Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 54329 dokumen yang sesuai dengan query
cover
Ihsan Ahmad Zulkarnain
"Potensi gas hidrogen untuk diimplementasikan sebagai pembawa energi tanpa emisi sangat menjanjikan. Namun ada beberapa kendala yang harus dihadapi dalam pengimplementasiannya, yakni pengembangan teknologi penyimpanan gas hidrogen. Penyimpanan gas hidrogen dalam suatu adsorben karbon nanostruktur seperti carbon nanotube menjadi salah satu pilihan untuk dapat meningkatkan kapasitas penyimpanannya. Namun, banyaknya penelitian eksperimen yang tidak memberikan hasil yang reproducible menyebabkan perlunya ada pengembangan penelitian teoritis adsorpsi gas hidrogen dengan pendekatan termodinamika molekuler.
Dengan kalkulasi struktur elektronik ab initio, energi potensial interaksi antar molekul gas hidrogen diestimasi sebesar 0,099 kcal/mol dan antara gas hidrogen dengan carbon nanotube diestimasi sebesar 1,057 - 1,142 kcal/mol. Energi potensial tersebut direpresentasikan ke dalam persamaan nilai parameter potensial klasik sebagai fungsi dari diameter carbon nanotube agar didapatkan model potensial yang paling presisi. Setelah mendapatkan nilai-nilai parameter potensial interaksinya, simulasi dinamika molekuler dilakukan dengan ensemble canonical untuk menganalisa adsorpsi gas hidrogen pada permukaan luar carbon nanotube.
Dari hasil pengolahan data simulasi dinamika molekuler, didapatkan bahwa kalor isosterik berkurang dari 1,6 kcal/mol hingga menjadi 0,2 kcal/mol pada kondisi permukaan adsorben jenuh. Hasil ini cukup sesuai dengan hasil penelitian eksperimental literatur lainnya.

The potency of hydrogen gas to be implemented as energy carrier with zero emission is very promising. Unfortunately, there are still crucial problems on its implementation, one of them is the development of hydrogen storage technology. Storing hydrogen gas on nanostructured carbon adsorbent could be an alternative to improve the storage capacity. However, the fact that there were so many experimental researches that couldn?t provide reproducible results creates a need to develop theoritical research on hydrogen gas adsorption on carbon nanotube using moleculer thermodynamics approach.
Using ab initio electronic structure calculations, The interaction potential energies between hydrogen molecules were estimated to be 0.099 kcal/mol and between hydrogen molecule and the outer surface of carbon nanotube were estimated to be 1.057 - 1.142 kcal/mol. The potential energies then were represented into an equation of potential parameter as a function of carbon nanotube diameterin order to get the most precise interaction potential model. Molecular dynamics simulations were performed on canonical ensemble to analyze hydrogen gas adsorption on outer surface of carbon nanotube.
From our calculations results, the isosteric heat of hydrogen physical adsorption on carbon nanotube were estimated to be 1.6 kcal/mol and decreased to 0.2 kcal/mol on saturated surface condition. This results are acceptable with some previous experimental researches results.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T42544
UI - Tesis Membership  Universitas Indonesia Library
cover
Supriyadi
"Berbagai upaya meningkatkan kapasitas adsorpsi hidrogen pada Carbon Nanotubes CNT banyak dilakukan diantaranya melalui: optimasi struktur, pengaturan unsur doping serta modifikasi pada CNT sehingga diperoleh CNT dengan karakteristik baru, atau material dengan struktur baru. Jenis material nanostruktur yang sekarang banyak menarik perhatian adalah Boron Carbide, Boron Nitride dan Carbon Nitride.
Pada penelitian ini model struktur yang dibahas adalah Single-walled Triazine Nanotube SWTNT, SWTNT dengan substitusi Boron, Boron Substituted-Single Walled Triazine Nanotube SWBTNT serta SWTNT substitusi boron dengan doping lithium: Lithium Doped on Boron Substituted Single-walled Triazine Nanotube SWBTLi2NT yang secara struktur maupun aplikasi untuk penyimpanan hidrogen belum banyak dibahas.
Pada tahap awal penelitian dilakukan kajian semi empirik untuk mendapatkan diamater optimum untuk menyimpan hidrogen. Diperoleh diameter optimum pada diameter kurang dari 5? atau pada diameter antara 11 ndash; 14 ?. Berdasarkan hasil tersebut selanjutnya dilakukan simulasi adsorpsi hidrogen Single-walled Carbon Nanotube SWCNT dan berbagai material nanostruktur dengan chiralitas 18, 0. Analisa termodinamik yang paling penting dilakukan adalah perhitungan nilai luas permukaan spesifik spesific surface area/SSA.
Dari hasil perhitungan berbagai model material diperoleh nilai SSA berturut-turut 2600, 2730 dan 2828 dan 2458 m2/g. Dengan demikian maka dapat diduga modifikasi struktur dengan substitusi/doping logam pada material berbasis karbon akan meningkatkan kapasitas adsorpsi hidrogen. Modifikasi tersebut juga mengidentifikasikan adanya peningkatan energi adsorpsi hidrogen secara signifikan yang besarnya berturut-turut 1,2; 1,97; 2,25 dan 9,7 kkal/mol.
Simulasi dinamika mulekular MD memberikan hasil kapasitas adsorpsi pada temperatur ruang berturut-turut sebesar 1,59; 2,17; 2,31 dan 6,31 wt , di tekanan 120 atm. Pada temperatur 233 K kapasitas adsorpsi meningkat menjadi 2,26; 2,96; 3,23 dan 6,82 wt serta 6,1; 6,84; 7,73 dan 8,52 wt pada temperatur 77 K.
Untuk memverifikasi hasil simulasi dilakukan perbandingan dengan regresi model adsorpsi isotermal, perbandingan dengan hasil eksperimen, perbandingan dengan perhitungan Density Functional Theory DFT , simulasi Grand Canonical Monte Carlo GCMC serta hasil simulasi MD dari hasil yang telah terpublikasi.
Perbandingan dengan perhitungan semi empirik maupun eksperimen, secara umum hasil simulasi lebih tinggi sekitar 10 ndash; 20 . Dengan hasil DFT dan GCMC, hasil MD lebih rendah 10 ndash; 20 dan dengan hasil MD peneliti lain perbedaannya berkisar 5-10. Hasil MD juga menunjukkan adanya kesesuaian dengan model adsorpsi isotermal Langmuir, model isotermal Sips maupun model isotermal Toth dengan nilai koefisien determinasi di atas 0,99 pada temperatur 298 K, di atas 0,95 pada temperatur 233 K dan di atas 0,85 pada temperatur 77 K.
Analisa monolayer coverage menunjukkan bahwa tanpa doping lithium daerah yang sanggup dicover tidak melebihi 30 , 40 dan 55 masing-masing pada temperatur 298, 233 dan 77 K. Dengan doping lithium coveragenya naik hingga 300. Dicapai coverage hampir 100 pada temperatur 298, 233 dan 77 K berturut-turut pada tekanan 100, 30 dan 5 atm. Berbagai ukuran termodinamik menunjukkan bahwa tanpa modifikasi sulit bagi SWCNT memenuhi kriteria untuk aplikasi penyimpanan hidrogen.
Langkah modifikasi yang dilakukan melalui substitusi dan doping logam merupakan peta jalan yang mengarah untuk didapatkannya material baru yang dapat memenuhi target Departemen Energi Amerika Serikat US DoE . Dengan demikian SWBTLi2NT dapat diusulkan sebagai material jenis baru yang memenuhi berbagai persyaratan untuk aplikasi hydrogen storage.

Various eff orts have been conducted intensively to increase the hydrogen adsorption capacity of Carbon Nanotubes CNT , such as structure optimization, doping element arrangement and structure modification to obtain new characteristics of CNTs, or newly acquired materials. New types of materials that now attract a lot of attention are Boron Carbide, Boron Nitride and Carbon Nitride.
The structural models discussed in this study are Single walled Triazine Nanotube SWTNT, Boron Substituted Single walled Triazine Nanotube SWBTNT and Single walled Triazine Nanotube with substitution of boron and lithium doping SWBTLi2NT which structurally and in application for hydrogen storage has not been much discussed.
Based on semi empirical study, it is obtained that the optimum diameter to store hydrogen is diameter less than 5 or diameter between 11 14. From this results, a Single walled Carbon Nanotube SWCNT simulation was performed on chirality 18.0 . The choice of chirality is to assure three dimensional symmetrical properties, when the material type is replaced by a more complex type of material.
Based on the results, further simulations were made on various material variations with 18, 0 chirality The first thermodynamic analysis performed was calculation of SSA value and in various models the material obtained the value of SSA respectively of 2600, 2730 and 2828 and 2458 m2 g. Thus it can be predicted that structural modification by substitution and doping on carbon based materials will increase the hydrogen adsorption capacity. The modification also identified a significant increase in hydrogen adsorption energy of 1.2, 1.97, 2.25 and 9.7 kcal mole.
The molecular dynamics simulation gives the result of adsorption capacity at room temperature is respectively of 1.59, 2.17, 2.31 and 6.31 wt . At temperature of the adsorption capacity increased to 2.26, 2.96, 3.23 and 6.82 wt while 6.1, 6.84, 7.73 and 8.52 wt at a temperature of 77 K.
To verify the simulation results, a comparison with the regression of the isothermal adosrpsi model, the comparison with the experimental results, the comparison with Density Functional Theory DFT calculations, Grand Canonical Monte Carlo GCMC simulations and MD simulation results from published reports were hold.
In general comparison with semi empirical and experimental calculations, the simulation result is higher about 10 20 . With DFT and GCMC results, MD results were lower about 10 20 and with the other MD results about 5 10 . The MD results also indicate compatibility with the Langmuir isothermal model of adsorption, Sips Langmuir isothermal model and Toth Langmuir isothermal model with a coefficient of determination above 0.99 at a temperature of 298 K, above 0.95 at a temperature of 233 K and above 0.85 at a temperature of 77 K.
The monolayer coverage analysis showed that without lithium doping the covered area did not exceed 30 , 40 and 55 respectively at temperatures of 298, 233 and 77 K. With lithium coverage doping rise up to 300 and achieved coverage of nearly 100 at 298, 233 and 77 K temperatures at 100, 30 and 5 atm pressure, respectively. The various thermodynamic properties showed that without modification it is to difficult for SWCNT to meet the criteria for hydrogen storage applications.
The modification step made through substitution and metal doping is a roadmap that leads to the discovery of new materials that can meet the US Department of Energy US DoE targets. Thus SWBTLi2NT can be proposed as a new type of material that meets various requirements for hydrogen storage applications.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
D2287
UI - Disertasi Membership  Universitas Indonesia Library
cover
Boca Raton: CRC Press, Taylor & Francis Group, 2006
620.5 CAR
Buku Teks SO  Universitas Indonesia Library
cover
Singapore: World Scientific Publishing, 2011
R 547.1 HAN
Buku Referensi  Universitas Indonesia Library
cover
Singapore: World Scientific Publishing, 2011
R 620.5 HAN
Buku Referensi  Universitas Indonesia Library
cover
Tanaka, K.
"Carbon nanotubes and graphene is a timely second edition of the original Science and Technology of Carbon Nanotubes. Updated to include expanded coverage of the preparation, purification, structural characterization, and common application areas of single- and multi-walled CNT structures, this work compares, contrasts, and, where appropriate, unitizes CNT to graphene. This much expanded second edition reference supports knowledge discovery, production of impactful carbon research, encourages transition between research fields, and aids the formation of emergent applications. New chapters encompass recent developments in the theoretical treatments of electronic and vibrational structures, and magnetic, optical, and electrical solid-state properties, providing a vital base to research. Current and potential applications of both materials, including the prospect for large-scale synthesis of graphene, biological structures, and flexible electronics, are also critically discussed."
Amsterdam: Elsevier, 2014
e20426848
eBooks  Universitas Indonesia Library
cover
Rahganda
"Aligned Carbon Nanotube (ACNT) adalah salah satu jenis nanomaterial yang memiliki sifat luar biasa dan dapat digunakan untuk berbagai aplikasi di masa depan. LPG adalah salah satu sumber karbon yang dapat menghasilkan ACNT dengan metode Water Asssisted Chemical Vapour Deposition (WA-CVD). Penelitian ini mempelajari bagaimana kinerja dari substrat kuarsa dan bagaimana pengaruh suhu pertumbuhan dan waktu reaksi terhadap kualitas ACNT yang dihasilkan. Penelitian ini menghasilkan nanokarbon dengan yield yang cukup tinggi yaitu mencapai 2,70 mg/cm2. Hasil dari variasi waktu 100 menit dan 120 menit, didapatkan morfologi CNT yang dihasilkan pada waktu reaksi 100 menit lebih merata. Selanjutnya, uji pengaruh suhu terhadap hasil CNT menghasilkan produk pada suhu 800oC sebagai suhu optimum dimana yield dari nanokarbon adalah 2,22 mg/cm2 dan morfologi yang lebih merata dengan diameter 38 nm dilihat dari karakterisasi TEM, SEM-EDX, dan mapping. Sementara itu, keberadaan dari pengotor seperti karbon amorf dan CNT yang terenkapsulasi oleh katalis pada suhu 850oC didapatkan karena trade-off suhu tinggi dimana laju pelarutan karbon dalam katalis melebihi laju difusi dari karbon. Sedangkan sintesis dengan suhu 750oC hanya menghasilkan Carbon Nanofibers (CNF). Dengan hasil ini, dapat dikatakan bahwa orientasi dari CNT yang dihasilkan belum aligned atau dengan kata lain belum terbentuk ACNT. Meskipun demikian, orientasi dan morfologi paling merata didapatkan pada waktu reaksi 100 menit dengan 800oC. Perlakuan terhadap katalis menjadi suatu permasalahan belum didapatkannya ACNT. Selain itu, kinerja steam juga menjadi suatu masalah yang belum teratasi sehingga ACNT belum didapatkan. Waktu reaksi juga harus diturunkan untuk mendapatkan aligned dan penurunan waktu reaksi tidak akan jadi masalah untuk yield karena substrat kuarsa mampu menghasilkan yield yang tinggi.

Aligned Carbon Nanotube (ACNT) is a nanomaterial with extraordinary properties and has very wide future applications. LPG is one of carbon source to produce ACNT through Water Assisted Chemical Vapour Deposition (WA-CVD) method. This research investigates performance of quartz substrate and effects of growth temperature and reaction time on the quality of ACNT. The synthesis in this research produced nanocarbon with high yield reaching 2.70 mg/cm2. At the varied reaction time (100 and 120 minutes), morphology of ACNT produced at 100 minutes is more uniform. Afterwards, growth temperature effect shows that 800oC is the optimum where the yield is reaching 2.22 mg/cm2 and more uniform morphology with diameter 38 nm characterized by TEM, SEM-EDX, and mapping. However, existence of polluter such as amorphous carbon and encapsulated CNT by the catalyst was obtained as trade-off of high temperature at 850oC where dissolution rate of carbon to catalyst is higher than diffusion rate of carbon. Meanwhile, at 750oC only Carbon Nanofiber (CNF) can be produced. Therefore, this research could not produced aligned structured of CNT. Yet, good orientation and morphology of CNT were produced at 100 minutes synthesis and at 800oC. Catalyst pretreatment is one of root cause of not producing ACNT. Besides that, the performance of steam could be another source of the problem. Reaction time has to be reduced until below 100 minutes to get aligned carbon nanotube. The reduced reaction time could still produced high yield since quartz substrate could bear high yield of nanocarbons including ACNT."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63696
UI - Skripsi Membership  Universitas Indonesia Library
cover
Inagaki, Michio
"Materials science and engineering of carbon : fundamentals provides a comprehensive introduction to carbon, the fourth most abundant element in the universe. The contents are organized into two main parts. Following a brief introduction on the history of carbon materials, Part 1 focuses on the fundamental science on the preparation and characterization of various carbon materials, and Part 2 concentrates on their engineering and applications, including hot areas like energy storage and environmental remediation. The book also includes up-to-date advanced information on such newer carbon-based materials as carbon nanotubes and nanofibers, fullerenes and graphenes."
Waltham, MA: Butterworth-Heinemann, 2014
e20427259
eBooks  Universitas Indonesia Library
cover
"Field-effect transistor (FET) berbasiskan single-walled carbon nanotubes semikonduktor (sSWNT) adalah salah satu komponen yang paling menjanjikan untuk generasi perangkat elektronik baru yang supercepat. Di antara bahan berbasiskan nanocarbon yang memiliki mobilitas pembawa muatan yang sangat tinggi, sSWNT adalah satu-satunya yang berkarakter semikonduktor. Bandgap energy sSWNT (~0,7 eV) sangatlah kompatibel untuk diintegrasi dalam rangkaian logika, karena memungkinkan FET sSWNT untuk dimatikan (switch-off). Hal ini yang tidak bisa dimiliki oleh graphene yang bersifat metallic. Namun, proses pembuatan sSWNT FET adalah tantangan besar. Sampai saat ini, kinerja tinggi devais ambipolar yang menggabungkan mobilitas dan rasio on/off yang tinggi hanya dapat dicapai oleh sSWNT yang ditumbuhkan langsung oleh proses chemical vapor deposition (CVD) pada suhu tinggi (~ 900K) di atas substrat konvensional. Selain itu, electron beam lithography harus digunakan untuk membuat elektroda pada sSWNT tersebut (baik nanotube tunggal atau jejaring nanotube). Proses ini mahal, boros energi, dan tidak cocok untuk pembuatan devais berskala banyak dan integrasi pada flexible electronics."
[s.l]: [s.n], 2013
MRS 1:1 (2013)
Artikel Jurnal  Universitas Indonesia Library
cover
Aulia Fitriani
"Pada era ini, Aluminum AC4B telah banyak diaplikasikan untuk komponen kendaraan salah satunya adalah torak. Torak berperan sebagai penekan udara masuk dan penerima tekanan hasil pembakaran pada ruang bakar dan tersambung ke bagian poros engkol. Namun terdapat masalah-masalah seperti keausan dan penggunaan pelumas yang boros yang harus diatasi dengan ide melapisi cylinder liner dan cincin torak menggunakan nanokomposit dengan memvariasikan komposisi penguat CNT (0%, 2%, dan 4%) dengan metode pelapisan penyemprotan dingin. Prosedur perlakuan pendispersian dan planetary ball mill juga memegang peranan penting sebelum proses pelapisan dilakukan. Pengujian yang dilakukan adalah pengujian kekerasan mikro, metalografi-SEM, EDS (pemetaan unsur), kekasaran permukaan, ketahanan aus, dan FTIR. Dari hasil pengujian didapatkan data bahwa penambahan CNT hingga 2% akan meningkatkan kekerasan, ketahanan aus, dan juga dapat meningkatkan efisiensi penggunaan pelumas.

In this era, Aluminum AC4B has widely applied to vehicle components, one of the application is piston. Piston acts in order to pressing the air and receiving the results of the combustion pressure in the combustion chamber which is connected to the crankshaft. However, there are problems such as wear and wasteful use of lubricants that must be overcome by the idea of ​​coating the piston ring and also cylinder liner using nanocomposite by varying the composition of CNT reinforcement (0%, 2%, and 4) by using cold spraying for the coating method. Dispersing treatment procedures and planetary ball mill also plays an important role before the coating process is done. Tests were carried out which micro hardness testing, metallography-SEM, EDS (mapping element), surface roughness, wear resistance, and FTIR. Data obtained from the test results that the addition of up to 2% CNT will increase hardness, wear resistance, and also can improve the efficiency of the use of lubricants."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64727
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>