Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6583 dokumen yang sesuai dengan query
cover
Wu, Junjie
"This book addresses these challenges and makes novel contributions in establishing theoretical frameworks for K-means distances and K-means based consensus clustering, identifying the "dangerous" uniform effect and zero-value dilemma of K-means, adapting right measures for cluster validity, and integrating K-means with SVMs for rare class analysis. This book not only enriches the clustering and optimization theories, but also provides good guidance for the practical use of K-means, especially for important tasks such as network intrusion detection and credit fraud prediction. The thesis on which this book is based has won the "2010 National Excellent Doctoral Dissertation Award", the highest honor for not more than 100 PhD theses per year in China."
Berlin: Springer-Verlag, 2012
e204063793
eBooks  Universitas Indonesia Library
cover
Gabriella Kurniawan
"ABSTRACT
Hepatitis merupakan penyakit peradangan pada hati yang dapat disebabkan oleh virus hepatitis. Di antara lima jenis hepatitis, hepatitis B dan hepatitis C merupakan jenis hepatitis yang dapat berkembang menjadi kanker hati. Kanker hati merupakan jenis kanker nomor tujuh tertinggi di dunia dan nomor tiga yang menyebabkan kematian karena kanker. Seseorang yang memiliki gejala penyakit hepatitis dapat melakukan serangkaian uji laboratorium untuk melihat kondisi kesehatannya. Hasil laboratorium hepatitis dapat kita manfaatkan untuk membentuk suatu program yang dapat mengklasifikasi hepatitis B dan hepatitis C. K-Means Clustering merupakan salah satu metode clustering yang dapat dimanfaatkan untuk mengklasifikasi hepatitis B dan hepatitis C. K-Means Clustering cukup mudah untuk diimplementasikan dan waktu yang digunakan untuk mengolah data juga cukup sedikit sehingga, metode ini cukup baik untuk mengklasifikasi data hepatitis B dan hepatitis C. Sementara, Spherical K-Means merupakan metode lanjutan dari K-Means Clustering. Hasil klasifikasi dari dua buah metode akan digunakan untuk melihat akurasi dari kedua buah metode dan membandingkan kedua metode tersebut.

ABSTRACT
Hepatitis is an inflammatory disease of the liver caused by hepatitis virus. Among the five types of hepatitis virus, hepatitis B and hepatitis C is the types of hepatitis that can develop into liver cancer. Liver cancer is number seventh in the world for the highest cancer case and number third of the highest death because of cancer. Someone who has symptoms of hepatitis can carry out a series of laboratory tests to see his health condition. This laboratory results can be used to form a program to classify hepatitis B and hepatitis C data. K-Means Clustering is a clustering method which can be used to classify hepatitis B and hepatitis C data. K-Means Clustering was rather easy to use and less time was needed to running the program of K-Means Clustering, with the result that, K-Means Clustering method was good enough to classify hepatitis B and hepatitis C data. While, Spherical K-Means is an advanced method of K-Means Clustering. Classification results from this two methods will be used to see the accuracy of the data and compare the two methods."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Reza Andrea
"Ketidakmampuan siswa dalam menyerap berbagai pengetahuan yang disampaikan oleh guru bukan dikarenakan ketidakmampuan pemahamannya dan bukan pula dikarenakan guru tidak mampu mengajar, melainkan dikarenakan ketidakcocokan gaya belajar antara siswa dan guru, sehingga siswa merasa tidak nyaman belajar pada guru tertentu. Hal tersebut juga terjadi di SMKN 2 Penajam Paser Utara, sehingga perlu dilakukan penelitian ini, untuk menganalisis cluster (kelompok) tipe belajar siswa dengan menerapkan metode data mining yaitu K-Means dan Fuzzy C-means. Tujuan adalah mengetahui keefektivan clustering tipe belajar ini terhadap perkembangan daya serap dan peningkatan prestasi belajar siswa. Metode yang digunakan untuk melakukan clustering tipe belajar dengan proses data mining
dimulai dari tahap data cleaning, data selection, data transformation, penambangan data, pattern evolution, dan pengembangan pengetahuan."
Jakarta: Pusat Penelitian dan Pengembangan Sumber Daya, Perangkat, dan Penyelenggaraan Pos dan Informatika Kementerian Komunikasi dan Informatika, 2017
607 JPPI 7:2 (2017)
Artikel Jurnal  Universitas Indonesia Library
cover
Frisca
"Spectral clustering adalah salah satu algoritma clustering modern yang paling terkenal. Sebagai teknik clustering yang efektif, metode spectral clustering muncul dari konsep teori graf spektral. Metode spectral clustering membutuhkan algoritma partisi. Ada beberapa metode partisi termasuk PAM, SOM, Fuzzy c-means, dan k-means. Berdasarkan penelitian yang telah dilakukan oleh Capital dan Choudhury pada 2013, ketika menggunakan Euclidian distance, k-means memberikan akurasi yang lebih baik dibandingkan dengan algoritma PAM. sehingga, makalah ini menggunakan algoritma k-means. Keuntungan utama dari spectral clustering adalah mengurangi dimensi data, terutama dalam hal ini untuk mengurangi dimensi yang besar dari data microarray.
Microarray data adalah chip berukuran kecil yang terbuat dari slide kaca yang berisi ribuan bahkan puluhan ribu jenis gen dalam fragmen DNA yang berasal dari cDNA. Aplikasi data microarray secara luas digunakan untuk mendeteksi kanker, misalnya adalah karsinoma, di mana sel-sel kanker mengekspresikan kelainan pada gen-nya. Proses spectral clustering dimulai dengan pengumpulan data microarray gen karsinoma, preprocessing, menghitung similaritas, menghitung , menghitung nilai eigen dari , membentuk matriks , dan clustering dengan menggunakan k-means. Dari hasil pengelompokan gen karsinoma pada penelitian ini diperoleh dua kelompok dengan nilai rata-rata Silhouette maksimal adalah 0.6336247. Proses clustering pada penelitian ini menggunakan program open source R.

Spectral clustering is one of the most famous modern clustering algorithms. As an effective clustering technique, spectral clustering method emerged from the concepts of spectral graph theory. Spectral clustering method needs partitioning algorithm. There are some partitioning methods including PAM, SOM, Fuzzy c means, and k means. Based on the research that has been done by Capital and Choudhury in 2013, when using Euclidian distance k means algorithm provide better accuracy than PAM algorithm. So in this paper we use k means as our partition algorithm. The major advantage of spectral clustering is in reducing data dimension, especially in this case to reduce the dimension of large microarray dataset.
Microarray data is a small sized chip made of a glass plate containing thousands and even tens of thousands kinds of genes in the DNA fragments derived from doubling cDNA. Application of microarray data is widely used to detect cancer, for the example is carcinoma, in which cancer cells express the abnormalities in his genes. The spectral clustering process is started with collecting microarray data of carcinoma genes, preprocessing, compute similarity matrix, compute , compute eigen value of , compute , clustering using k means algorithm. In this research, Carcinoma microarray data using 7457 genes. The result of partitioning using k means algorithm is two clusters clusters with maximum Silhouette value 0.6336247.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47117
UI - Tesis Membership  Universitas Indonesia Library
cover
Foster, Provost
"Provides an introduction to the fundamental principles of data science, walking the reader through the "data-analytic thinking" necessary for extracting useful knowledge and business value from collected data."
Sebastopol, Calif: O'Reilly, 2013
006.312 PRO d
Buku Teks  Universitas Indonesia Library
cover
Wishnu Hardi
"Kedutaan Besar Australia di Jakarta menyimpan beragam dokumen rilis media. Menganalisis koleksi dokumen yang berpola khusus dan vital sangatlah penting untuk menghasilkan wawasan baru dan pengetahuan tentang kelompok topik penting dari dokumen. K-Means digunakan sebagai metode pengelompokan data non-hirarkis objek data menjadi klaster. Metode ini bekerja dengan meminimalkan variasi data di dalam klaster dan memaksimalkan variasi data di antara klaster. Dari dokumen yang dikeluarkan antara 2006 dan 2016, 839 dokumen diperiksa untuk menentukan frekuensi jangka dan untuk menghasilkan klaster. Evaluasi dilakukan dengan menunjuk seorang ahli untuk memvalidasi hasil klaster. Hasil penelitian menunjukkan bahwa ada 57 istilah bermakna yang dikelompokkan menjadi 3 kelompok. “Hubungan orang-orang”, “kerja sama ekonomi”, dan “pembangunan manusia” dipilih untuk mewakili topik rilis media Kedutaan Besar Australia Jakarta dari tahun 2006 hingga 2016. Penelitian ini menyimpulkan bahwa text mining dapat digunakan untuk mengelompokkan topik dokumen. Ini memberikan proses pengelompokan yang lebih sistematis karena analisis teks dilakukan melalui sejumlah tahapan dengan parameter yang ditetapkan secara khusus."
Jakarta: Pusat Jasa Perpustakaan dan Informasi, 2019
020 VIS 21:1 (2019)
Artikel Jurnal  Universitas Indonesia Library
cover
Pratiwi Arizona
"Online customers segmentation could be a valuable research topic of marketing strategy. Previous literature mainly studied the differences between non-purchasers and purchasers, lacking further segmentation of online customers themselves. This thesis focuses on online customer segmentation based on a large volume of real transaction data in one of Indonesias e-commerce website. This research proposes a customer clustering technique using the K-Means algorithm and RFM Patterns as an analysis of the customers profile. Then, the market basket analysis is conducted using the Apriori algorithm for every customer profile and cluster to obtain the association rule as well as product relationships purchased by customers. Later on, the result of market basket analysis is utilized as an input for e-commerce companies in designing promotions such as bundling or product recommendation system for segmented customers.

Segmentasi pelanggan daring bisa menjadi topik penelitian yang berharga dalam strategi pemasaran. Literatur yang sudah ada cenderung mempelajari perbedaan antara pembeli dan non-pembeli, tanpa menggali lebih lanjut mengenai segmentasi pelanggan daring itu sendiri. Tesis ini berfokus pada segmentasi pelanggan daring berdasarkan data transaksi di salah satu situs penjualan daring di Indonesia. Penelitian ini mengusulkan teknik pengelompokan pelanggan menggunakan algoritma K-Means dan pola RFM sebagai analisis profil pelanggan. Kemudian, analisis keranjang belanja dilakukan dengan menggunakan algoritma Apriori untuk setiap profil pelanggan dan kluster untuk mendapatkan aturan asosiasi serta hubungan produk yang dibeli oleh pelanggan. Kemudian, hasil analisis keranjang belanja tersebut digunakan sebagai masukan untuk perusahaan penjualan daring dalam merancang promosi seperti bundling atau sistem rekomendasi produk untuk pelanggan yang berada dalam profil yang sama."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2019
T53471
UI - Tesis Membership  Universitas Indonesia Library
cover
Bambang Novianto
"Pertumbuhan pemanfaatan internet telah meningkatkan perhatian terhadap keamanan data. Pada tahun 2014, Projek SHINE (SHodan Intelligence Extraction) telah menerbitkan laporan penilaian keamanan skala besar untuk perangkat yang terhubung ke Internet. Namun, berdasarkan laporan tersebut, jumlah informasi mengenai IP address Indonesia yang berhasil didapatkan masih sedikit. Terdapat sebanyak 7.182 IP address dari Indonesia, yaitu sekitar 0,0032% dari total 2.186.971 IP address yang berhasil dikumpulkan oleh Projek SHINE. Dalam penulisan tesis ini, penulis mengajukan inisiatif untuk melakukan analisis kerentanan semua informasi Autonomous System Number (AS Number) di Indonesia dari Shodan. Penulis telah menyusun dataset semua informasi AS Number di Indonesia antara lain 12.787 port, 79 sistem operasi, 409 produk, 3.634 domain, 145.543 IP address, dan 790 organisasi. Penulis menggunakan algoritma K-Means clustering untuk mengelompokkan AS Number ke dalam beberapa kelas sesuai dengan tingkat paparan di shodan. Berdasarkan hasil pengelompokan, penulis mendapatkan 4 kelas AS Number antara lain 1.075 AS Number di kelas: 0 (belum terdapat informasi mengenai AS Number tersebut di Shodan), 614 AS Number di kelas: 1 (tingkat paparan rendah), 9 AS Number di kelas: 2 (tingkat paparan sedang), dan 1 AS Number di kelas: 3 (tingkat paparan tinggi). Informasi ini dapat dimanfaatkan oleh Kementerian yang menangani bidang Teknologi Informasi dan Komunikasi dan Badan yang menangani Keamanan Siber di Indonesia untuk menghimbau organisasi pengelola AS Number agar mewaspadai potensi kerentanan yang dinformasikan oleh Shodan dan dimanfaatkan oleh hacker.

The growth of internet-enabled devices has increased interest in cybersecurity. In 2014, Project SHINE (SHodan INtelligence Extraction) published a report of large-scale security assessments for devices connected to the Internet. However, the number of IP addresses harvested from Indonesia in 2014 is very small. There were 7.182 IP address from Indonesia. It was about 0,0032% from the total 2.186.971 IP addresses. In this paper, we propose an initiative to gather all information for all Autonomous System Number (AS Number) from Indonesia in Shodan. We have gathered a dataset about all information of AS Numbers in Indonesia such as 12.787 unique ports, 79 unique operating systems, 409 unique products, 3.634 unique domains, 145.543 unique IP addresses, and 790 unique organizations. We use the K-Means algorithm to cluster all AS Numbers into several classes according to the exposure level in shodan. Based on the result, we have 4 classes of AS Numbers. There are 1.075 AS Numbers in class:0 (no information in Shodan yet), 614 AS Numbers in class:1 (exposure level = low), 9 AS Numbers in class:2 (exposure level = medium), and 1 AS Number in class:3 (exposure level = high). This information can be used to warn the organizations that manage AS Numbers in Indonesia to be aware of the security and the threats to their systems."
Jakarta: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Teny Handhayani
"Integrasi data gene expression dan DNA copy number berbasis kernel digunakan untuk menganalisis pola gen pada penyakit kanker payudara cell line. Clustering pada data integrasi dilakukan tanpa adanya informasi jumlah k cluster, teknik ini disebut fully unsupervised clustering. Pada penelitian ini, intelligent kernel K-Means dikembangkan dengan menggabungkan teknik intelligent K-Means dan kernel K-Means. Berdasarkan hasil eksperimen, nilai pada kernel RBF mempengaruhi jumlah cluster yang ditemukan. Hasil clustering dievaluasi menggunakan nilai R, global silhouette, indeks Davies-Bouldien, akurasi LS-SVM dan visualisasi. Hasil esperimen terbaik yaitu 3 cluster yang memperoleh akurasi LS-SVM sebesar 97.3% dengan standar deviasi 0.2%.

In this thesis, kernel based data integration of gene expression and DNA copy number would be utilized to analyze pattern of genes in breast cancer cell line. The cluster analysis on the integrated data will be conducted with has no prior information with regards the number of k clusters which is called fully unsupervised clustering technique. In this work, intelligent kernel K-Means is proposed by combining intelligent K-Means and kernel K-Means. From the experiments, the value of of Radial Basis Function (RBF) has important role for finding the optimal of number of cluster. The clusters those to be found will be evaluated based on global silhouette, Davies-Bouldien Index, LS-SVM accuracy and visualization. The experiment result show that three clusters are successfully to be found. Those clusters produce average accuracy of LS-SVM around 97.3 % with standard deviation 0.2 %."
Depok: Universitas Indonesia, 2013
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Sofia Debi Puspa
"Penelitian ini bertujuan untuk mengimplementasikan similarity based biclustering SBB dalam memperoleh bicluster sekumpulan gen dengan ekspresi yang similar di bawah kondisi tertentu yang signifikan pada data microarray. Secara teoritis similarity based biclustering terdiri atas tiga tahap utama, yaitu: membangun matriks similaritas baris gen dan matriks similaritas kolom kondisi , mempartisi masing-masing matriks similaritas dengan hard clustering khususnya dalam penelitian ini menggunakan partisi k-means, dan ekstrak bicluster. Sebelum mengimplementasikan metode SBB, strategi seleksi gen diterapkan dan selanjutnya dilakukan normalisasi. Perolehan evaluasi indeks silhouette pada dataset diabetic nephropathy, diabetic retinopathy dan lymphoma berturut-turut pada cluster kondisi yaitu 0,8304; 0,7853 dan 0,7382, sedangkan indeks silhouette untuk cluster gen yaitu 0,5382; 0,5408 dan 0,5464. Dan dari hasil analisis cluster kondisi, akurasi dari dataset diabetic nephropathy dan diabetic retinopathy yaitu 100 , sedangkan dataset lymphoma yaitu 98 . Selanjutnya dapat diketahui regulasi proses seluler yang terjadi pada bicluster dari ketiga dataset. Hasil analisis menunjukkan bahwa gen-gen yang diperoleh dari bicluster sesuai dengan fungsi gen dan proses biologis didukung oleh GO enrichment sehingga menjadi potensi yang besar bagi praktisi medis dalam tindak lanjut suatu penyakit yang diderita oleh pasien.

This study aims to implement similarity based biclustering SBB in obtaining a bicluster a set of genes that exhibit similar levels of gene expression under certain conditions that is significant in microarray data. Theoretically, similarity based biclustering consists of three main phase constructing the row gene similarity matrix and the column condition similarity matrix, partitioning each matrix similarity with hard clustering especially in this research using k means partition, and extracting bicluster. Before implementing the SBB method, the gene selection strategy is applied and subsequently normalized. The acquisition of silhouette index evaluation in diabetic nephropathy, diabetic retinopathy, and lymphoma on cluster condition respectively is 0.8304, 0.7853 and 0.7382, while the silhouette index for the gene cluster is 0.5382, 0.5408 and 0.5464. In addition, according to the cluster condition analysis, accuracy of dataset diabetic nephropathy and diabetic retinopathy is 100 , whereas dataset lymphoma is 98 . Furthermore, it can be known cellular regulation that occurs on the bicluster of the three datasets. The results of the analysis show that the genes obtained from bicluster are relevant to the function of genes and biological processes supported by GO enrichment , therefore it becomes a great potential for medical practitioners in the follow up of a disease suffered by the patient.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T49530
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>