Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 133266 dokumen yang sesuai dengan query
cover
Nanik Indayaningsih
"Penelitian ini membahas tentang pembuatan gas diffusion layer (GDL) dari bahan serat alam yaitu serat sabut kelapa (SK) dan tandan kosong kelapa sawit (TKKS). Hasil penelitian menunjukkan bahwa Lembaran GDL yang telah dibuat mempunyai spesifikasi konduktivitas listrik sebesar antara 34 S/m - 39 S/m, hidrofobik dengan sudut kontak antara 125,6o - 128,5o dan porositas sebesar 70% - 74%. Spesifikasi lembaran GDL ini telah memenuhi syarat untuk dapat digunakan sebagai komponen elektroda PEMFC. Konduktivitas listrik lembaran GDL ini masih dapat ditingkatkan dengan cara menggunakan karbon serat alam yang dibuat pada suhu pirolisis lebih tinggi dari 1300oC hingga diperoleh struktur karbon menyerupai graphite.

This study discusses the fabrication of the gas diffusion layer (GDL) of natural fiber materials i.e coco fiber and oil palm empty fruit bunches. The results show that the GDL sheets that have been made have specifications for electrical conductivity between 34 S/m - 39 S/m, hydrophobic with a contact angle between 125.6o - 128.5o and a porosity of 70% - 74%. The GDL specification sheets are qualified to be used as a component of PEMFC electrodes. The electrical conductivity of the GDL sheets can still be increased by using the natural carbon fibers made at the temperatures higher than 1300oC to obtain carbon structure resembling graphite."
Depok: Fakultas Teknik Universitas Indonesia, 2013
D1922
UI - Disertasi Membership  Universitas Indonesia Library
cover
Fredina Destyorini
"ABSTRAK
Penelitian ini membahas tentang proses pembuatan dan karakterisasi kertas karbon komposit berbasis bahan karbon dari serabut kelapa untuk aplikasi Gas Diffusion Layer (GDL) PEMFC. Kertas karbon komposit harus berpori, bersifat konduktif, dan hidrofobik agar dapat berfungsi sebagai GDL. Proses pembuatan kertas karbon komposit terdiri dari 3 tahap. Pada tahap pertama, bahan karbon berbentuk serat dengan panjang ± 1 mm dan serbuk karbon 200 mesh dihasilkan dari proses karbonisasi dan pirolisis serabut kelapa hingga suhu 1300°C. Pembuatan kertas karbon komposit pada tahap kedua dilakukan dengan cara mencampurkan serat dan serbuk karbon yang dihasilkan pada tahap pertama dengan polimer ethylene vinyl acetate (EVA) dan poly ethylene glycol (PEG) sebagai binder ke dalam pelarut xylene. Komposisi penggunaan antara serat dan serbuk karbon divariasi dari 0 wt% hingga 80 wt%. Proses pencampuran dilakukan pada suhu 90°C hingga membentuk slurry, dan dilanjutkan dengan proses pencetakan dengan teknik hand lay-up casting dan calendering.
Berdasarkan hasil pengujian konduktivitas listrik, kertas karbon komposit dengan 70 wt% serat karbon dan 10 wt% serbuk karbon memiliki nilai konduktivitas tertinggi yaitu sebesar 2,22 S/cm. Kombinasi penggunaan serat karbon dengan aspek rasio yang lebih tinggi dan serbuk karbon menghasilkan efek sinergi yang dapat meningkatkan konduktivitas listrik kertas karbon komposit. Proses dilanjutkan dengan pelapisan bahan hidrofobik polytetrafluoroethylene (PTFE) pada tahap ketiga dengan cara merendam kertas karbon dalam suspensi PTFE selama 30 menit kemudian dipanaskan hingga suhu 350°C. Konsentrasi suspensi PTFE divariasi dari 0 wt%, 10 wt%, 20 wt%, dan 30 wt% untuk menghasilkan kertas karbon dengan sifat yang optimum. Berdasarkan hasil karakterisasi dan analisis kertas karbon dengan 10 wt% PTFE memiliki konduktivitas listrik tertinggi sebesar 2,09 S/cm, porositas tertinggi sebesar 73,63%, densitas sebesar 0,42 gram/cm3, bersifat hidrofobik dengan sudut kontak sebesar 128,9o, namun sifat mekaniknya masih rendah dengan kekuatan tarik sebesar 0,02 kN/m dan Modulus Young sebesar 4,57 kN/m.

ABSTRACT
This study discusses the process of manufacture and characterization of carbon composite paper based on carbon material of coconut fibers for Gas Diffusion Layer (GDL) of PEMFC. Carbon composite paper should be porous, conductive, and hydrophobic in order to serve as GDL. The manufacturing process of carbon composite paper consists of three stages. In the first stage, carbon fiber with a length of ± 1 mm and carbon powder of 200 mesh produced from pyrolysis and carbonization process of coconut fibers at 1300°C. Manufacture of carbon composite paper at the second stage conducted by mixing the carbon fibers and carbon powder produced in the first stage with ethylene vinyl acetate (EVA) and poly ethylene glycol (PEG) as binder in the xylene as solvent. The composition of carbon fibers and carbon powder was varied from 0 wt% to 80 wt%. The mixing process is carried out at 90°C to form a slurry, followed by the hand lay-up casting and calendaring to form a sheet of paper.
Based on the results of electrical conductivity test, carbon paper composite with 70 wt% carbon fiber and 10 wt% carbon powder has the highest conductivity of 2,22 S / cm. Combination of carbon fiber with a higher aspect ratio and carbon powder generates synergy effects which increase the electrical conductivity of carbon composite paper. The process is continued with a hydrophobic treatment in the third stage by immersing carbon paper in a suspension of polytetrafluoroethylene (PTFE) for 30 minutes and then heated to a temperature of 350°C. PTFE suspension concentration was varied from 0 wt%, 10 wt%, 20 wt% and 30 wt% to produce the carbon paper with optimum properties. Based on the results of characterization and analysis, carbon paper with 10 wt% PTFE has the highest electrical conductivity of 2,09 S/cm, the highest porosity of 73,63%, density of 0,42 g/cm3, contact angle of 128,9o, but the mechanical properties are still low with the tensile strength of 0,02 kN/m and Young's modulus of 4,57 kN/m
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T45569
UI - Tesis Membership  Universitas Indonesia Library
cover
Kevin Wiranata
"Air memegang peranan penting dalam Membrane Elektrode Assembly. Semakin banyak kandungan air dalam MEA, semakin baik konduktivitas ioniknya. Namun kadungan air yang berlebihan dapat menyebabkan flooding yang dapat menurunkan kinerja fuel cell. Tujuan penelitian ini adalah mencegah flooding dan meningkatkan kinerja MEA dengan penambahan microporous layer. Kinerja MEA tanpa MPL dan MEA dengan berbagai komposisi PTFE dalam MPL diuji pada penelitian ini. MEA dengan MPL terbukti menaikan power density fuel cell sebesar 258,8% dibandingkan dengan MEA tanpa MPL. Selain itu, MEA dengan MPL yang mengandung PTFE 20% wt menunjukan power density yang lebih tinggi dibandingkan dengan MEA dengan MPL 10% wt PTFE dan 30% wt PTFE. Hal ini menunjukan adanya komposisi optimum PTFE dalam MPL, dimana pada penelitian ini sebesar 20% wt.

Water plays an important role in the Membrane Electrode Assembly. The more water content in the MEA, the better its ionic conductivity. However, excessive water content can results flooding which degrade the performance of fuel cells. The objectives of this experiment are to reduce flooding and improve cell performance by adding a microporous layer. MEA without MPL and MEA with various compositions PTFE in MPL have been tested in this experiment. MEA with MPL proved to raise the fuel cell power density of 258.8% compared to the MEA without MPL. Furthermore, MEA with MPL containing 20% wt PTFE showed a higher power density compared to the MEA with MPL 10% wt PTFE and 30% wt PTFE. This shows there is an optimum composition of PTFE in the MPL which is 20% wt in this experiment."
Depok: Fakultas Teknik Universitas Indonesia, 2011
S51872
UI - Skripsi Open  Universitas Indonesia Library
cover
Alien Olifitria Ningrum
"Kelapa sawit sebagai sumber energi terbarukan dapat diproses menjadi biooil yang nantinya dapat dijadikan bahan bakar alternatif pada kendaraan bermotor. Kelapa sawit sebagai umpan dicacah hingga diameter 0,1-2 mm, selanjutnya umpan diproses menggunakan metode fast pyrolysis, dan yang terakhir dilakukan pengujian pada produk cair. Penelitian ini menggunakan variasi bahan baku kelapa sawit (cangkang, tandan, dan serat) dengan kondisi suhu operasi 450, 550, dan 650°C.
Faktor utama yang mempengaruhi jumlah biooil adalah komposisi biopolimer umpan. Jumlah kandungan biopolimer dari masing-masing umpan adalah : cangkang 94,2%; tandan 90%; dan serat 80%. Sesuai dengan banyaknya kandungan biopolimer, hasil dari eksperimen didapat bahwa umpan cangkang menghasilkan biooil dengan jumlah terbesar (62% pada suhu optimum 550°C) disusul oleh tandan (58% pada suhu optimum 550°C) dan serat (38% pada suhu optimum 650°C)

Palm oil waster as a source renewable energy can be processed into biooil that can later be used as alternative diesel fuels. Palm oil waste is crushed up to diameter 0,1-2 mm, then feed from palm oil waste is processed using fast pyrolysis method to produced biooil, and latter liquid product is carried out for tests. This study uses variation of raw material palm oil waste (EFB, shell, and fiber) with operating temperature conditions of 450, 550, and 650°C.
Biopolimer content is the main factor that can influence the quantitiy of liquid product. Quantitiy of biopolimer content from each feedstock are: shell 94,2%; EFB 90%; and fiber 80%. In accordance with the quantity of biopolimer content, the results from experiments showed that shell produces biooil with largest number (62% at the optimum temperature of 550°C), followed by EFB (58% at the optimum temperature of 550oC), and fiber (38% at the optimum temperature of 650°C)
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S898
UI - Skripsi Open  Universitas Indonesia Library
cover
Anis Nahdi
"Proton exchange membrane fuel cell (PEMFC) merupakan tipe fuel cell yang paling banyak digunakan dalam aplikasi. Efisiensi dan performa merupakan hal yang sangat penting dalam pengembangan PEMFC. Elektrokatalis memiliki peranan penting dalam menentukan performa fuel cell. Penelitian katalis baru untuk peningkatan aktifitas, stabilitas, daya tahan, dan mengurangi biaya (40% biaya satu unit fuel cell) merupakan tantangan teknologi dan komersialisasi fuel cell. Makalah ini, efisiensi dan performa PEMFC telah dipelajari menggunakan katalis Pt/C (kontrol) dan beberapa katalis bimetal (Pt-Co/C, Pt-Ni/C, and Pt-Ru/C), menggunakan single stack PEMFC standar, luasan aktif 25 cm2 dan bipolar plate paralel. Sistem operasi diatur dengan kecepatan alir H2 dan O2 100 mL/menit, tekanan 0.1 bar dan temperatur 50°C. Performa PEMFC diukur dengan electronic discharge meter, 3300 C Electronic Load Mainframe ®Prodigit 3311D 60V/ 60A, 300V. Pt-Co/C pada katoda menghasilkan performa PEMFC tertinggi (0,445 V, 0,131 A, 0,058 W) dimana Pt-Co/C > Pt-Ni/C > Pt-Ru/C, dan pada anoda, Pt-Ru/C menghasilkan performa PEMFC tertinggi (0,403 V, 0,101 A, 0,041 W) dimana Pt-Ru/C > Pt-Co/C > Pt-Ni/C. Transfer massa dan efisiensi konsumsi H2 telah dihitung berdasarkan energi bebas Gibbs dan potensial selnya. Dari transfer massa, diperoleh efisiensi 57,51 % untuk Pt-Co/C di katoda dan 53,54 % untuk Pt-Ru/C di anoda.

Proton exchange membrane fuel cell (PEMFC) is the most available fuel cell type in various applications. Efficiency and performance are important focus on developing proton exchange membrane (PEM) fuel cell. Electrocatalysts and their corresponding catalyst layers thus play critical roles in fuel cell performance. Therefore, exploring new catalysts, improving catalyst activity, stability, durability, and reducing catalyst cost (40% for 1 unit fuel cell) are currently the major tasks in fuel cell technology and commercialization. In this paper, efficiency and performance of PEM fuel cell were studied with Pt/C catalyst as control and some bimetal catalyst (Pt-Co/C, Pt-Ni/C, and Pt-Ru/C) as electrode materials The membrane electrode assembly (MEA) was made using those catalyst then used with standard PEM fuel cell single stack 25 cm2 active areas with parallel bipolar plate. System operation was running in flow rate of 100 ml/min for hydrogen and oxygen at pressure 0.1 Bar and temperature was set constantly at 50°C. Performance of PEM fuel cell has measured by electronic discharge meter, 3300 C Electronic Load Mainframe ®Prodigit 3311D 60V/ 60A, 300V. Using Pt-Co/C on cathode was obtained the highest performance of PEMFC (0,445 V, 0,131 A, 0,058 W) whereas Pt-Co/C > Pt-Ni/C > Pt-Ru/C. Using Pt-Ru/C on cathode was obtained the highest performance of PEMFC (0,403 V, 0,101 A, 0,041 W) whereas Pt-Ru/C > Pt-Co/C > Pt-Ni/C. Mass transfer reaction and efficiency of H2 consumption in cell has been calculated by Gibbs free energy and open circuit voltage. Efisiensi was calculated based on mass transfer reaction and obtained 57,51% for Pt-Co/C as cathode material and 53,54% for Pt-Ru/C as anode material in PEMFC."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S30515
UI - Skripsi Open  Universitas Indonesia Library
cover
Fadhli Halim
"Dalam simulasi ini, dilakukan pemodelan dan simulasi Proton Exchange Membrane (PEM) fuel cell dengan pendekatan 3 dimensi 2 fasa, yaitu fasa gas dan fasa padatan dengan bentuk channel serpentine. Persamaan model yang diturunkan meliputi persamaan kontinuitas, persamaan momentum, persamaan energi persamaan transport ion dan persamaan current density. Kesemua persamaan ini dibedakan antara fasa padatan dan fasa gas. Fasa padatan terjadi pada GDL, Catalyst dan membrane baik disisi anode maupun cathode. Scdangkan fasa gas hanya terjadi pada Gas Channel anode dan Gas channel cathode. Penyelesaian numeris model menggunakan perangkat lunak MATLAB™ 6.0. Karena terlalu sulitnya melakukan pemecahan dengan menggunakan MATLABTM pada daerah perhitungan 3 dimensi 2 fasa dan dalam geometri yang komplek, maka model disederhanakan menjadl 2 buah model I dimensi, yaitu model pada sumbu y (lebar) dan model pada sumbu z{ketebalan). Hasil model dari penyederhanaan model kesumbu y dldapat profil kecepatan. konsentrasi, tekanan, temperatur. current density, tegangan ionik. Model 1 dimensi kearah sumbu y ini hanya dapat diselesaikan pada lebar 50 cm, jika melebihi lebar ini model tidak dapat diselesaikan karena menghasilkan sebuah matrik Jacobian dari metoda Newton-Raphson yang singular, hal ini disebabkan karena persamaan current density yang sangat stiff. Sedangkan hasil dari penyederhanaan model kesumbu z..."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S49523
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bono Pranoto
"Penelitian tentang Fuel Cell juga didorong oleh kemajuan dalam pembuatan nanomaterials dan aplikasinya sebagai bahan fuel cell dalam beberapa tahun terakhir. Pengembangan teknik fabrikasi terus ditingkatkan untuk mengatasi hambatan masalah daya tahan Membrane Electrode Assembly (MEA) pada PEM Fuel Cell pada periode tertentu. Salah satu faktor yang menyebabkan menurunkan kualitas MEA adalah manajemen air yang buruk pada lapisan elektroda. Selain masalah manajemen air, kendala lain yang berhubungan dengan daya tahan fuel cell adalah degradasi katalis Pt berpenyangga karbon (carbon supported Pt, Pt/C) yang disebabkan oleh korosi karbon penyangga.
Tujuan penelitian ini adalah untuk meningkatkan kinerja Membrane Electrode Assembly (MEA) dari fuel cell bertipe membran penukar proton (PEMFC) melalui dua pendekatan. Pendekatan pertama adalah perbaikan manajemen air dengan memanfaatkan teflon sebagai material hidrofobik pada MPL. Pendekatan kedua adalah penggunaan karbon nanotube sebagai lapisan Microporous (MPL) yang bertujuan untuk meningkatkan sifat konduktifitas dan masalah degradasi katalis Pt dari elektroda MEA.
Dari sebuah perbandingan antara pemanfaatan teflon berjenis Polytetrafluoroethylene (PTFE) dengan Fluorinated ethylene propylene (FEP) didapatkan bahwa FEP memberikan kontribusi lebih terhadap peningkatan kualitas dalam hal ketahananannya terhadap masalah air dalam elektroda sehingga mampu bertahan hingga lebih dari 40 jam operasional dibandingkan dengan PTFE.
Dalam pemanfaatan Multi-Walled Carbon Nanotubes (MWCNT) dalam MPL didapatkan komposisi yang optimal yang mampu meningkatkan konduktivitas dari elektroda, pemakaian 50% MWCNT terhadap total karbon dalam MPL meningkatkan 43,7% konduktitas dibanding jika hanya Vulcan saja. Dan pemakaian 50% Single-Walled Carbon Nanotubes (SWCNT) mampu meningkatkan 44,3% konduktifitasnya. Kualitas daya yang dihasilkan dari pemanfaatan 50%MWCNT adalah 110mW/cm2, sedangkan kualitas daya yang dihasilkan dari pemanfaatan 50% SWCNT adalah 134mW/cm2.

Research on Fuel Cell is also encouraged by progress in the manufacture of nanomaterials and their application as fuel cell materials in recent years. Development of fabrication techniques continue to be improved to overcome barriers to durability problems Membrane Electrode Assembly (MEA) in PEM Fuel Cell at a certain period. One of the factors that lead to lower quality of MEA is poor water management on the electrode layer. In addition to water management problems, other constraints related to fuel cell durability is the degradation of Pt catalysts carbon supported (Pt/C) caused by corrosion.
The purpose of this research is to improve the performance of Membrane Electrode Assembly (MEA) of fuel cell proton exchange membrane type (PEMFC) through two approaches. The first approach is to improve water management by using Teflon as a hydrophobic material on the MPL. The second approach is to use carbon nanotubes as Microporous Layer (MPL) which aims to increase the conductivity properties of Pt catalyst and the problem of degradation of the MEA electrodes.
From a comparison between the utilization of Polytetrafluoroethylene (PTFE) with Fluorinated ethylene propylene (FEP) Teflon manifold was found that FEP contribute more to improving the quality in terms of durability to the problem of water in the electrodes, that can operated more than 40 hours compared with PTFE.
In the use of Multi-Walled Carbon Nanotubes (MWCNT) in MPL obtained the optimal composition that is able to increase the conductivity of the electrode, the use of 50% of MWCNT from total carbon in the MPL can increase 43.7% than if only used Vulcan only. And use 50% of Single-Walled Carbon Nanotubes (SWCNT) can increase 44.3% conductivity. The quality of power generated from the utilization of 50% MWCNT is 110mW/cm2, while the quality of power generated from the utilization of 50% SWCNT is 134mW/cm2.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
T29345
UI - Tesis Open  Universitas Indonesia Library
cover
Nur Muchamad Arifin
"Penggunaan carbon nanotube (CNT) terorientasi tegak sebagai penyangga katalis menjanjikan peningkatan kinerja proton exchange membrane fuel cell (PEMFC) yang disebabkan oleh keunggulan konduktivitas elektrik, efisiensi transpor gas reaktan dan luas permukaan spesifik dari katalis dibandingkan CNT terorientasi acak maupun karbon amorf. Metode filtrasi menggunakan filter hidrofilik diharapkan dapat membuat orientasi CNT yang bersifat hidrofobik menjadi tegak akibat interaksi antar CNT dengan filter. Pada penelitian ini didapatkan kesimpulan bahwa CNT dengan diameter 10-20 nm dan panjang 30-100 μm tetap mengalami aglomerasi sehingga diperlukan evaluasi lebih lanjut mengenai dimensi (panjang dan diameter) CNT yang cocok untuk digunakan pada metode filtrasi.

Vertically aligned carbon nanotubes (CNT) as a catalyst support promise enhancing proton exchange membrane fuel cell (PEMFC) performance caused by superiority of electrical conductivity, reactant gas transport and specific surface area of the catalyst than randomly oriented CNTs and amorphous carbon. Filtration method using hydrophilic filter is expected to make vertical orientation of hydrophobic CNT due to interactions between CNT with the filter. In this study, lead to the conclusion that the CNTs with diameters of 10-20 nm and length 30-100 μm still agglomerate after deagglomerazion treatment. It make further reseacrh to evaluate the types of CNT that suitable for the filtration method still needed."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43714
UI - Skripsi Open  Universitas Indonesia Library
cover
Firdhauzi Kusuma Rachmani
"Adsorpsi dapat digunakan untuk menangani permasalahan limbah industri di Indonesia Karbon aktif merupakan adsorben yang sangat baik untuk proses adsorpsi Hasil uji analisis ultimate menunjukkan tandan kosong kelapa sawit mengandung 48 79 karbon sehingga memiliki potensi sebagai bahan baku karbon aktif Pembuatan karbon aktif berbahan baku tandan kosong kelapa sawit telah dilakukan dengan activating agent KOH di bawah aliran nitrogen murni selama 15 menit dan menghasilkan luas area 807 54 gram Foo dan Hameed 2010 Tujuan dari penelitian ini adalah menghasilkan karbon aktif dengan luas permukaan yang lebih besar dari 807 54 gram dengan variasi activating agent yang digunakan dan waktu aktivasi sehingga akan diketahui kombinasi activating agent dan waktu aktivasi terbaik terhadap pembentukan luas permukaan karbon aktif Activating agent yang akan digunakan adalah dan sedangkan waktu aktivasi yang digunakan adalah 60 menit dan 120 menit Aktivasi dilakukan pada suhu 700 dengan mengalirkan gas dengan laju 300 ml menit.

Adsorption can be used to handle indrustial waste problem in Indonesia Activated carbon is an excellent adsorbent for adsorption process The results of ultimate analysis showed oil palm empty fruit bunch contains 48 79 of carbon so it has the potential as the raw material of activated carbon Preparation of activated carbon made from palm empty fruit bunch has been carried out with KOH activator under a stream of pure nitrogen for 15 minutes and resulted in 807 54 gram of surface area Foo and Hameed 2010 The purpose of this research is to produce activated carbon with a surface area which is more than 807 54 gram by using the variation of activating agent and activation time to know the best combination of activating agent and activation time for the formation of the surface area Acivating agents used in this research were and while the activation times were 60 and 120 minutes Activation proceed at 700 under flow of 300 ml min"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S55183
UI - Skripsi Membership  Universitas Indonesia Library
cover
Marcel Leonardo
"Dalam skripsi ini dibandingkan performansi dari beberapa konfigurasi pengendali logika fuzzy pada fuel cell. Pada konfigurasi pertama, masukan hidrogen dan oksigen ditetapkan sebagai perbandingan tetap proporsional hidrogen dan oksigen (O2in/H2in=1.168), sedangkan pada konfigurasi kedua, masukan oksigen diatur secara dinamik proporsional terhadap masukan hidrogen menggunakan pengendali logika fuzzy kedua. Pada kedua pengendali logika fuzzy (FLC1 dan FLC2) dilakukan variasi nilai fuzzifikasi untuk setiap variabel linguistik dan performansinya terhadap pengendalian tegangan fuelcell dibandingkan. Konfigurasi yang terbaik dipilih berdasarkan pembobotan nilai pada parameter settling time dan overshoot dari respon dinamik pengendalian tegangan fuelcell. Dari hasil penilaian didapat konfigurasi dengan dua pengendali logika fuzzy mempunyai performansi pengendalian yang lebih baik dibandingkan konfigurasi satu pengendali logika fuzzy.

This Thesis compares the performance of fuzzy logic controller configuration for Fuel Cell. In the first configuration, the input of hydrogen and oxygen is determined which using proportional gain ratio((O2in/H2in=1.168). In the second configuration, the input of oxygen is controlled by dynamic proportional from hydrogen input using the second fuzzy logic controller. Both of fuzzy logic controller (FLC1 and FLC2) fuzzification is varied for every linguistic variable and then the performances of the controller are compared. The best configuration is determined by using weighting factor of settling time and overshoot parameters of Fuel cell voltage dynamic response. As a result, the second configuration using two fuzzy logic controller has better performance than using one fuzzy logic controller."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51214
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>