Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 8601 dokumen yang sesuai dengan query
cover
Robyns, Benoit
"[After explaining the physics and fundamental concepts of electromagnetic conversion, this book introduces the standard mathematical models for induction machines-whichever rotor technology is used-and introduces a new parameter sensitivity reduction method. , After explaining the physics and fundamental concepts of electromagnetic conversion, this book introduces the standard mathematical models for induction machines-whichever rotor technology is used-and introduces a new parameter sensitivity reduction method. ]"
London: [Springer, Springer], 2012
e20397715
eBooks  Universitas Indonesia Library
cover
"Energi listrik merupakan salah satu energi alternatif untuk menggantikan Bahan Bakar Minyak pada dunia transpotasi, salah satu sistem yang saat ini dikembangkan adalah penggunaan motor induksi 3 phasa, untuk membuat sistem yang tangguh maka dikembangkan metoda vector control untuk mengatasi kelemahan motor induksi. Pada sistem ini inverter sebagai salah satu komponen yang digunakan pada sistem. Dalam penelitian ini akan diteliti penggunaan kontroler logika fuzzy pada inverter sebagai pengendali kecepatan motor induksi. Kontroler logika fuzzy digunakan sebagai rangkaian switching inverter, perancangan inverter ini berdasarkan metode inverter yang telah ada. Inverter kontroler logika fuzzy yang dihasilkan kemudian disimulasikan pada motor induksi sehingga didapatkan suatu bentuk inverter yang dapat mengontrol kecepatan motor induksi dengan respon yang baik.

Abstract
In response to concerns about energy cost, energy dependence, and environmental damage, a rekindling of interest in electric vehicles (EV?s) has been obvious. Thus, the development of power electronics technology for EV?s will take an accelerated pace to fulfill the market needs, regarding with the problem in this paper is presented development of fuzzy logic inverter in induction motor control for electric vehicle propulsion. The Fuzzy logic inverter is developed in this system to directed toward developing an improved propulsion system for electric vehicles applications, the fuzzy logic controller is used for switching process. This paper is describes the design concepts, configuration, controller for inverter fuzzy logic and drive system is developed for this high-performance electric vehicle."
[Direktorat Riset dan Pengabdian Masyarakat Universitas Indonesia, Institut Teknologi Sepuluh Nopember. Fakultas Teknologi Industri], 2008
pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Castillo, Oscar
"This book, hybrid intelligent systems based mainly on type-2 fuzzy logic for intelligent control. Hybrid intelligent systems combine several intelligent computing paradigms, including fuzzy logic, and bio-inspired optimization algorithms, which can be used to produce powerful automatic control systems. The book is organized in three main parts, which contain a group of chapters around a similar subject. The first part consists of chapters with the main theme of theory and design algorithms, which are basically chapters that propose new models and concepts, which can be the basis for achieving intelligent control with interval type-2 fuzzy logic. The second part of the book is comprised of chapters with the main theme of evolutionary optimization of type-2 fuzzy systems in intelligent control with the aim of designing optimal type-2 fuzzy controllers for complex control problems in diverse areas of application, including mobile robotics, aircraft dynamics systems and hardware implementations. The third part of the book is formed with chapters dealing with the theme of bio-inspired optimization of type-2 fuzzy systems in intelligent control, which includes the application of particle swarm intelligence and ant colony optimization algorithms for obtaining optimal type-2 fuzzy controllers."
Berlin: Springer, 2012
e20398992
eBooks  Universitas Indonesia Library
cover
Oxford : Pergamon Press, 1978
R 003 SYS
Buku Referensi  Universitas Indonesia Library
cover
Yunan Ari Yuwono
"Lalu lintas saat ini merupakan bagian penting yang tidak terpisahkan dari kehidupan manusia, terlebih kondisi kota-kota besar yang semakin berkembang termasuk bertambahnya jumlah kendaraan dengan kondisi infrastruktur yang tidak dapat ditambah lagi. Maka dibutuhkan sebuah sistem kendali yang dapat menangani masalah tersebut. Pada skripsi ini akan dibahas model sistem lalu lintas menggunakan model antrian dengan menggunakan aplikasi sistem Hierarchical Fuzzy Logic Control (HFLC). Pola masukan kendaraan yang digunakan adalah pola persebaran poisson yang dapat mewakili dengan kondisi sebenarnya. Simulasi ini akan diuji dengan lamanya waktu lampu hijau yang berbeda-beda untuk melihat hasil yang paling baik waktu tunggu rata-rata kendaraannya. Jumlah masukan kendaraan juga akan dibuat dengan jumlah yang berbeda agar bisa dilihat sejauh mana kemampuan sistem kendali tersebut. Semua perancangan aplikasi akan dibuat pada Simulink MATLAB dengan pembagian yang memudahkan jika nantinya untuk direalisasikan pada sistem yang sesungguhnya. Hasil dari waktu tunggu rata-rata ketika sistem lampu lalu lintas menggunakan model HFLC lebih baik dibandingkan dengan menggunakan model kendali tetap. Terlebih saat jumlah keluaran kendaraan berubah secara tiba-tiba.

Traffic these days is an inseparable part of daily human activities, especially in large developing cities with an increasing number of vehicles coupled together with a dead-end infrastructure. Therefore, a control system that could solve the aforementioned problem is a necessity. In this thesis, a traffic model system using the queuing model utilizing Hierarchical Fuzzy Logic Control system application will be discussed. The incoming vehicle pattern is modeled on Poisson Distribution which is representative of real life conditions. The simulation will be tested on different durations of green light to measure the best vehicle average waiting time. The simulation will also be tested on different amount of incoming vehicles to measure the system capabilities. All designs will be created using MATLAB Simulink software with a simplified allocation if it was to be realized on real life. The results of the average waiting time when the traffic light system use HFLC model is better than using a fixed control models, especially when the number of vehicles output changes suddenly."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44163
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jeffry Adityapriatama
"Dengan berkembangnya konstruksi perkotaan dan kebutuhan industri, maka semakin diperlukannya pipa yang panjang. Untuk Kebutuhan industri diperlukannya sistem pengendalian yang kuat, adaptif, efisien, dan ramah lingkungan untuk memenuhi kebutuhan yang sangat besar. Pada penelitian ini telah dirancang suatu sistem kendali berbasis kecerdasan buatan dengan logika fuzzy pada pengendalian debit air berbasis PLC .Dalam penelitian ini sistem logika fuzzy menggunakan 2 input fuzzy set yaitu error dan perubahan error. Setiap Fuzzy set menggunakan 5 fungsi keanggotaan yaitu negatif besar (NB), negatif medium(NM), zero(ZO), positif medium(PM), positif besar(PB). Sistem dapat melakukan pengendalian debit sesuai yang dibutuhkan.
Sistem ini berada pada sebuah komputer yang berfungsi sebagai pusat pengendalian dan mengambil data dari OPC server dimana data tersebut diambil dari PLC menggunakan komunikasi ethernet yang langsung terhubung dengan plant. Sistem pengendalian berbasis logika fuzzy dioperaasikan pada prototype plant dalam skala lab, dan analisis performa diverivikasi secara eksperimental. Data secara langsung dapat diambil dan dilihat menggunakan SIMULINK MATLAB. Berdasarkan hasil eksperimen dapat simpulkan pengendalian menggunakan logika fuzzy lebih baik dibanding pengendalian konvesional PID. Hasil pengendalian menggunakan logika fuzzy lebih cepat mencapai steady state yaitu 24.24 sekon tanpa adanya overshoot dibandingkan dengan menggunakan PID yaitu 48.6 sekon dengan overshoot sebesar 16.2%.

With the development of urban construction and industrial needs, the need for long pipes is increasing. For industrial needs, a control system that is strong, adaptive, efficient, and environmentally friendly is needed to meet huge needs. In this study, a control system based on artificial intelligence has been designed with fuzzy logic for PLC-based water flow control. In this study, the fuzzy logic system uses 2 fuzzy set inputs, namely error and error change. Each Fuzzy set uses 5 membership functions, namely large negative (NB), medium negative (NM), zero (ZO), medium positive (PM), large positive (PB). The system can control the discharge as needed.
This system is located on a computer that functions as a control center and retrieves data from the OPC server where the data is retrieved from the PLC using ethernet communication which is directly connected to the plant. The fuzzy logic-based control system was operated on a prototype plant on a lab scale, and the performance analysis was verified experimentally. Direct data can be retrieved and viewed using SIMULINK MATLAB. Based on the experimental results, it can be concluded that controlling using fuzzy logic is better than conventional PID control. The result of controlling using fuzzy logic reaches a steady state faster, which is 24.24 seconds without overshoot, compared to using PID, which is 48.6 seconds with an overshoot of 16.2%.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jeffrey Adityapriatama
"Dengan berkembangnya pembangunan perkotaan dan kebutuhan industri, semakin pipa panjang diperlukan. Untuk kebutuhan industri diperlukan suatu sistem system pengendalian yang kuat, adaptif, efisien, dan ramah lingkungan untuk memenuhi kebutuhan yang sangat besar. Pada penelitian ini telah dirancang sebuah sistem kendali berdasarkan kecerdasan buatan dengan logika fuzzy pada kontrol aliran air berdasarkan PLC. Pada penelitian ini sistem logika fuzzy menggunakan 2 input himpunan fuzzy yaitu error dan perubahan kesalahan. Setiap himpunan fuzzy menggunakan 5 fungsi keanggotaan yang bernilai negatif besar (NB), negatif sedang (NM), nol (ZO), positif sedang (PM), besar positif (PB). Sistem dapat melakukan kontrol debit sesuai kebutuhan. Sistem ini terletak pada komputer yang berfungsi sebagai pusat kendali dan mengambil data dari server OPC tempat data diambil dari PLC menggunakan komunikasi Ethernet yang terhubung langsung ke plant. Sistem kontrol berbasis logika fuzzy dioperasikan pada pabrik prototipe pada skala lab, dan analisis kinerja diverifikasi secara eksperimental. Data dapat langsung diambil dan dilihat menggunakan MATLAB SIMULINK. Berdasarkan hasil percobaan dapat disimpulkan kontrol menggunakan logika fuzzy lebih baik dari kontrol konvensional PID. Hasil kontrol menggunakan logika fuzzy mencapai kondisi tunak lebih cepat yaitu 24,24 detik tanpa overshoot dibandingkan dengan menggunakan PID yaitu ID 48,6 detik dengan overshoot 16,2%.

With the development of urban development and industrial needs, more and more long pipes are needed. For industrial needs, a strong, adaptive, efficient, and environmentally friendly control system is needed to meet enormous needs. In this research, a control system based on artificial intelligence has been designed with fuzzy logic on water flow control based on PLC. In this study, the fuzzy logic system uses 2 input fuzzy sets, namely error and error change. Each fuzzy set uses 5 membership functions with large negative values ​​(NB), medium negative (NM), zero (ZO), moderate positive (PM), large positive (PB). The system can perform discharge control as needed. This system is located on a computer that functions as a control center and retrieves data from the OPC server where data is retrieved from the PLC using Ethernet communication that is connected directly to the plant. Fuzzy logic based control system is operated in a prototype factory on a lab scale, and performance analysis experimentally verified. Data can be directly retrieved and viewed using MATLAB SIMULINK. Based on the experimental results, it can be concluded that the control using fuzzy logic is better than conventional PID control. The results of the control using fuzzy logic reached steady state faster, namely 24.24 seconds without overshooting compared to using PID, namely ID
48.6 seconds with 16.2% overshoot."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sugiyanto
"Arrhythmia is a cardiovascular disease that can be diagnosed by doctors using an electrocardiogram (ECG). The information contained on the ECG is used by doctors to analyze the electrical activity of the heart and determine the type of arrhythmia suffered by the patient. In this study, ECG arrhythmia classification process was performed using Support Vector Machine based fuzzy logic. In the pro-posed method, fuzzy membership functions are used to cope with data that are not classifiable in the method of Support Vector Machine (SVM) one-against-one. An early stage of the data processing is the baseline wander removal process on the original ECG signal using Transformation Wavelet Dis-crete (TWD). Afterwards then the ECG signal is cleaned from the baseline wander segmented into units beat. The next stage is to look for six features of the beat. Every single beat is classified using SVM method based fuzzy logic. Results from this study show that ECG arrhythmia classification using proposed method (SVM based fuzzy logic) gives better results than original SVM method. ECG arrhythmia classification using SVM method based fuzzy logic forms an average value of accuracy level, sensitivity level, and specificity level of 93.5%, 93.5%, and 98.7% respectively. ECG arrhyth-mia classification using only SVM method forms an average value accuracy level, sensitivity level, and specificity level of 91.83%, 91.83%, and 98.36% respectively.
Aritmia adalah penyakit kardiovaskular yang dapat didiagnosis dokter menggunakan elektrokardio-gram (EKG). Informasi yang terdapat di EKG digunakan oleh dokter untuk menganalisis aktivitas elektrik jantung dan menentukan jenis aritmia yang diderita oleh pasien. Dalam penelitian ini, proses klasifikasi aritmia EKG dilakukan dengan menggunakan Support Vector Machine berbasis fuzzy logic. Pada metode yang diusulkan, fungsi keanggotaan fuzzy digunakan untuk mengatasi dengan data yang tidak dapat diklasifikasikan dalam metode Support Vector Machine (SVM) satu-terhadap-satu. Tahap awal pengolahan data adalah proses baseline wander removal pada sinyal EKG asli menggunakan Transformasi Wavelet Diskrit (TWD), dan kemudian sinyal EKG bersih dari baseline wander tersegmentasi ke unit denyut. Tahap berikutnya adalah untuk mencari enam fitur dari denyut, dan setiap denyut tunggal diklasifikasikan menggunakan metode SVM berbasis fuzzy logic. Hasil dari penelitian menunjukkan bahwa klasifikasi aritmia EKG menggunakan metode yang diusulkan (SVM berdasarkan logika fuzzy) memberikan hasil yang lebih baik daripada metode SVM asli. Klasifikasi aritmia EKG menggunakan metode SVM berbasis logika fuzzy membentuk nilai rata-rata tingkat akurasi, tingkat sensitivitas, dan tingkat spesifisitas 93,5%, 93,5%, dan 98,7%. Klasifikasi aritmia EKG menggunakan metode SVM asli hanya membentuk tingkat rata-rata nilai akurasi, tingkat sensitivitas, dan tingkat spesifisitas 91,83%, 91,83%, dan 98,36%."
Adhi Tama Institute of Technology Surabaya, Faculty of Information Technology, Department of Informatics Engineering, 2016
PDF
Artikel Jurnal  Universitas Indonesia Library
cover
Fauzan Aldiansyah
"Pengontrol aliran banyak digunakan di berbagai industri, seperti di industri perminyakan untuk mengalirkan minyak dari minyak lepas pantai ke darat atau digunakan untuk distribusi minyak. Pengontrol aliran yang paling banyak digunakan dalam industri adalah pengontrol berbasis PID konvensional yang diimplementasikan menggunakan PLC. PLC banyak digunakan dalam industri karena kekompakannya, memiliki konektivitas standar dan memiliki keandalan yang tinggi. Dalam penelitian ini, pengontrol non-konvensional, yaitu pengontrol Neuro-Fuzzy, diterapkan pada pabrik prototipe yang mengandung air sebagai agen alirannya. Pabrik prototipe terdiri dari tangki air, pompa air, katup gerbang, katup kontrol, flow meter, dan sistem perpipaan. Kontroler Neuro-Fuzzy dalam penelitian ini dirancang berdasarkan algoritma ANFIS, dengan input berupa kesalahan dan perubahan kesalahan dari variabel proses yang diamati, dalam hal ini aliran air pada pipa keluaran pabrik prototipe. Pengontrol dioperasikan di lingkungan MATLAB/SIMULINK pada PC, yang memperoleh informasi laju aliran berasal dari flow meter yang terhubung ke PLC. PLC berkomunikasi dengan pengendali melalui fasilitas OPC. Output dari pengontrol, yang berupa bukaan katup kontrol, akan dikirim ke PLC melalui OPC, oleh karena itu PLC dapat mengontrol bukaan katup sesuai dengan laju aliran air yang diinginkan. Setelah menjalani proses pelatihan, pengendali berbasis ANFIS yang dikembangkan diuji dengan berbagai titik setel debit air untuk mendapatkan informasi kinerjanya. Dari penelitian ini ditemukan bahwa pengontrol berbasis ANFIS adalah pengontrol dengan kinerja yang baik, yang memiliki waktu naik rata-rata 16,88 detik, waktu penyelesaian 30,68 detik, dan dengan overshoot 0% dan 35,65%, dan memiliki relatif kecil kesalahan 2,59%.

Flow control is widely used in various industries, such as in the oil industry to flow oil from offshore to onshore oil or used for oil distribution. The most widely used flow controller in the industry is conventional PID-based controller which is implemented using PLC. PLCs are widely used in industry because of their compactness, standard connectivity and high reliability. In this study, a non-conventional controller, the Neuro-Fuzzy controller, is applied to a prototype plant that contains water as its flow agent. The prototype plant consists of a water tank, a water pump, a gate valve, a control valve, a flow meter, and a piping system. The Neuro-Fuzzy controller in this study was designed based on the ANFIS algorithm, with input in the form of errors and error changes of the observed process variables, in this case the flow of water in the prototype factory output pipe. The controller is operated in a MATLAB / SIMULINK environment on a PC, which gets flow rate information from a flow meter connected to the PLC. PLC communicates with controllers through OPC facilities. The output from the controller, which is the control valve opening, will be sent to the PLC via OPC, therefore the PLC can control the valve opening according to the desired flow rate. After undergoing the training process, the ANFIS-based controller that was developed was tested with various water discharge set points to obtain performance information. From this study it was found that ANFIS-based controller is a controller with good performance, which has an average rise time of 16.88 seconds, a completion time of 30.68 seconds, and with 0% and 35.65% overshoot, and has relatively small errors 2.59%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Barker, S. F.
New York: Cornell University Press, 1957
167 BAR i
Buku Teks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>