Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 9101 dokumen yang sesuai dengan query
cover
Ladewig, Bradley
"This book examines five methods used for concentrate management, namely, disposal to surface water, disposal to sewerage, deep well injection, land applications and evaporation ponds. In particular, the book focuses on the design, siting, cost, and environmental impacts of these methods. While these methods are widely practiced in a variety of settings already, there are many limitations that restrict the use of certain disposal options in particular locations."
Heidelberg : Springer, 2012
e20405840
eBooks  Universitas Indonesia Library
cover
Rainey, Bernadette
New York: Oxford University Press, 2012
341.4 RAI h
Buku Teks  Universitas Indonesia Library
cover
Tania Surya Utami
"Desalination is a way to process sea water with a high salinity level, which makes water non-consumable. Various desalination technologies, such as distillation, vapor compression, and reverse osmosis, have been developed but require energy and large financial investments. Microbial desalination cell (MDC) is a modified desalination technology of a microbial fuel cell that can remove salt content in water with the help of microorganisms through organic matter degradation. This research used Debaryomyces hansenii to degrade organic material in the anode chamber. The ratio of the volume chamber, the volume ratio of culture:substrate, and the volume progression of the culture and substrate were evaluated in terms of salt removal and electricity generation. This research shows that MDC using a 9:1:9 ratio of the volume chamber, a culture:substrate ratio of 2:3 (v/v), and a volume progression of the culture and substrate of 1.5 times gave the best desalination performance: a salt removal level of 55.03%"
Depok: Faculty of Engineering, Universitas Indonesia, 2015
UI-IJTECH 6:7 (2015)
Artikel Jurnal  Universitas Indonesia Library
cover
Bagas Muhamad Kartiko
"Proyeksi penurunan suplai air bersih perkapita terjadi akibat keterbatasan sumber dan kenaikan populasi manusia. Pemanfaatan air laut yang berlimpah dengan teknologi desalinasi yang ada saat ini masih membutuhkan energi yang besar.
Penelitian ini akan memaparkan hasil pengujian teknologi desalinasi baru yang hemat energi. Microbial Fuel Cell (MFC), yang bekerja dengan reaksi redoks dan merubah kesetimbangan ion, direkayasa dalam penelitian ini untuk desalinasi. MFC direkayasa menjadi 3 chamber (anoda-garam-katoda) yang dibatasi AEM (Anion Exchange Membrane) dan CEM (Cation Exchange Membrane), yang dinamakan MDC (Microbial Desalination Cell). Variasi jumlah elektroda, rasio kultur dan substrat di chamber anoda serta pengujian kenaikan volume kultur dan substrat di chamber anoda diamati pengaruhnya terhadap performa desalinasi dan jumlah energi listrik yang dihasilkan.
Hasil penelitian ini menunjukkan bahwa dengan menggunakan 3 pasang elektroda, rasio kultur dan substrat 2:3 dan penaikan volume kultur dan substrat 1,5 kali menghasilkan performa desalinasi terbaik dengan laju desalinasi 0,377 mmol/jam, salt removal 34,52%, dan power density rata-rata 2,26.10-2 W/m3.

Declining projection of clean water supply percapita is caused by restrictiveness of water sources and rise of human population. Sea water utilization using current desalination technology still require huge amount of energy.
This research provides new energy-saving desalination technology. Microbial fuel cell which work by redox reaction resulted in imbalance ion concentration among chambers is engineered for desalination application without external energy using 3 chambers (anoda-salt-cathode), named MDC (Microbial Desalination Cell). Number of electrodes, ratio of culture:substrate, volume progression of culture and substrate are evaluated in terms of desalination and electrical energy generating performance.
This research show that MDC using 3 pairs of electrodes, culture and substrate's ratio of 2:3, and culture and progression 1.5 times of culture and substrate’s volume, give best desalination performance by desalination rate 0.377 mmol/h, salt removal 34.52%, and average power density 2.26.10-2 W/m3.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S52565
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mukhsinun Hadi Kusuma
"Current cascade solar desalination systems can convert sea water into fresh water, but they can only produce small quantities. To produce more fresh water, there is a solution that can be applied, i.e. modification of the existing desalination system by adding thermosyphons. The objective of this research is to design a cascade solar desalination system with integrated thermosyphons and to establish its ability to produce fresh water. The experimental study was conducted by adding an aluminum absorber plate as a heat absorber in the upper tub, and nine copper thermosyphons with each length of 60 cm in the bottom of the tub. Thermosyphons with an inclination angle of 15° were used as a solar energy absorber and heat enhancer for sea water. The experiment was performed with varying sea water flow rates of 3600, 7200, and 10800 mL/h, and levels of sea water in the upper tub of 2, 3, and 4 cm. To compare the amount of fresh water obtained from the utilization of the thermosyphons, we also used the cascade solar desalination system without the thermosyphons. The results show that the cascade solar desalination system with integrated thermosyphons was able to produce an average amount of fresh water of 38.6 mL/h, with an average daily thermal efficiency of 18.78%. On the other hand, the same system without the thermosyphons produced on average 9.9 mL/h of fresh water, with an average daily thermal efficiency of 8%. The results indicate that the use of thermosyphons in the cascade solar desalination system can increase fresh water productivity by up to 3.89 times, and increase the thermal efficiency of the system by up to 2.35 times."
Depok: Faculty of Engineering, Universitas Indonesia, 2018
UI-IJTECH 9:2 (2018)
Artikel Jurnal  Universitas Indonesia Library
cover
Raissa Maulina
"Indonesia dikenal sebagai negara maritim dengan luas laut mencapai 7,9 juta km2, namun Indonesia diproyeksikan akan mengalami krisis air bersih pada tahun 2025. Microbial Desalination Cell (MDC) merupakan teknologi yang dikembangkan untuk mengurangi konsentrasi garam pada air laut sehingga dapat digunakan untuk kebutuhan masyarakat. Pada penelitian ini, substrat yang digunakan berasal dari model limbah tahu. Untuk meningkatkan kinerja MDC, maka desain reaktor dimodifikasi, dimana membran IEM akan disusun bertumpuk dua pasang dan pada akhir siklus desalinasi akan dilakukan proses resirkulasi anolit-katolit untuk mempertahankan nilai pH. Variasi yang dilakukan yaitu laju alir resirkulasi 0,5 dan 5 mL/ menit, jenis oksidator berupa KMnO4 0,1 M (katolit) dan aerasi katoda (tanpa katolit) dengan laju alir 100 mL/ menit, serta perbandingan volume anolit dan volume penyangga fosfat berturut-turut sebesar 1:1; 1:0,75; 1:0,5 dan 1:0,25. Hasil yang diperoleh yaitu oksidator KMnO4 0,1 M dapat digantikan dengan aerasi katoda pada laju alir 100 ml/menit dengan perbedaan TDR sebesar 1,061 g/jam, laju alir resirkulasi optimum untuk sistem 2-stacked MDC yaitu 0,5 ml/menit dengan TDR sebesar 2,447 g/jam, dan perbandingan penyangga:substrat optimum sebesar 0,5:1 dengan perolehan TDR sebesar 5,202 g/jam.

Indonesia has been known as maritime country with the extemtion of sea is 7.9 million km2, but Indonesia is predicted to undergo water crisis pHenomena in 2025. Microbial Desalination Cell (MDC) is a developed technology for reducing salt concentration of seawater, so it could be used for people daily needs. In this research, the substrate comes from tofu wastewater model. For increasing MDC performance, there are modification in reactor design, whereas the IEM membrane would be arranged in two stacked design, yet in the end of of desalination cycle there would be a recirculation through anolyte-catholyte to maintain pH level. The variations are flow rate of recirculation 0,5 and 5 mL/ min, types of oxidator in the form of KMnO4 0,1 M (catholyte) and cathode aeration (without catholyte) with flowrate of 100 mL/ min, and the ratio of anolyte and buffer pHospHate volume respectively as 1:1; 1:0,75; 1:0,5 and 1:0,25. The result showed that KMnO4 0,1 M could be replaced with air cathode 100 ml/min which has different value of TDR reached 1.061 g/h, optimum recirculation flowarate for 2-stacked MDC was 0.5 ml/min that reached 2.447 g/h of TDR, and the optimum ratio of buffer phosphate:substrate was 0.5:1 that reached 5.202 g/h of TDR."
Depok: Fakultas Teknik Universitas Indonesia , 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Beta Nadia Manaf
"Krisis air di Indonesia masih banyak terjadi diberbagai daerah. Penggunaan air tanah secara berlebihan dapat menimbulkan penurunan permukaan tanah. Laut yang begitu luas memiliki potensi untuk dijadikan air tawar sehingga dapat digunakan untuk kebutuhan air di Indonesia. Desalinasi merupakan suatu cara untuk memproses air laut dengan tingkat kadar garam yang tinggi sehingga tidak layak konsumsi menjadi air tawar yang dapat dikonsumsi. Berbagai teknologi desalinasi seperti distilasi, vapour compression, dan reverse osmosis telah dikembangkan namun membutuhkan energi dan biaya yang tidak sedikit. Microbial Desalination Cell merupakan suatu teknologi desalinasi yang merupakan modifikasi dari Microbial Fuel Cell, dapat mengilangkan kandungan garam dalam air serta menghasilkan tenaga listrik dengan menggunakan bantuan mikroorganisme yang akan menghasilkan arus listrik dari degradasi bahan organik. Pada penelitian ini akan digunakan Debaryomyces hansenii sebagai mikroorganisme pendegradasi bahan organik pada chamber anoda. Rasio volume anoda : volume garam : volume katoda adalah 2 : 1 : 2 serta 9 : 1 : 9. Variasi yang dilakukan dalam penelitian ini yaitu variasi volume reaktor, variasi rasio kultur terhadap substrat dan variasi kenaikan volume kultur.

Water crisis in Indonesia is still going on in the various regions. Excessive use of groundwater can cause subsidence. The sea held to have the potential to be used as fresh water so it can be used for water needs in Indonesia. Desalination is a way to process sea water with a high salinity level which caused water is not worth to be consumed to the fresh water that can be consumed. Various desalination technologies such as distillation, vapor compression, and reverse osmosis have been developed but requires energy and large cost. Microbial Desalination Cell is a modified desalination technology of Microbial Fuel Cell that can remove salt content in the water and generate electricity with the help of microorganism that will produce electric current from organic matter degradation. This research will be used Debaryomyces hansenii as microorganisms which degrade organic material in the anode chamber. The ratio of anode volume: sat volume: cathode volume are 2 : 1 : 2 and 9: 1: 9. Variation used in this study are variation of the reactor volume, the variation ratio of the culture and substrate, and increase of culture volume variation."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54805
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dio Prakoso
"Krisis air bersih sedang terjadi di seluruh dunia, termasuk di Indonesia. Kondisi Indonesia yang merupakan negara perairan memunculkan ide untuk memanfaatkan air laut sebagai sumber air bersih. Teknik desalinasi yang sudah ada terkendala masalah tingginya energi operasi yang dibutuhkan. Masalah ini dapat teratasi dengan Microbial Desalination Cell (MDC), sebuah sel bioelektrokimia yang memiliki kemampuan mendesalinasi air garam. Penelitian tentang MDC sebelumnya yang dilakukan di Universitas Indonesia telah berhasil memanfaatkan kultur murni Saccharomyces cerevisiae untuk mereduksi 34,52% garam tanpa sumber listrik atau termal. Dalam penelitian kali ini, kultur murni akan diganti dengan model limbah tempe, agar menambahkan efek tambahan berupa penguraian limbah dan menimisasi biaya substrat. Variasi penggunaan buffer, tipe elektrolit, dan penambahan kultur campuran bakteri limbah tempe dilakukan untuk melihat pengaruh terhadap pengurangan kadar garam. Hasil penelitian ini menunjukan bahwa dengan elektrolit KCl + NH4Cl dan pengontrolan pH dengan buffer pH 7 dan penambahan kultur campuran menghasilkan kinerja desalinasi terbaik dengan laju pengurangan garam 33,78%.

Water crisis is a world scale problem happening also in Indonesia. As an archipelago, infinite clean water can be achieved by processing seawater. Current desalination technique need high input energy for heat or electricity. Microbial Desalination Cell (MDC), a bioelectrochemistry cell which has desalination function. Former desalination study in Universitas Indonesia show that Saccharomyces cerevisiae culture can remove 34,52 % salt. In this study, the culture is replaced by tempe wastewater for efficiency and show the wastewater treatment potential from MDC. The variations involving effect of buffer usages, type of electrolyte, and addition of tempe wastewater bacteries mix culture to salt removal. This research shows that MDC using NH4Cl + KCl as electrolyte, usage of buffer pH 7, and addition of mix culture shows best salt removal (33,78%)"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S55340
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
"Diafiltration by means of the ultrafiltration system of probiotic fermented Mung beans (Phaseolus radiatus L.) concentrate has been performed to reduce or eliminate salts and smaller impurities than the nominal cut-off of the membrane of 20,000 nominal weight cut-off (NWCO). These processes have been conducted as an attempt in order to get a probiotic product with organoleptic acceptability, composition, and the optimal total lactic acid bacteria (LAB)
counts because the presence of salts will affect on the viability
of LAB and the cell lysis of LAB and limit its utility in food products. Concentrate of probiotic mung beans was prepared through fermentation of LAB using inoculum of LAB consisting of
Lactobacillus bulgaricus and Streptococcus thermophylus
(1 : 1) on fermented mung beans extract inoculated by inoculum of
Rhizopus ?C1in rice substrates at salt condition. Ultrafiltration and diafiltration modes have been carried out at flow rate of 8.77 Liter/minute, room temperature and the pressure of 5 bar (0 to 79.7 minutes) and 7 bar (0-154.5 minutes) with the ratio of the volume of pure water to the volume of initial feed (number of diavolume, Nd)
of 0, 0.25, 0.5, 0.75, 1.0 and 1.25, respectively. The experiment results based on total LAB counts as a probiotic product show that a high Nd can reduce the salt content but increase the total LAB counts. Nd of 1.0 results reduce the salt content which is equal to retentate, permeate, and the optimal total LAB counts. Ultrafiltration and diafiltration modes at the pressure of 7 bar and Nd of 1.0 give a retentate with total solid of 6.1355%, salt of 1.3515% and remove 86.15% of the salt from probiotic fermented mung beans concentrate and total LAB counts of 10.73 log cycles. Meanwhile, the permeate obtained at this condition results in flux value of 10.83 Liter/m 2.hour with contents of total solid of 6.8199%, salt of 1.325% and total LAB counts of 5.49 log cycles."
[Direktorat Riset dan Pengabdian Masyarakat Universitas Indonesia, Lembaga Ilmu Pengetahuan Indonesia (LIPI). Pusat Penelitian Kimia], 2010
pdf
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>