Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11959 dokumen yang sesuai dengan query
cover
"The second edition of the book augments the first edition with more tricks, which have resulted from 14 years of theory and experimentation by some of the world's most prominent neural network researchers. These tricks can make a substantial difference (in terms of speed, ease of implementation, and accuracy) when it comes to putting algorithms to work on real problems.
"
Berlin: Springer-Verlag, 2012
e20406731
eBooks  Universitas Indonesia Library
cover
Chester, Michael
New Jersey: Prentice-Hall, 1993
006.3 CHE n
Buku Teks  Universitas Indonesia Library
cover
Sius Wibisono
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 1993
S26906
UI - Skripsi Membership  Universitas Indonesia Library
cover
New York: IEEE Press, 1992
R 006.3 NEU
Buku Referensi  Universitas Indonesia Library
cover
Fausett, Laurene
Englewood Cliffs, NJ : Prentice-Hall, 1994
006.3 FOU f
Buku Teks  Universitas Indonesia Library
cover
Risky Agung Septiyanto
"Emisi kendaraan terutama yang menggunakan mesin diesel merupakan masalah yang sudah tidak asing lagi. Nox, HC, O2, CO, CO2 dan asap yang merupakan zat- zat hasil pembakaran mesin diesel dapat di ukur melalui percobaan eksperimental. Tetapi tentunya percobaan eksperimental ini mempunyai beberapa kekurangan seperti pengoperasiannya yang mahal serta prosesnya yang memakan waktu cukup panjang.
Untuk mengatasi masalah itu semua, maka dibuatlah suatu metode pemodelan matematika menggunakan Artificial Neural Network (ANN). Metode ANN yang digunakan dalam skripsi ini adalah Backpropagation. Dengan dilakukannya penelitian ini diharapkan karakter emisi kendaraan mesin diesel dapat diprediksi secara akurat. Hasil dari penelitian ini membuktikan bahwa ANN cukup handal dalam memprediksi emisi bahan bakar mesin diesel.

Vehicle emissions, especially using diesel engine is not a strange problem anymore. NOx, HC, O2, CO, CO2 and smoke emissions comes from the combustion of substances in diesel engines can be measured through experimental test. Certainly this experimental test has several shortcomings such as the operation is expensive and time consuming process which is long enough.
To cope with this problem, then a mathematical modeling method using Artificial Neural Network (ANN) was made. ANN method used in this thesis is Backpropagation. This research expect to predict characters of diesel engine emissions accurately. The results of this study proves that ANN quite good to predict diesel engine emission.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S43928
UI - Skripsi Membership  Universitas Indonesia Library
cover
Radhimas Djan
"ABSTRACT
A conversational agent is a software that can communicate with humans by using natural language. Earlier approaches to build conversation agents were rule-based. With the rise of deep learning, the neural network models have been used to automatically infer the conversations used by the agents. This method allows skipping the cumbersome feature engineering process in the training and results in the application of conversational agents to the various field. There is one major problem in the neural network called catastrophic forgetting, a condition where the neural network will forget knowledge learned in the previous training phase and a new knowledge will be acquired. This problem can be mitigated by using a continuous learning model to sustain the old knowledge while keep learning new knowledge. In this project, we propose the application of neural conversational model on Dota 2, an online game with the continuous update, bug fixes, and new features. The continuous update feature has led to players struggling to stay informed of changes in the game features and characters. We propose the usage of a conversational agent with a continuous learning model to learn the everchanging patch notes while still maintaining previous patches knowledge. Our project has shown that elastic weight consolidation is not suitable for a dataset with text properties and would be better to be applied in other types of datasets which has been conducted in previous studies.

ABSTRACT
Conversational agent, adalah perangkat lunak yang digunakan untuk berkomunikasi dengan user menggunakan natural language. Pembuatan conversational agent sebelumnya menggunakan rule-based. Dengan munculnya Deep learning, model menggunakan neural network untuk menyimpulkan pembicaraan di dalam percakapan secara otomatis. Metode ini memungkinkan untuk melewati proses feature engineering di masa pelatihan dan menghasilkan conversational agent dalam banyak bidang. Namun ada satu masalah besar menggunakan neural network yaitu model akan melupakan pengetahuan yang sudah dipelajari dalam masa pelatihan sebelumnya dan pengetahuan baru akan didapatkan. Masalah ini bias di mitigasi dengan menggunakan continuous learning model untuk mempertahankan pengetahuan lama sambal mempelajari pengetahuan baru. Di dalam proyek ini, kami mengusulkan penerapan model percakapan neural network pada Dota 2, game online yang memiliki pembaruan berkelanjutan seperti memberbaiki bug dan fitur baru. Fitur pembaruan berkelanjutan telah meyebabkan pemain berupaya untuk tetap mendapatkan informasi tentang perubahan fitur dan karakter. Kami mengusulkan penggunaan conversational agent dengan continuous learning agar model dapat mempelajari perubahan yang terjadi di dalam permainan tersebut dan mempertahankan pengetahuan sebelumnya. Project ini telah menunjukkan bahwa elastic weight consolidation tidak cocok untuk dataset dengan property teks dan akan lebih baik untuk diterapkan pada jenis dataset lain yang telah dilakukan dalam studi sebelumnya"
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Roan Gylberth
"ABSTRAK
Neural networks merupakan salah satu pendekatan yang sering digunakan dalam melakukan analisis data. Dalam perkembangannya, neural networks mencapai kesuksesan dalam berbagai bidang, mulai dari pengenalan gambar, representasi bahasa,hingga bio informatika. Beberapa penelitian terakhir menunjukkan bahwa model neural networks memiliki kekurangan dalam melindungi informasi yang terdapat dalam training set agar tidak dapat dieksploitasi oleh pihak-pihak yang tidak berkepentingan. Kekurangan ini dapat dieksploitasi dengan membuat sebuah model yang dapat menentukan apakah seseorang berada dalam training set atau tidak, dan hasilnya dapat digunakan untuk melanggar privasi orang tersebut. Eksploitasi ini disebut dengan serangan membership inference. Serangan membership infrerence dapat dihindari oleh model yang memenuhi kriteria differential privacy, yaitu probabilitas keluaran dari model pada dua database yang berbeda pada satu baris pada dasarnya mirip. Pada tesis ini, dikembangkan algoritma optimisasi berbasis gradien seperti Momentum, Nesterov, RMSProp dan Adam yang memenuhi kriteria differential privacy. Algoritma yang dikembangkan digunakan untuk melatih model neural networks agar memenuhi kriteria differential privacy. Eksperimen yang dilakukan menunjukkan bahwa algoritma yang dikembangkan dapat digunakan untuk melatih model neural networks dan menghasilkan model yang lebih akurat dibandingkan algoritma stochastic gradient descent yang memenuhi kriteria differential privacy. Diperlihatkan juga pengaruh penjaminan privasi terhadap akurasi model yang dilatih menggunakan algoritma yang dikembangkan, yaitu penjaminan privasi yang lebih kuat menghasilkan akurasi model yang lebih rendah, dan sebaliknya.

ABSTRACT
Neural networks is one of the popular approach to analyze data. It has showed excellent ability to tackle complex problems in various domain, e.g., computer vision,language representation, and bioinformatics. At some point, neural network model may leak some information about the training data. This leakage could be exploited by adversaries to violate individuals in the training data. Membership inference attack is one kind of attacks that could be used by the adversary. This attack can be mitigated by using differentially private models. In this thesis, differentially private optimization algorithms, i.e., momentum, nesterov, rmsprop, adam, were developed. These algorithms then used to train a differentially private neural networks model. It was shown by the experiments conducted that these algorithms can be used to train a neural networks model, and yields better model accuracy compared to stochastic gradient descent algorithm. The tradeoff between privacy and utility is also studied.
"
2018
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Anggoro Gagah Nugroho
"Plat nomor merupakan suatu jenis identifikasi kendaraan bermotor. Setiap kendaraan bermotor yang beroperasi dijalanan diwajibkan untuk melengkapi kendaraannya dengan plat nomor atau Tanda Nomor Kendaraan Bermotor (TNKB) yang sesuai dengan kode wilayah, nomor registrasi dan masa berlaku. Plat nomor di Indonesia terdapat 3 warna yang dipakai yaitu hitam, merah dan kuning dengan masing masing warna untuk fungsi yang berbeda. Dengan jumlah kendaraan di Indonesia, sistem pengenalan plat nomor dibuat secara otomatis bisa di implementasikan untuk memudahkan berbagai hal dalam pendataan plat nomor diantaranya pengecekan plat nomor ketika di area parkir, menemukan kendaraan yang dicuri ataupun mobil yang melanggar lampu merah. Pada penelitian ini terdapat 2 metode yang sering digunakan untuk pengenalan plat nomor otomatis yaitu KNN (K-Nearest Neighbour) dan NN (Neural Network). Setelah dilakukan pengujian menggunakan 3 analisis uji yang sudah dilakukan oleh penulis, akurasi metode neural network berhasil mencapai 88,8% sedangkan pada K-Nearest Neighbor akurasinya mencapai 72,2%. Metode NN lebih baik daripada KNN pada pengujian kali ini disebabkan adanya modifikasi pada variable yang dapat membuat akurasi NN lebih baik daripada KNN. Sedangkan pada metode KNN tidak dapat merubah akurasi yang telah didapatkan.

Number plate is a type of motor vehicle identification. Every motorized vehicle operating on the road is required to complete the vehicle with a license plate or Motor Vehicle Number (TNKB) that matches the area code, registration number and validity period. Number plates in Indonesia there are 3 colors used, namely black, red and yellow with each color for different functions. With the number of vehicles in Indonesia, the number plate recognition system is made automatically can be implemented to facilitate various things in number plate registration including checking license plates when in the parking area, finding stolen vehicles or cars that violate red lights. In this study there are 2 methods that are often used for automatic number plate recognition, namely K-Nearest Neighbor and NN (Neural Network). After testing using 3 test analyzes carried out by the author, the accuracy of the neural network method reached 88.8% while the K-Nearest Neighbor accuracy was 72.2%. The NN method is better than KNN in this test due to a modification in the variable that can make the accuracy of NN better than KNN. While the KNN method cannot change the accuracy that has been obtained."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bharindra Kamanditya
"Kemajuan teknologi mengiringi kemajuan Pesawat Tanpa Awak yang membuat peneliti terus mengembangkannya. Quadcopter merupakan Pesawat Tanpa Awak yang saat ini telah banyak digunakan untuk berbagai tujuan. Bentuknya yang ringkas serta beratnya yang ringan dengan empat buah baling-baling motor membuat quadcopter memiliki keunggulan dalam kemampuan dalam melakukan maneuver di udara. Tujuan dari penelitian skripsi ini adalah diajukannya sebuah ide menciptakam pengendali Jaringan Saraf Kendali Inverse Langsung NN ndash;DIC ndash; Neural Network Direct Inverse Control dengan algoritma Elman Recurrent untuk quadcopter, dan membandingkannya dengan pengendali berbasis algoritma Back Propagation Neural Network biasa. Dalam skripsi ini dikemukakan hasil simulasi dari identifikasi quadcopter dengan memodelkan secara black box, serta hasil dari dua jenis pengendali Inverse untuk quadcopter yaitu Elman Recurrent Neural Network Direct Inverse Control dan Back Propagation Neural Network Direct Inverse Control.

Technological advances accompany the progress of Unmanned Aircraft that keeps researchers on the rise. Quadcopter is an Unmanned Aircraft that is now widely used for various purposes. Its compact shape and light weight with four motor propellers make the quadcopter has an advantage in the ability to maneuver in the air. The purpose of this thesis research is to propose an idea to create a controller of the Direct Inverse Control Neural Network NN ndash DIC with Elman Recurrent algorithm for quadcopter, and compare it with an ordinary Back Propagation Neural Netwok algorithm. In this thesis, the shown simulation results are those of quadcopter plant based on black box modeling identification, and the result of two types of Inverse controllers for quadcopter, Elman Recurrent Neural Netwok Direct Inverse Control and Back Propagation Neural Network Direct Inverse Control."
Depok: Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>