Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 30 dokumen yang sesuai dengan query
cover
"This handbook is the practical aspects of this novel method. It provides a complete overview of the field and progresses from general considerations to real life scenarios in drug discovery research.
Starting with an introductory historical overview, the authors move on to discuss ligand-based approaches, including 3D pharmacophores and 4D QSAR, as well as the concept and application of pseudoreceptors. The next section on structure-based approaches includes pharmcophores from ligand-protein complexes, FLIP and 3D protein-ligand binding interactions. The whole is rounded off with a complete section devoted to applications and examples, including modeling of ADME properties.
"
Weinheim, Germany: Wiley-VCH, 2006
e20395917
eBooks  Universitas Indonesia Library
cover
Leamer, Edward E.
New York: John Wiley & Sons, 1978
519.5 LEA s
Buku Teks SO  Universitas Indonesia Library
cover
cover
cover
cover
Farhan Eviansyah
"PCSK9 atau Proprotein Convertase Subtilisin Kexin 9 merupakan protein manusia yang memiliki peran dalam regulasi lipid dengan meningkatkan konsentrasi LDL dalam tubuh. Terjadinya kenaikan lipid dalam tubuh melebihi kadar normal dapat menyebabkan penyakit dalam tubuh. Saat ini telah terdapat beberapa obat untuk mengobati penyakit karena kelebihan kadar lipid tetapi masih sangat terbatas obat yang bekerja untuk menghambat aktivitas dari PCSK9 sebagai salah satu cara pengobatan. Pencarian obat untuk menghambat PCSK9 dapat dilakukan melalui penggunaan kembali obat dengan menggunakan pemodelan farmakofor. Pada penelitian ini digunakan senyawa training set dan test set PCSK9 dari beberapa dokumen paten dan senyawa decoy set dari DUDE. Senyawa test set dan decoy set digunakan untuk memvalidasi model yang terbentuk. Senyawa training set digunakan untuk membentuk model farmakofor dengan menggunakan perangkat lunak LigandScout. Hasil dari pembentukan, validasi dan optimasi diperoleh model farmakofor terbaik hasil modifikasi feature weight +0.1, memiliki 1 fitur gugus aromatis, 1 fitur hidrofobik, 1 fitur gugus akseptor ikatan hidrogen, dan 1 fitur gugus donor ikatan hidrogen, dengan nilai AUC100% sebesar 0,93; nilai EF1% dan EF5% sebesar 34,0 dan 6,00; nilai sensitivitas sebesar 1; dan nilai spesifisitas sebesar 0,857. Model farmakofor terpilih dijadikan sebagai kueri penapisan virtual database obat FDA-approved dari BindingDB dengan hasil penapisan didapatkan 12 senyawa hasil pemeringkatan terbaik berdasarkan nilai pharmacophore fit score tertinggi yaitu gefitinib, clozapine, carbamazepine, phenylephrine hydrochloride, phenelzine sulfate, bupropion hydrobromide, guanfacine hydrochloride, zaleplon, dapagliflozine, methamphetamine hydrochloride, amoxicillin, lorcaserine hydrochloride. 12 senyawa hasil pemeringkatan dari penelitian adalah senyawa kandidat obat inhibitor PCSK9.

PCSK9 or Proprotein Convertase Subtilisin Kexin 9 is a human protein that has a role in lipid regulation by increasing the concentration of LDL in the body. The occurrence of an increase in lipids in the body beyond normal levels can cause disease. Currently, there are several drugs to treat disease due to excess lipid levels, but there are still limited drugs that work to inhibit the activity of PCSK9 as a treatment method. The search for drugs to inhibit PCSK9 can be done through drug repurposing using pharmacophore modeling. In this research, the training and PCSK9 test set from several patent documents and the decoy set compound from DUDE used. A test and decoy set compound were used to validate the generated pharmacophore model. The training set compound was use to generated a pharmacophore model using the LigandScout. The results of generation, validation, and optimization of the pharmacophore model obtained the best pharmacophore model modified by feature weight +0.1, which has four feature (1AR, 1H, 1HBA, 1HBD). The value of AUC 100% 0,93; EF1% and EF5% value are 34,0 and 6,00; sensitivity and specificity values are 1 and 0,857. The selected pharmacophore model was used as a virtual screening query for the FDA-approved drug database from BindingDB. The result of the screening obtained 12 compounds with the best ranking based on the highest Pharmacophore fit score, that is gefitinib, clozapine, carbamazepine, phenylephrine hydrochloride, phenelzine sulfate, bupropion hydrobromide, guanfacine hydrochloride, zaleplon, dapagliflozin, methamphetamine hydrochloride, amoxicillin, lorcaserine hydrochloride."
Depok: Fakultas Farmasi Universitas ndonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Gianinna Ardaneswari
"Dalam bioinformatika penelusuran basis data sekuens digunakan untuk mencari kemiripan antara sebuah sekuens dengan sekuens lainnya pada suatu basis data sekuens Salah satu algoritma untuk menghitung skor kemiripan yang optimal adalah algoritma Smith Waterman yang menggunakan pemrograman dinamik Algoritma ini memiliki kompleksitas waktu kuadratik yaitu O n2 sehingga untuk data yang berukuran besar membutuhkan waktu komputasi yang lama Komputasi paralel diperlukan dalam penelusuran basis data sekuens ini agar waktu yang dibutuhkan lebih cepat dan memiliki kinerja yang baik Dalam skripsi ini akan dibahas implementasi paralel untuk algoritma Smith Waterman menggunakan bahasa pemrograman CUDA C pada GPU dengan NVCC compiler pada Linux Selanjutnya dilakukan analisis kinerja untuk beberapa model paralelisasi tersebut yaitu Inter task Parallelization Intra task Parallelization dan gabungan keduanya Berdasarkan hasil simulasi yang dilakukan paralelisasi dengan gabungan kedua model menghasilkan kinerja yang lebih baik dari model lainnya Paralelisasi dengan model gabungan menghasilkan rata rata speed up sebesar 313x dan rata rata efisiensi sebesar 0 93

In bioinformatics sequence database searches are applied to find the similarity between a sequence with other sequences in a sequence database One of the algorithms to compute the optimal similarity score is Smith Waterman algorithm that uses dynamic programming This algorithm has a quadratic time complexity O n2 which requires a long computation time for large sized data In this occasion parallel computing is essential to solve this sequence database searches in order to reduce the running time and to increase the performance In this mini thesis we discuss the parallel implementation of Smith Waterman algorithm using CUDA C programming language with NVCC compiler on Linux Furthermore we run the performance analysis using three parallelization models including Inter task Parallelization Intra task Parallelization and a combination of both models Based on the simulation results a combination of both models has better performance than the others In addition parallelization using combination of both models achieves an average speed up of 313x and an average efficiency with a factor of 0 93"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S52395
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farah Salsabila
"Pemodelan farmakofor merupakan suatu metode perancangan obat dengan pendekatan komputasi (in silico) yang berperan penting untuk mengetahui aksi spesifik antara ligan dengan target makromolekul. Pemodelan farmakofor memiliki beberapa keterbatasan, seperti sering dihasilkannya senyawa positif palsu dan negatif palsu dalam rasio yang tinggi. Oleh sebab itu, pengembangan perlu dilakukan untuk memperoleh model farmakofor yang lebih prediktif. Pada penelitian ini, dilakukan pengembangan model farmakofor yang diaplikasikan pada senyawa antagonis reseptor adenosin A2A menggunakan perangkat lunak LigandScout. Senyawa antagonis reseptor adenosin A2A diperoleh dari ChEMBL dengan nilai Ki ≤ 10 nM sebanyak 94 ligan digunakan sebagai training set dan nilai Ki > 10 nM sebanyak 3.556 ligan digunakan sebagai decoy set. Pembentukan model farmakofor dan optimasi dilakukan menggunakan training set dan divalidasi menggunakan test set yang merupakan gabungan dari training set dan decoy set. Kemudian, dilakukan analisis statistik melalui perhitungan beberapa parameter analisis berdasarkan kelompok klasifikasi biner. Dari penelitian ini, diperoleh empat fitur farmakofor dari model antagonis reseptor adenosin A2A yang mencakup 1 H (Hydrophobic Interaction), 2 HBA (Hydrogen Bond Acceptor), dan 1 HBD (Hydrogen Bond Donor). Selain itu, diperoleh nilai parameter validasi model yaitu AUC100% sebesar 0,65; EF1% sebesar 4,3; dan EF5% sebesar 3,6 serta nilai ketujuh parameter analisis statistik yaitu akurasi sebesar 0,3789; error rate sebesar 0,6211; sensitivitas sebesar 0,9894; spesifisitas sebesar 0,3684; presisi sebesar 0,0326; nilai prediksi negatif sebesar 0,9974; dan false discovery rate sebesar 0,9674. Nilai dari parameter-parameter tersebut diperoleh dari hasil optimasi model farmakofor yang berbeda-beda sehingga belum ditemukan satu model yang memiliki nilai terbaik untuk semua parameter.

Pharmacophore modeling is a drug design method with a computational approach (in silico) that represents the important role of ligand's specific actions with macromolecular targets. Pharmacophore modeling has several limitations, such as frequent false positives and false negatives in high ratios. Therefore, model development is needed to obtain a more predictive pharmacophore model. In this study, the development of a pharmacophore model was applied to the adenosine A2A receptor antagonist compound using LigandScout. The adenosine A2A receptor antagonist compound obtained from ChEMBL with Ki value ≤ 10 nM (94 ligands) was used as a training set and a Ki value > 10 nM (3,556 ligands) was used as a decoy set. The pharmacophore model and its optimization were formed from a training set, validated using a test set which is a combination of a training set and a decoy set. Then, statistical analysis is carried out by calculating several parameters based on the analysis of binary classification groups. From this study, four pharmacophore features of the adenosine A2A receptor antagonist model were obtained, consisting of 1 H (Hydrophobic Interaction), 2 HBA (Hydrogen Bond Acceptor), and 1 HBD (Hydrogen Bond Donor). In addition, the values of AUC100% (0.65); EF1% (4.3); and EF5% (3.6) were obtained from model validation parameters and the values of accuracy (0.3789); error rate (0.6211); sensitivity (0.9894); specificity (0.3684); precision (0.0326); negative predictive value (0.9974); and a false discovery rate (0.9674) were obtained from the seven statistical analysis parameters. The value of these parameters were obtained from the optimization results of different pharmacophore models. Accordingly, the model that has the best values for all parameters has not been determined."
Depok: Fakultas Farmasi Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ginting, Hanna Christina
"Pemodelan farmakofor adalah metode CADD (Computer-Aided Drug Design) berbasis ligan yang diketahui berperan penting dalam menjelaskan interaksi antara ligan dengan target makromolekul. Pemodelan farmakofor memiliki beberapa keterbatasan, seperti sering dihasilkannya positif dan negatif palsu. Oleh karena itu, pengembangan diperlukan untuk memperoleh model yang lebih prediktif. Pada penelitian ini, pengembangan model farmakofor dilakukan menggunakan program LigandScout dan diaplikasikan pada antagonis reseptor adenosin A2B. Senyawa antagonis reseptor adenosin A2B yang diperoleh dari ChEMBL dengan nilai Ki ≤ 10 nM sebanyak 88 ligan digunakan sebagai kontrol positif dan nilai Ki > 10 nM sebanyak 1.530 ligan digunakan sebagai kontrol negatif. Model farmakofor dibentuk dari kontrol positif yang dijadikan sebagai training set divalidasi menggunakan test set yang merupakan gabungan dari kontrol positif dan negatif. Kemudian dilakukan analisis statistik dengan mengelompokkan hasil berdasarkan klasifikasi biner untuk dihitung beberapa parameter analisis. Dari penelitian ini, diperoleh model farmakofor antagonis reseptor adenosin A2B yang memiliki fitur satu AR (cincin aromatik), satu H (interaksi hidrofobik), dan dua HBA (akseptor ikatan hidrogen). Nilai AUC100% sebesar 0,65; EF1% sebesar 6,9; EF5% sebesar 2,3 diperoleh sebagai parameter validasi model. Berdasarkan analisis statistik, diperoleh akurasi sebesar 0,4067; error rate sebesar 0,5993; sensitivitas sebesar 0,8295; spesifisitas sebesar 0,3824; presisi sebesar 0,0717; tingkat penemuan palsu sebesar 0,9283; dan nilai prediksi negatif sebesar 0,9500. Dari hasil ini, model farmakofor dengan penurunan weight sebesar 0,1 pada fitur farmakofor AR didapatkan sebagai model yang memiliki hasil optimasi terbaik.

Pharmacophore modeling is a ligand-based CADD (Computer-aided Drug Design) method that is known to represent the important role of ligands interactions with macromolecular targets. Pharmacophore modeling has several limitations, such as often false positives and negatives values are generated. Thus, model development is needed to obtain a more predictive model. In this study, the development of a pharmacophore model was carried out using LigandScout and applied to adenosine A2B receptor antagonists. The adenosine A2B receptor antagonist compounds obtained from ChEMBL with Ki value ≤ 10 nM (88 ligands) were used as positive controls and Ki value > 10 nM (1.530 ligands) were used as negative controls. The pharmacophore model was formed from positive controls that were used as a training set, validated using a test set which is a combination of positive and negative controls, and statistical analysis was carried out by grouping the results based on binary classification and calculating several analytical parameters. From this study, a pharmacophore model of adenosine A2B receptor antagonist was obtained and had one AR (aromatic ring), one H (hydrophobic interaction), and two HBA (hydrogen bond acceptor) features. The values of AUC100% (0.65); EF1% (6.9); EF5% (2.3) were obtained from model validation parameters. In addition, the values of accuracy (0.4067); error rate (0.5993); sensitivity (0.8295); specificity (0.3824); precision (0.0717); false discovery rate (0.9283); and negative predictive value (0.9500) were obtained from statistical analysis. From these results, the optimized pharmacophore model with 0.1 feature Weight deduction on AR feature gave the best results."
Depok: Fakultas Farmasi Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3   >>