Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11746 dokumen yang sesuai dengan query
cover
"This study assesses the environmental and economic impacts of the immediate shutdown
of all Japan's nuclear reactor fleet. For the assessment, we regard a gradual nuclear power
phase-out scenario as the basis for a 40-year operational time limit of plants as a reference sce-
nario. A multi-regional, recursive dynamic computable general equilibrium model based on
Version 8.1 of the Global Trade Analysis Project database is constructed. The simulation re-
sults indicate that an immediate nuclear shutdown increases CO2 emissions through an in-
crease in fossil fuel electricity generation and decreases real GDP losses in Japan. From a sec-
toral view, an immediate nuclear power shutdown has a negative impact on Japan's energy in-
tensive and trade-exposed sectors. In addition, we find that an immediate nuclear shutdown
has a negative after-effect on the economy. This is caused by shrinking investment spending
during the immediate nuclear power shutdown. Overall, we find that the Japanese economy
would face significant economic and environmental impacts from an immediate nuclear power
shutdown. However, our model does not incorporate potential negative costs associated with
nuclear usage, such as the risk of a nuclear accident or the cost of final disposal sites for nucle-
ar waste, which may be sizeable. To derive conclusions for Japanese energy policy, we must
consider the potential negative costs of nuclear usage. The results of this simulation study rep-
resent the first step in answering key questions on energy policy."
JPS 9 (2015)
Artikel Jurnal  Universitas Indonesia Library
cover
"This study assesses the environmental and economic impacts of the immediate shutdown
of all Japan's nuclear reactor fieet. For the assessment, we regard a gradual nuclear power
phase-out scenario as the basis for a 40-year operational time limit of plants as a reference sce-
nario, A multi-regional, recursive dynamic computable general equilibrium model based on
Version 841 of the Global Trade Analysis Project database is constructed. The simulation re-
sults indicate that an immediate nuclear shutdown increases CO2 emissions through an in-
crease in fossil fuel electricity generation and decreases real GDP losses in Japan. From a sec-
toral view, an immediate nuclear power shutdown has a negative impact on Japan's energy in-
tensive and trade-exposed sectors. In addition, we find that an immediate nuclear shutdown
has a negative after-effect on the economy. This is caused by shrinking investment spending
during the immediate nuclear power shutdown. Overall, we find that the Japanese economy
would face significant economic and environmental impacts from an immediate nuclear power
shutdown. However, our model does not incorporate potential negative costs associated with
nuclear usage, such as the risk of a nuclear accident or the cost of final disposal sites for nucle-
ar waste, which may be sizeable. To derive conclusions for Japanese energy policy, we must
consider the potential negative costs of nuclear usage. The results of this simulation study rep-
resent the first step in answering key questions on energy policy."
JPS 9 (2015)
Artikel Jurnal  Universitas Indonesia Library
cover
Wood, Janet
"In future the UK's energy supplies, for both heat and power, will come from much more diverse sources. In many cases this will mean local energy projects serving a local community or even a single house. What technologies are available? Where and at what scale can they be used? How can they work effectively with our existing energy networks? This book explores these power and heat sources, explains the characteristics of each and examines how they can be used."
London: Institution of Engineering and Technology, 2008
e20451585
eBooks  Universitas Indonesia Library
cover
Jakarta: Muara Agung Jakarta, [date of publication not identified]
R 304.2 PEM
Buku Referensi  Universitas Indonesia Library
cover
Novikasari
"Sistem distribusi listrik adalah suatu sistem yang menunjukkan penyaluran energi listrik dari pusat distribusi ke konsumen melalui jaringan distribusi. Jaringan distribusi mengandung resistansi dan reaktansi yang bervariasi sehingga mengakibatkan terjadi losses (kehilangan energi listrik) pada jaringan tersebut. Pada jaringan distribusi juga akan dilihat kehandalan sistemnya dalam menyalurkan energi listrik ke konsumen ketika terjadi gangguan di jaringan tersebut. Kehandalan sistem adalah kemampuan sistem untuk melakukan fungsinya dalam menyalurkan energi listrik. Pada proses penyaluran energi listrik ke konsumen diharapkan dapat memberikan sistem yang lebih handal dan jumlah losses sekecil mungkin.
Salah satu cara untuk menangani masalah penyaluran energi listrik dari pusat distribusi ke konsumen dengan losses minimum dan kehandalan sistem yang baik adalah dengan membangun Distributed Generation (DG). DG didefinisikan sebagai pembangkit kecil berkapasitas beberapa kilowatt sampai 50 MW yang diletakkan pada sisi konsumen. Pemasangan DG akan memberikan hasil optimal jika DG dengan kapasitas tertentu dipasang di lokasi yang tepat. Permasalahan penentuan kapasitas dan lokasi DG disebut dengan Distributed Generation Allocation (DG Allocation). Pada skripsi ini, masalah DG allocation akan diselesaikan dengan menggunakan pemrograman dinamik untuk menentukan kapasitas dan lokasi optimal DG dengan losses yang minimum atau meningkatnya kehandalan sistem.

An electricity distribution system is a system that shows the distribution of electrical energy from the distribution center to customers through a distribution network. A distribution network contain various resistance and reactance so that losses (lost of electrical energy) is resulted in the network. In distribution network will also be seen its system reliability within distributing electrical energy to consumers when there is happened a fault. System reliability is capability of system for doing its function in distributing electrical energy. The process of distribution of electrical energy to consumers is expected to provide a more reliable system and the amount of losses as small as possible. Both of them are important to be noted because most of consumers in distribution system are spread.
One way to overcome problem of distribution of electrical energy from the distribution center to customers with minimum losses and good system reliability is to build a Distributed Generation (DG). DG is defined as generation from a few kilowatts up to 50 MW which is placed on the costumer side. The installation of DG will provide optimal results if the DG with a certain capacity installed in the proper location. The determination of the capacity and location of DG is called Distributed Generation Allocation (DG Allocation). In this mini thesis, the problem will be solved by using dynamic programming to determine capacity and location of DG that produce lowest losses and highest system reliability.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S46862
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Dyah Sekar Asih
"Rekonfigurasi jaringan distribusi dan instalasi distributed generation DG dengan tujuan mengurangi rugi-rugi daya aktif saluran dan memperbaiki profil tegangan sistem IEEE 33 bus telah disimulasikan pada skripsi ini. Rekonfigurasi jaringan diselesaikan dengan algoritma Binary Particle Swarm Optimization pada MATLAB dan penentuan lokasi dan kapasitas DG diselesaikan dengan analisis aliran daya pada ETAP. Rugi-rugi daya aktif setelah rekonfigurasi berkurang sebesar 33,357 dari sebelumnya 208,4 kW menjadi 138,9 kW dan tegangan minimum sistem meningkat dari 0,9107 pu menjadi 0,9423 pu. Penginstalasian DG pada lokasi yang tepat dan besar kapasitas yang tepat dapat mengurangi rugi-rugi daya aktif saluran dan memperbaiki tegangan sistem.
Berdasarkan hasil simulasi, lokasi terbaik pemasangan satu DG adalah pada bus 30 dengan kapasitas DG sebesar 1250 kW. Lokasi terbaik pemasangan dua DG adalah pada bus 30 dengan kapasitas DG sebesar 1250 kW dan pada bus 8 dengan kapasitas DG sebesar 900 kW. Lokasi terbaik pemasangan tiga DG adalah pada bus 30 dengan kapasitas DG sebesar 1250 kW, bus 8 dengan kapasitas DG sebesar 900 kW, dan bus 24 dengan kapasitas sebesar 950 kW. Setelah sistem direkonfigurasi dan diinstalasi tiga DG diperoleh rugi-rugi daya aktif terendah yaitu 20,7 kW dan tegangan minimum terbaik yaitu 0,9820 pu.

Distribution network reconfiguration and distributed generation DG installation for reducing power losses and improving voltage profile on IEEE 33 bus system have been simulated in this thesis. Network reconfiguration simulated using Binary Particle Swarm Optimization algoritm in MATLAB and placement and sizing DG simulated using power flow analysis in ETAP. After reconfiguration, power losses decreased by 33,357 from 208,4 kW to 138,9 kW and minimum system voltage increased from 0,9107 pu to 0,9423 pu. DG installation at the right place and right capacity can reduce power losses and improve system voltage.
Based on simulation, the best location for installing one DG is at bus 30 with capacity of 1250 kW. The best location for installing two DG is at bus 30 with capacity of 1250 kW and at bus 8 with capacity of 900 kW. The best location for installing three DG is at bus 30 with capacity of 1250 kW, at bus 8 with capacity of 900 kW, and at bus 24 with capacity of 950 kW. After configuring the system and installing DG with number of DG is three at the system, the lowest power losses obtained is 20.7 kW and the best minimum voltage obtained is 0.9820 pu.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irana Krisiana
"Kebutuhan energi listrik untuk kehidupan sehari-hari akan terus meningkat seiring dengan pertumbuhan penduduk. Kebutuhan energi listrik tersebut dipenuhi oleh pembangkit-pembangkit listrik berkapasitas besar yang umumnya terletak jauh dari titik beban. Dengan melewati sistem transmisi dan sistem distribusi, tak jarang akan menimbulkan banyak gangguan baik dari faktor internal maupun eksternal. Hal ini akan menurunkan tingkat keandalan sistem tenaga listrik dalam menyediakan kebutuhan listrik kepada konsumen. Demi meningkatkan keandalan sistem distribusi, dipasanglah pembangkit terdistribusi atau Distributed Generation sebagai alternatif pembangkit yang berkapasitas kecil dan dapat dipasang di jaringan distribusi. Menghitung keandalan sistem distribusi ini dilakukan menggunakan metode simulasi menggunakan ETAP dengan hasil peningkatan keandalan yang paling bagus sebesar 78,23 pada SAIFI dan 57,44 pada SAIDI ketika DG dipasang di setiap feeder yang berbeda di dalam satu gardu distribusi yang sama.

The need for electrical energy for everyday life will continue to increase along with population growth. The demand for electrical energy is met by large capacity power plants that are generally located far from the load point. By passing the transmission system and distribution system, sometimes there will be many disturbances both from internal and external factors. To reduce disturbance in order to improve the reliability of the distribution system, a Distributed Generation is installed as an alternative to a small capacity plant and can be installed in a distribution network. Calculating the reliability of the distribution system was performed using a simulation method using ETAP with the best result of reliability improvement of 78.23 at SAIFI and 57.44 on SAIDI when DG installed in each different feeder in the same distribution substation."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Katzman, Martin T.
Totowa, N.J: Rowman & Allanheld , 1984
333.79 KAT s
Buku Teks SO  Universitas Indonesia Library
cover
Annisa Florencia Irena
"Artikel ini membahas dinamika pandangan masyarakat Prancis terhadap penggunaan nuklir sebagai sumber energi yang kemudian memengaruhi kebijakan pemerintah Prancis terhadap pemanfaatan tenaga nuklir sebagai sumber energi. Pemerintah Prancis mulai memanfaatkan tenaga nuklir sebagai sumber energi semenjak mengalami embargo minyak dari negara-negara Arab yang tergabung dalam OPEP pada 1974, sebagai akibat dari perang Arab-Israel. Prancis yang saat itu dipimpin oleh Presiden Georges Pompidou, memutuskan untuk memanfaatkan energi nuklir guna mengatasi krisis energi tersebut, sehingga pada 1977 Prancis sudah berhasil mengganti energi minyak bumi dengan energi nuklir untuk menopang sebagian besar industrinya. Namun, terjadi beberapa peristiwa besar yang mempengaruhi pandangan masyarakat mengenai penggunaan tenaga nuklir. Kecelakaan reaktor tenaga nuklir di Ukraina dan Jepang menyadarkan rakyat Prancis akan bahaya yang ditimbulkan apabila terjadi ledakan reaktor nuklir. Desakan untuk mengganti energi nuklir dengan energi yang lebih aman mulai muncul, yang mengakibatkan pemerintah menyusun program untuk mulai mengurangi ketergantungannya pada energi nuklir ini. Penelitian ini menggunakan metode penelitian sejarah dan teori Dekonstruksi Jacques Derrida yang digunakan untuk menjelaskan perubahan kebijakan pemanfaatan nuklir di Prancis. Perubahan kebijakan ini, terjadi karena terutama karena kekhawatiran masyarakat Prancis akan bahaya penggunaan nuklir sehingga mendorong pemerintah Prancis untuk menyelenggarakan debat nasional mengenai pemanfaatan tenaga nuklir. Setelah penyelenggaraan Le Débat National sur la Transition Énergetique pada 2014- 2015, pemerintah Prancis di bawah Presiden François Hollande yang kemudian dilanjutkan oleh Presiden Emmanuel Macron, sepakat untuk mengurangi penggunaan energi nuklir sebagai penopang energi industrinya dari 75% menjadi 50% pada 2023. Upaya untuk menggantikannya dengan energi yang terbarukan menjadi tantangan tersendiri bagi kepala negara Prancis guna merealisasikan tuntutan warganya agar dapat hidup tanpa adanya ketakutan terhadap kemungkinan meledaknya reaktor nuklir di negaranya.

This article discusses the dynamics of the French public's view of the use of nuclear as an energy source which influences the French government's policy towards the use of nuclear as an energy source. The French government began to use nuclear as an energy source since oil embargo by the Arab countries that joined OPEP in 1974, as a result of the Arab-Israeli war. France, which was led by President Georges Pompidou, decided to use nuclear energy to overcome the energy crisis, so that in 1977 France had succeeded replacing petroleum energy with nuclear energy to sustain most of its industries. However, there were several major events that affected the public's view about the use of nuclear power. Nuclear power reactor accidents in Ukraine and Japan made the French people aware of the dangers posed by a nuclear reactor explosion. The urge to replace nuclear energy with safer energy began to emerge, which resulted in the government setting up a program to start reducing its dependence on nuclear energy. This study uses historical research methods and Jacques Derrida's deconstruction theory which is used to explain changes in nuclear utilization policies in France. This policy change occurred mainly because of the French public's concern about the dangers of nuclear use, which prompted the French government to hold a national debate on the use of nuclear. After Le Débat National sur la Transition Energetique in 2014-2015, the French government with President François Hollande, which was then followed by President Emmanuel Macron, agreed to reduce the use of nuclear energy as a support for industrial energy from 75% to 50% in 2023. replacing it with renewable energy is a challenge for the head of state of France to realize the demands of its citizens to live without fear of the possibility of a nuclear reactor exploding in his country."
Depok: Fakultas Ilmu Pengetahuan Budaya Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>