Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 143625 dokumen yang sesuai dengan query
cover
Zaneta Pelangi Dwi Setiati
"Pada penelitian ini diusulkan peramalan trafik jaringan menggunakan Artificial Neural Network dengan model Nonlinear Autoregressive. Model prediksi beban trafik dilakukan dalam tiga skenario yaitu tanpa input eksogen, dengan input eksogen jumlah pelanggan, dan dengan input eksogen jumlah pelanggan dan inflasi. Hasil penelitian dengan nilai MAPE dan MSE terkecil terdapat pada prediksi beban trafik dengan input eksogen jumlah pelanggan. Pada penelitian diprediksi beban trafik hingga l tahun kedepan untuk dapat merencanakan pembangunan dan peningkatan kapasitas node-b/ BTS 3G. Diharapkan dengan melakukan peramalan penggunaan-jaringan-oleh-pelanggan akan menghasilkan estimasi akurat permintaan kebutuhan pelanggan di masa mendatang sehingga organisasi dapat melakukan strategi yang tepat dalam merencanakan peningkatan kapasitas demi menjaga 4aality ofservice.

This research proposed network traffic forecasting using Artificial Neural Network with Nonlinear Autoregressive models. The traffic load prediction model is done in three scenarios: without exogenous input, with the input of exogenous number of customers, and with exogenous inputs the number of subscribers and inflation. The smallest MAPE and MSE values are in the traffrc load prediction with subscribers as exogenous inputs. The traffic load is predicted up to 1 year ahead in order to plan the development and improvement of the capacity of the node-b / 3G base stations. By forecasting the network usage generate by the customer, we expect to have an accurate estimated demand of customer needs in the future so that the organization can perform the right strategy for planning the capacity to maintain the quality of service."
Jakarta: Fakultas Teknik Universitas Indonesia, 2014
T42667
UI - Tesis Membership  Universitas Indonesia Library
cover
Fajar Alya RahmanFajar Alya Rahman
"[ABSTRAK
Peramalan beban listrik memegang peranan yang sangat penting bagi efisiensi dan
kinerja dari PLN. Berbagai jenis metode dipakai untuk mendapatkan hasil peramalan beban yang akurat agar daya yang dikirimkan sesuai dengan kebutuhan
listrik dari konsumen. Skripsi ini membahas peramalan beban jangka pendek satu minggu ke depan dengan menggunakan Jaringan Syaraf Tiruan (JST). Peramalan
beban jangka pendek sangat dipengaruhi oleh faktor-faktor cuaca, yang dalam hal ini menjadi masukan JST, yaitu : Suhu, Kelembaban, Tekanan udara, dan
Kecepatan angin. Data yang digunakan untuk pembelajaran adalah data sebenarnya sepanjang tahun 2011. Arsitektur yang digunakan adalah feed-forward
dan algoritma yang dipakai adalah algoritma backpropagation. Berdasarkan hasil
didapatkan nilai MAPE terbaik sebesar 1.8 % dan untuk 10 kali running sebesar 2.65 % sehingga berada di bawah ambang kesalahan peramalan.
ABSTRAK
Electrical load forecasting has an important role for efficiency and performance
from PLN.Various types of methods have been used to provide an accurate load
forecasting on purpose that the transmitted power appropriates the demand of
consumers. This research will discuss short term load forecasting using Artificial
Neural Network (ANN). Short term load is influenced by weather factors, those
will become input of ANN, i.e. : Temperature, Humidity, Pressure, Wind speed,
Data used for study are actual data in 2011. Architecture used for this research is
feed-forward and Algorithm that is used is backpropagation . The final result
shows that the best MAPE is 1.8 % and for 2.65 % for 10 iterations which are
below the forecasting error limit., Electrical load forecasting has an important role for efficiency and performance
from PLN.Various types of methods have been used to provide an accurate load
forecasting on purpose that the transmitted power appropriates the demand of
consumers. This research will discuss short term load forecasting using Artificial
Neural Network (ANN). Short term load is influenced by weather factors, those
will become input of ANN, i.e. : Temperature, Humidity, Pressure, Wind speed,
Data used for study are actual data in 2011. Architecture used for this research is
feed-forward and Algorithm that is used is backpropagation . The final result
shows that the best MAPE is 1.8 % and for 2.65 % for 10 iterations which are
below the forecasting error limit.]"
Fakultas Teknik Universitas Indonesia, 2012
S54227
UI - Skripsi Open  Universitas Indonesia Library
cover
Indira Untari
"Perkembangan teknologi yang sangat pesat di bidang kelistrikan saat ini adalah pemanfaatan distributed generation khususnya PLTS Atap atau dikenal dengan PV Rooftop. Pelanggan memanfaatkan energi listrik dari PV Rooftop untuk kebutuhan listriknya dan juga dapat mentransfer energinya (eksport) ke system kelistrikan PLN jika energi dari PV Rooftop berlebih. Sedangkan PLN tetap mengirimkan energi ke pelanggan jika energi dari PV tidak memenuhi konsumsi listriknya (import). Dengan ketersediaan data smart-meter orde jam beban pelanggan PV Rooftop, maka optimalisasi data untuk keperluan data scientist, data analyst, dan data engineer sehingga informasi data ini dapat dignakan untuk manajemen energi yang efisien dan andal. Peralaman beban untuk pelanggan PV menjadi masalah yang sulit dipecahkan dikarenakan beragamnya tipe penggunaan listrik (konsumsi listrik) dan ketidakpastian faktor eksternal (cuaca) karena penggunaan sumber energi terbarukan (energi matahari) sehingga menimbulkan celah dalam akurasinya. Untuk memecahkan masalah tersebut, penelitian ini menggunakan pendekatan machine-learning yaitu Jaringan Syaraf Tiruan (Artificial Neural Network-ANN) pada MATLAB® dengan algoritma pembelajaran backpropagation dan fungsi aktivasi sigmoid untuk menghasilkan model peramalan beban  orde jam meliputi hari kerja dan hari libur pada pelanggan PV per segment tarif (Pelanggan Rumah Tangga, Pelanggan Bisnis, Pelanggan Industri, Pelanggan Sosial dan Pelanggan Pemerintah). dengan mempertimbangkan variasi konsumsi listrik dan temperatur. Lingkup pengambilan data penelitian dibatasi beban listrik pada pelanggan di Jakarta dan sampling dilakukan selama bulan Juli s/d Oktober 2019. Hasil penelitian ini memperlihatkan bahwa prediksi ANN menghasilkan kinerja dengan Mean Square Error (MSE) sebesar 2%. Prediksi beban listrik tanggal 21 s/d 27 Oktober 2019 memperlihatkan rata-rata error ANN adalah 21%, sedangkan rata-rata error metode regresi adalah 39%. Dengan demikian dapat disimpulkan bahwa prediksi beban listrik menggunakan ANN lebih akurat sebesar 20% dibandingkan dengan metode regresi oleh PLN. Berdasarkan analisis keekonomian, pelanggan mendapatkan efisiensi biaya listrik sebesar 21%, sedangkan PLN berkurang pendapatan sebesar ± Rp. 300 juta/bulan. Strategi manajemen yang diusulkan dengan mempertimbangkan benefit kedua pihak (PLN dan Konsumen) adalah dengan keterlibatan PLN sebagai integrator (sisi hulu dan sales), ketelibatan Pemerintah dan keterlibatan dukungan Bank sebagai

The very rapid technological development in the electricity sector at present is the use of special distributed PLTS known as PV Rooftop. Customers use energy from the PV for their electricity needs and can also transfer their energy (export) to the PLN electricity system if the energy from their PV is excessive. While PLN continues to send energy to customers if using energy from PV does not meet its electricity consumption (imports). While the avaibility of fine-grained smart meter data for PV customers load, optimization could be done for the needs of data scientists, data analysts and data engineers makes this data information usable for efficient and reliable energy management. Forecasting the PV Customer load, however, can be an intractable problem. These loads are characterized by uncertainty and variations due to the use of renewable energy sources (solar energy), leaving much room to improve accuracy. To improve the PV customer load forecast accuracy, this paper advocates a machine-learning tool called Artificial Neural Network (ANN) on MATLAB® with backpropagation learning algorithm and sigmoid activation, include load forecasting per tariff segment (Household Customers, Business Customers, Industrial Customers, Social Customers and Government Customers). The scope of the study took data on electricity loads to customers in Jakarta and sampling was conducted from July to October 2019. The test results show that ANN deterministic load forecasting model can achieve satisfactory performance with the mean square error (MSE) of 2% . Electricity load predictions from 21 to 27 October 2019 have an average error of ANN is 21%, while the average error of the regression method is 39%. Thus it can be concluded that the estimated cost of using ANN electricity is more accurate by 20% compared to the regression method by PLN. Based on economic analysis, customers get electricity cost efficiencies of  21%, while PLN reduces revenue by ±Rp. 300 million/month. The proposed management strategy by considering the benefits of both parties (PLN and Consumers) is to involve PLN as an integrator (upstream and sales side), Government involvement and involvement of Bank supporters as lenders."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T54037
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Agung Nugraha
"Penelitian ini bertujuan untuk membuat model peramalan yang efektif dalam meramalkan penjualan produk mobil dalam segmen B2B (Business to Business) agar didapatkan estimasi penjualan produk di masa mendatang. Peneilitian ini menggunakan regresi linear berganda dan jaringan syaraf tiruan yang dioptimasi dengan algoritma genetika.  Faktor peramalan penjualan mobil pada umumnya meliputi penjualan mobil secara nasional, Indeks Harga konsumen, Indeks Kepercayaan Konsumen, Laju Inflasi, Produk Domestik Bruto (GDP), dan  Harga Bahan Bakar Minyak (BBM). Penulis juga telah mendapatkan faktor yang berpengaruh dalam penjualan segmen B2B dengan menyebarkan survey (kuesioner) kepada 102 orang DMU (Decision Making Unit) yang memiliki keputusan dalam pembelanjaan mobil di perusahaan mereka. Kemudian hasil scoring dari kuesioner tersebut kami bobotkan pada data training dan simulasi pada Jaringan Syaraf Tiruan. Hasil penelitian ini menunjukkan bahwa Jaringan Syaraf Tiruan yang dioptimasi  dengan Algoritma Genetika dengan 18 Variabel dapat meningkatkan akurasi peramalan penjualan mobil segmen B2B dengan error 1,3503%, jika dibandingkan nilai error pada Jaringan Syaraf Tiruan biasa sebesar 4,173% dan Regresi Linear Berganda sebesar 17,68%.

ABSTRACT
This study aims to create an effective forecasting model in predicting sales of car products in the B2B segment (Business-to-Business) in order to obtain estimates of product sales in the future. This research uses multiple linear regression and artificial neural networks that are optimized by genetic algorithms. Car sales forecasting factors generally include National car sales, Consumer Price Index, Consumer Confidence Index, Inflation Rate, Gross Domestic Product (GDP), and Gasoline Price. The author has also obtained an influential factor in the sale of B2B segments by distributing surveys (questionnaires) to 102 DMU (Decision Making Unit) who have a decision in car purchasing at their company. Then the results of the scoring from the questionnaire are weighted to the training and simulation data on the Artificial Neural Network. The results of this study indicate that the Artificial Neural Network optimized with Genetic Algorithm can improve the accuracy of forecasting B2B segment car sales with an error of 1.3503%, when compared to the error value in the usual Artificial Neural Network of 4.173% and Multiple Linear Regression of 17.68 %."
Jakarta: Fakultas Teknik Universitas Indonesia, 2020
T54561
UI - Tesis Membership  Universitas Indonesia Library
cover
Evi Lutfiati
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2000
S28481
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hutama Dwantara
"Perencanaan produksi pada sebuah industri, membutuhkan keputusan yang tepat untuk menentukan jumlah produksi agar dapat memenuhi permintaan konsumen tanpa menghasilkan stok berlebih. Peramalan permintaan merupakan salah satu faktor penting dalam perencanaan produksi yang mampu membantu menghasilkan keputusan produksi yang tepat.
Pada industri otomotif mobil, peramalan yang akurat sangat dibutuhkan untuk mengatasi permintaan yang tidak menentu, khususnya untuk produk service parts, yang pada kenyataannya memiliki permintaan yang tidak menentu dari konsumen dan seringkali membuat perusahaan mobil yang memproduksinya mengalami kerugian karena backorder atau overstock. Artificial neural network ANN merupakan suatu metode berbasis machine learning dengan cara kerja seperti otak manusia yang juga mampu melakukan peramalan untuk data dengan pola non-linier.
Pada penelitian kali ini, dilakukan peramalan dengan objek 10 jenis service parts berbeda dengan menggunakan metode artificial neural network yang kemudian dilakukan perbandingan dengan peramalan metode single exponential smoothing dan croston rsquo;s method untuk dapat membandingkan tingkat akurasi dari peramalan tersebut dan menghasilkan peramalan dengan metode yang paling akurat. Hasil perhitungan pada penelitian ini menunjukkan peramalan metode artifcial neural network mampu menghasilkan peramalan yang lebih akurat dibanding dua metode lain.

Production planning in an industry, required precise decisions to made in order to determine the amount of product that will be produced to fulfill the customer's demand without produce excess stock. Demand forecasting is one of the most important factor in production planning process that able to generate precise production decision.
The automotive industry like car manufacturer, always need an accurate demand forecast serve the uncertain demand of their products, especially the service parts product, that in fact always has uncertainity in it's demand and frequently causing the manufacturer company lose their profit due to tha backorder and overstock occurence. Artificial neural network is a machine learning computation method that could work similarly like human brain that also can forecast a non linier data.
In this research, the data is gained from the demand of 10 car's service parts in a car manufacturer and forecasted with artificial neural network and also two other methods, single exponential smoothing and croston's method to generate a forecasting with the most accurate method. The result of the calculation in this research shows that forecasting with artificial neural networks produce the most accurate forecast for the car's service parts demand.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67829
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ruth Palupi Widya Handari
"Durasi pemeliharaan merupakan hal yang penting dalam kegiatan dry docking kapal. Estimasi durasi pemeliharaan diperlukan untuk membuat jadwal pemeliharaan kapal pada suatu galangan. Sayangnya saat ini pihak galangan belum mempunyai standar yang baku dalam mengestimasi durasi pemeliharaan kapal. Penelitian ini bertujuan untuk memperoleh model matematis estimasi durasi pemeliharaan kapal dry docking menggunakan Artificial Neural Network dan Genetic Algorithm. Dengan melihat volume dan jenis pekerjaan dry docking sebagai input, diperoleh model estimasi durasi dengan nilai rata-rata error 5.12 hari. Hasil estimasi kemudian dibandingkan dengan metode Neural Network standar dan metode Decision Tree-Genetic Algorithm-Neural network. Hasil penelitian menunjukkan bahwa metode Decision Tree-Genetic Algorithm-Neural network mempunyai nilai estimasi yang lebih akurat dibandingkan dengan kedua metode lainnya.

Maintenance time duration is an important things in ship dry docking activities. Estimating the time duration is necessary for ship schedule arranging in dock. Unfortunately, the dock company doesn’t have a standard procedure in estimating ship maintenance duration. The purpose of this research is to get mathematic model of dry docking maintenance duration estimation using Artificial Neural Network and Genetic Algorithm. By considering the job volume and type as input variable, the research get estimation model with root mean square error (RMSE) 5.12 day. Then, the estimation result is compared with traditional Neural network and Decision Tree-Genetic Algorithm-Neural network method. The result shows that Decision Tree-Genetic Algorithm-Neural network is more accurate in estimating the ship maintenance duration than the other two methods."
Depok: Fakultas Teknik Universitas Indonesia, 2014
T39301
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Fadhil
"Energi matahari adalah salah satu energi terbarukan dengan potensi besar di negara tropis termasuk Indonesia. Pemanenan energi surya melalui sistem fotovoltaik memiliki tantangan besar karena intermittency dan ketidakpastian serta tidak tersedianya data yang diukur di setiap lokasi. Tujuan dari penelitian ini adalah untuk meramalkan radiasi matahari di lokasi tertentu dengan menggunakan model ASHRAE Clear-Sky dan informasi cuaca lokal melalui algoritma Jaringan Syaraf Tiruan (JST). Model ASHRAE Clear-Sky digunakan sebagai dasar penyinaran maksimum yang akan dikalibrasi dengan mempertimbangkan informasi cuaca setempat. Model peramalan dikembangkan dengan menggunakan algoritma backpropagation dari JST. Metode yang diusulkan disimulasikan di Departemen Teknik Elektro Fakultas Teknik, Universitas Indonesia. Hasil penelitian menunjukkan bahwa metode yang diusulkan dapat memberikan estimasi akurat dari penyinaran matahari dengan rata-rata kesalahan absolut dalam tiga hari yang berbeda adalah 58,30."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Risky Agung Septiyanto
"Emisi kendaraan terutama yang menggunakan mesin diesel merupakan masalah yang sudah tidak asing lagi. Nox, HC, O2, CO, CO2 dan asap yang merupakan zat- zat hasil pembakaran mesin diesel dapat di ukur melalui percobaan eksperimental. Tetapi tentunya percobaan eksperimental ini mempunyai beberapa kekurangan seperti pengoperasiannya yang mahal serta prosesnya yang memakan waktu cukup panjang.
Untuk mengatasi masalah itu semua, maka dibuatlah suatu metode pemodelan matematika menggunakan Artificial Neural Network (ANN). Metode ANN yang digunakan dalam skripsi ini adalah Backpropagation. Dengan dilakukannya penelitian ini diharapkan karakter emisi kendaraan mesin diesel dapat diprediksi secara akurat. Hasil dari penelitian ini membuktikan bahwa ANN cukup handal dalam memprediksi emisi bahan bakar mesin diesel.

Vehicle emissions, especially using diesel engine is not a strange problem anymore. NOx, HC, O2, CO, CO2 and smoke emissions comes from the combustion of substances in diesel engines can be measured through experimental test. Certainly this experimental test has several shortcomings such as the operation is expensive and time consuming process which is long enough.
To cope with this problem, then a mathematical modeling method using Artificial Neural Network (ANN) was made. ANN method used in this thesis is Backpropagation. This research expect to predict characters of diesel engine emissions accurately. The results of this study proves that ANN quite good to predict diesel engine emission.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S43928
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ganjar Giwangkoro
"Estimasi biaya proyek jalan layang dengan akurasi yang tinggi pada fase konseptual pengembangan proyek sangat penting untuk perencanaan dan studi kelayakan. Namun, sejumlah kesulitan muncul ketika melakukan estimasi biaya selama tahap konseptual. Mayor masalah yang dihadapi adalah kurangnya informasi awal, kurangnya database jalan layang, kurangnya metode estimasi biaya yang sesuai, dan faktor ketidakpastian. Untuk mencapai optimasi model, perlu digunakan variabel yang tepat dan baik sebagai input sehingga keakurasian output yang dihasilkan dapat dipertanggungjawabkan. Variabel yang mempengaruhi biaya proyek jalan layang yang digunakan pada penelitian ini adalah panjang, lebar, lokasi, tipe pondasi, tahun pembuatan. Variabel tersebut kemudian dimasukkan dalam arsitektur jaringan yang paling cocok dan terbaik sehingga akurasi mencapai 28% sesuai standar AACE.

Project cost estimating of flyover with high accuracy in the conceptual phase of project development is essential for planning and feasibility studies. However, a number of difficulties arise when performing cost estimates during the conceptual stage. The major problems encountered is the lack of initial information, the lack of database, the lack of appropriate methods of cost estimation, and uncertainty factors. To reach model optimization, correct and good variables are needed as inputs to gain output which is accurate and accountable. The variables which affect the project cost and use in this research are length, width, type of pondation, location and year. The variables then run in the most suitable network architecture and the best, so that the accuracy reached 28% according to the standard AACE."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44697
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>