage found high when treated. To improve breast cancer survival, early detection is critical. There are two ways of detection for breast cancer: early diagnosis and screening. To make an accurate diagnosis in the early stage of breast cancer, the appearance of masses and micro-calcifications on the mammography image are two important indicators. Several Computer-Aided Detection (CADe) have been developed to support radiologists because the automatic detection of micro-calcification is important for diagnosis and the next recommended treatment. Most of the current CADe systems at this time started using Convolutional Neural Network (CNN) to implement the micro-calcification detection in mammograms and their quantitative results are very satisfying, the average level of accuracy is more than 90%. This research conducts an automated approach to detect the location of any micro-calcification in the mammogram images with the complete image and in a simple way. A total more than 350 images from INbreast dataset were used in this research study and for implementation used 23 images from local hospital data. This process can help as an assistant to the radiologist for early diagnosis and increase the detection accuracy of the microcalcification regions. The proposed system performance is measured according to the error values of Mean Squared Logarithmic Error (MSLE) as the technique to find out the difference between the values predicted by the proposed model and the actual values, the best loss value obtained by the training model was achieved in 0.05. The results for data online validation for sensitivity is 88.14%, precision is 91.6% and accuracy is 90.3%. The CADe model can detect micro-calcification quite well using local hospital data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>