Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 103156 dokumen yang sesuai dengan query
cover
Nauli Dwi Fileinti
"Perkembangan teknologi otomotif di dunia yang sangat pesat menuntut para pelaku industri otomotif untuk terus-menerus mengembangkan teknologi dan inovasi terbaru. Namun, inovasi yang dilakukan di industri otomotif tidak lagi terbatas pada inovasi produk namun juga pada proses pengembangan produk. Salah satunya adalah dengan menerapkan strategi product platform. Penelitian ini dilakukan untuk memprediksi waktu pergantian platform pada salah satu jenis produk multi-generasi, yaitu produk otomotif, dengan menggunakan metode peramalan artificial neural network. Hasil prediksi pada penelitian menunjukkan bahwa prediksi waktu pergantian platform berkisar dalam kurun waktu 32-33 quarter yang merupakan hasil yang sesuai dengan rentang waktu inovasi platform yang ideal yaitu 8-10 tahun. Selain itu, penelitian juga memperlihatkan bahwa pergantian platform pada produk otomotif kerap dilakukan ketika produk sedang berada di tahap maturity dalam siklus hidupnya serta berhasil mengidentifikasi faktor-faktor yang mempengaruhi keputusan perusahaan untuk melakukan pergantian platform.

The rapid growth of technology in the automotive industry has forced the manufacturers to continuously develop new technology and make innovations. Nowadays, innovation in the automotive industry does not only refer to product innovation, but it refers to process innovation as well, for example by implementing the product platform strategy. This research aims to predict the development time of new platform for one of the multiple-generation product line, automotive product, using artificial neural network. The prediction from this research shows that new platform should be introduced in 32-33 quarters. This result is suitable to the ideal condition of platform innovation which is in 8-10 years. Moreover, the result shows that most of the time company decides to introduce the next-generation platform while the older generation is still in the maturity stage of its life cycle and the research also successfully identifies the factors influencing company to introduce the next-generation platform.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T42146
UI - Tesis Membership  Universitas Indonesia Library
cover
Silitonga, Permatasari
"Di Indonesia, dengue telah menjadi salah satu penyakit yang bersifat hiperendemis. Dengue diderita oleh masyarakat dari berbagai kalangan usia, baik pria maupun wanita. Dengue memiliki manifestasi klinis yang terdiri dari tiga fase: fase demam, fase kritis, dan fase penyembuhan. Banyak pasien dengue meninggal pada fase kritis karena pengobatan yang tidak dilaksanakan tepat waktu. Oleh karena itu, dibangunlah model-model yang dapat memprediksi tingkat keparahan dengue berdasarkan hasil uji laboratorium dari pasien yang bersangkutan menggunakan Artificial Neural Network (ANN) dan Analisis Diskriminan (AD). Dalam pembangunan model-model tersebut, digunakan data dengan jumlah yang sangat kecil, yakni sebesar 77 data. Dalam data tersebut, terdapat informasi mengenai hasil uji laboratorium dan diagnosis dari pasien yang bersangkutan. Diagnosis tersebut dikelompokkan ke dalam tiga kategori keparahan dengue, yakni DF sebagai tingkat ringan, DHF grade 1 sebagai tingkat sedang, dan DHF grade 2 sebagai tingkat parah. Dalam penelitian ini, dilakukan tiga pemisahan data, yakni dengan rasio data training : data testing sebesar 70% : 30%, 80% : 20%, and 90% : 10%. Berdasarkan hasil yang diperoleh, model-model prediksi ANN yang dibangun menggunakan fungsi aktivasi logistik dan tangen hiperbolik dengan persentase data training sebesar 70% menghasilkan akurasi (90.91%), sensitivitas (91.11%), dan spesifisitas (95.51%) tertinggi. Model-model tersebutlah yang diajukan dalam penelitian ini. Model-model tersebut akan mampu membantu para dokter dalam memprediksi tingkat keparahan dengue dari pasien yang bersangkutan sebelum memasuki fase kritis. Lebih jauh, model-model tersebut dapat memudahkan para dokter dalam mengobati pasien dengue secara dini, sehingga kasus-kasus fatal atau kematian dapat dihindari.

In Indonesia, dengue has become one of the hyperendemic diseases. Dengue is being suffered by many people of all ages, both men and women. Dengue has clinical manifestations that are divided into three phases: febrile phase, critical phase, and convalescence phase. Many patients have died in the critical phase due to the lack of timely treatment. Therefore, I developed models that can predict the severity of dengue based on the corresponding patients’ laboratory test results using Artificial Neural Network (ANN) and Discriminant Analysis (DA). In developing the models, I used a very small dataset, which only consisted of 77 data. The data contains information regarding the laboratory test results and the diagnosis of each of the corresponding patients. The diagnoses were classified into three categories of dengue severity, which are DF as the mild level, DHF grade 1 as the intermediate level, and DHF grade 2 as the severe level. I conducted three different data split, that is, with the ratio of training : testing = 70% : 30%, 80% : 20%, and 90% : 10%. It is shown that ANN models developed using logistic and hyperbolic tangent activation function with 70% training data yielded the highest accuracy (90.91%), sensitivity (91.11%), and specificity (95.51%). These ANN models are the proposed models in this research. The proposed models will be able to help physicians predict the dengue severity of a corresponding patient before entering the critical phase. Furthermore, it will ease physicians in treating dengue patients early, so deaths or fatal cases can be avoided."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Risky Agung Septiyanto
"Emisi kendaraan terutama yang menggunakan mesin diesel merupakan masalah yang sudah tidak asing lagi. Nox, HC, O2, CO, CO2 dan asap yang merupakan zat- zat hasil pembakaran mesin diesel dapat di ukur melalui percobaan eksperimental. Tetapi tentunya percobaan eksperimental ini mempunyai beberapa kekurangan seperti pengoperasiannya yang mahal serta prosesnya yang memakan waktu cukup panjang.
Untuk mengatasi masalah itu semua, maka dibuatlah suatu metode pemodelan matematika menggunakan Artificial Neural Network (ANN). Metode ANN yang digunakan dalam skripsi ini adalah Backpropagation. Dengan dilakukannya penelitian ini diharapkan karakter emisi kendaraan mesin diesel dapat diprediksi secara akurat. Hasil dari penelitian ini membuktikan bahwa ANN cukup handal dalam memprediksi emisi bahan bakar mesin diesel.

Vehicle emissions, especially using diesel engine is not a strange problem anymore. NOx, HC, O2, CO, CO2 and smoke emissions comes from the combustion of substances in diesel engines can be measured through experimental test. Certainly this experimental test has several shortcomings such as the operation is expensive and time consuming process which is long enough.
To cope with this problem, then a mathematical modeling method using Artificial Neural Network (ANN) was made. ANN method used in this thesis is Backpropagation. This research expect to predict characters of diesel engine emissions accurately. The results of this study proves that ANN quite good to predict diesel engine emission.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S43928
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dhonan Lutfi Divanto
"Pengukuran kadar gula darah merupakan salah satu kebutuhan utama dalam penanganan diabetes. Namun, moda pengukuran kadar gula darah yang umum saat ini, dilakukan secara invasive atau perlu melukai bagian tubuh manusia untuk mendapat nilai kadar gula darahnya. Terdapat metode pengukuran non invasive tanpa melukai manusia, namun metode ini masih belum dapat diandalkan karena banyaknya factor yang mempengaruhi glukosa tersebut. Penelitian ini mencoba untuk menganalisis akurasi dan performa dari pengukuran gula darah secara non invasive menggunakan sensor infrared pada panjang gelombang 940 nm dengan dibantu oleh Artificial Neural Network dan juga untuk mengevaluasi hubungan komponen dasar dari sinyal analog dari sensor yang bersangkutan terhadap kadar gula darah menggunakan Multiple Regression. Akurasi prediksi gula darah dievaluasi menggunakan Clark Grid Error analysis Dalam analisis ini, 81% dari 97 sampel data berada pada zona yang dapat diterima secara klinis, sedangkan sisanya berada pada zona yang tidak. Hal ini belum mencukupi kebutuhan akurasi 95% yang dapat diterima berdasarkan dari standar ISO 15197, maka hasil daripada penelitian ini masih belum memberikan hasil yang baik. Evaluasi menggunakan multiple regression sendiri menghasilkan hubungan yang tidak signifikan antara komponen dari sinyal analog dengan kadar gula darah dengan nilai R-squared sebesar 0.0174, RMSE 66.9, dan P-value keseluruhan sebesar 0.801.

Measuring blood sugar levels is one of the main needs in managing diabetes. However, the current common method of measuring blood sugar levels is carried out invasively or requires injuring parts of the human body to obtain blood sugar levels. There are non-invasive measurement methods without injuring humans, but this method is still not reliable because of the many factors that influence glucose. This research attempts to analyze the accuracy and performance of non-invasive blood sugar measurements using an infrared sensor at a wavelength of 940 nm assisted by an Artificial Neural Network and also to evaluate the relationship of the basic components of the analog signal from the sensor in question to blood sugar levels using Multiple Regression. The accuracy of blood sugar predictions was evaluated using Clark Grid Error analysis. In this analysis, 81% of the 97 data samples were in the clinically acceptable zone, while the rest were in the zone that was not. This does not meet the acceptable 95% accuracy requirement based on the ISO 15197 standard, thus the results of this research still do not provide relatively good results. Evaluation using multiple regression itself produced an insignificant relationship between the components of the analog signal and blood sugar levels with an R-squared value of 0.0174, RMSE 66.9, and an overall P-value of 0.801."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ronny
"Integrasi antara data log dengan data seismik merupakan salah satu metode untuk melakukan prediksi terhadap suatu parameter log dalam area survei seismik. Analisa data dalam metode ini terdiri atas serangkaian data target log, yang dalam hal ini adalah log porositas dari beberapa sumur yang dikorelasikan dengan beberapa atribut seismik dari volume seismik 3D untuk menurunkan transformasi multi atribut dalam bentuk linear maupun non linear yang menghasilkan pemodelan terhadap parameter target log. Dalam transformasi linear, dihasilkan serangkaian konstanta bobot melalui metode least-square. Sedangkan pada transformasi non-linear diperlukan aplikasi Artificial Neural Network yang salah satunya adalah Probabilistic Neural Network (PNN). Untuk mengkalkulasi keberhasilan dari penurunan transformasi multi atribut, digunakan metode validasi silang. Nilai error yang dihasilkan melalui proses validasi ini menggambarkan nilai prediksi error ketika hasil transformasi multi atribut tersebut diaplikasikan kedalam volume seismik. Setelah didapatkan nilai korelasi yang optimum antara pemodelan log dengan log sebenarnya, selanjutnya dapat dibuat peta sayatan data (data slicing) yang menunjukkan penyebaran pororitas secara lateral yang dapat membantu menentukan zona persebaran porsitas tinggi yang merupakan indikasi prospek area reservoir hidrokarbon.

Integration between log data and seismic data is one of the method to predict log properties in seismic survey area. Data analysis in this method consists of series of target log data, which in this case is porosity log from some wells which correlate with seismic attributes from 3D seismic volume to derive linear or non linear multi attribute transform to product a predicted target log properties. In linear mode, the transformation consists of series of wheights derived by Least Square minimization. In non linear mode, application of Artificial Neural Network (ANN) is needed. One of the ANN which used in this research is Probabilistic Neural Network (PNN). To estimate the reliability of the derived multi attribute transform, crossvalidation method is used. Error that product from this validation method illustrate like prediction error when the transform is applied to seismic volume. After correlation value between predicted log and actual log obtained optimumly, a data slicing map showing the spreading of porosity lateraly can be made. This data slicing map abble to assist to determine high porosity spreading zone which is indicates the prospect area of hydrocarbon reservoir."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2007
S28895
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rievanda Putri
"Salah satu metode deteksi penyakit Diabetes mellitus ialah dengan mengukur kadar glukosa pada darah dengan mengambil sejumlah darah untuk dilakukan pengukuran. Selain itu, metode pengukuran bersifat non-invasif juga sedang mengalami perkembangan, di antaranya ialah iridologi. Penelitian ini memfokuskan pada perancangan suatu sistem prediksi Diabetes mellitus melalui citra iris (iridologi) yang bersifat non-invasif. Pemetaan organ yang berkorespondensi pada wilayah iris dapat dimanfaatkan untuk memprediksi kerusakan jaringan organ, khususnya pada pankreas sebagai penghasil insulin.
Sistem yang dikembangkan terdiri atas instrumen akuisisi citra iris dan algoritma pengolahan citra yang berbasis pada ciri tekstur. Pemrosesan citra yang dilakukan ialah peningkatan kualitas melalui metode FFT filtering dan grayscaling, lokalisasi iris dengan circular hough transform (CHT), dan normalisasi dengan rubber-sheet normalization. Kemudian dilakukan segmentasi daerah pankreas pada iris sejumlah satu ROI di mata kanan dan dua ROI di mata kiri.
Akuisisi citra iris dilakukan sebanyak tiga kali pada 15 subjek tidak Diabetes dan 11 subjek Diabetes. Ekstraksi ciri yang dilakukan menggunakan filter Gabor pada bagian ROI tersebut. Model ANN digunakan untuk klasifikasi kelas Diabetes dan non-Diabetes menggunakan metode SCG dan cross validation menghasilkan akurasi sebesar 87.6%, misclassification error (MR) 12.4%, false positive rate (FPR) 8.26%, false negative rate (FNR) 18.8%, sensitivity 81.2% dan specificity 91.7%. Nilai tersebut menggambarkan bahwa sistem secara umum dapat bekerja untuk membantu prediksi seseorang berpenyakit Diabetes.

One of Diabetes mellitus detection method is to measure the blood glucose by drawing small amount of blood. Other than that, some non-invasive methods also have been developed, one of the alternative methods is iridology. This research focus on development of non-invasive Diabetes mellitus prediction system through iris image. The mapping of organs that corresponded in iris image can be used to detect damaged tissues of an organ, particularly in pancreas where insulin hormone is made.
The developed system consists of image acquisition instrument and image processing algorithm using texture characteristics. The processing starts with image enhancement using filter FFT and grayscaling, iris localization using circular hough transform (CHT), and normalization using rubber-sheet normalization. Segmentation on pancreas in iris image then resulted as followed, one ROI of right eye image and two ROIs of left eye image.
Image acquisition was done with maximum of three images taken and used from 15 health subjects and 11 Diabetes subjects. Feature extraction method that used is Gabor filter. Classification model ANN is used to classify between Diabetes and health subjects with SCG function and cross validation results in accuracy number of 87.6%, misclassification error (MR) 12.4%, false positive rate (FPR) 8.26%, false negative rate (FNR) 18.8%, sensitivity 81.2% and specificity 91.7­­%. Those results show that, system in general has worked to help in prediction of Diabetes.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ruth Palupi Widya Handari
"Durasi pemeliharaan merupakan hal yang penting dalam kegiatan dry docking kapal. Estimasi durasi pemeliharaan diperlukan untuk membuat jadwal pemeliharaan kapal pada suatu galangan. Sayangnya saat ini pihak galangan belum mempunyai standar yang baku dalam mengestimasi durasi pemeliharaan kapal. Penelitian ini bertujuan untuk memperoleh model matematis estimasi durasi pemeliharaan kapal dry docking menggunakan Artificial Neural Network dan Genetic Algorithm. Dengan melihat volume dan jenis pekerjaan dry docking sebagai input, diperoleh model estimasi durasi dengan nilai rata-rata error 5.12 hari. Hasil estimasi kemudian dibandingkan dengan metode Neural Network standar dan metode Decision Tree-Genetic Algorithm-Neural network. Hasil penelitian menunjukkan bahwa metode Decision Tree-Genetic Algorithm-Neural network mempunyai nilai estimasi yang lebih akurat dibandingkan dengan kedua metode lainnya.

Maintenance time duration is an important things in ship dry docking activities. Estimating the time duration is necessary for ship schedule arranging in dock. Unfortunately, the dock company doesn’t have a standard procedure in estimating ship maintenance duration. The purpose of this research is to get mathematic model of dry docking maintenance duration estimation using Artificial Neural Network and Genetic Algorithm. By considering the job volume and type as input variable, the research get estimation model with root mean square error (RMSE) 5.12 day. Then, the estimation result is compared with traditional Neural network and Decision Tree-Genetic Algorithm-Neural network method. The result shows that Decision Tree-Genetic Algorithm-Neural network is more accurate in estimating the ship maintenance duration than the other two methods."
Depok: Fakultas Teknik Universitas Indonesia, 2014
T39301
UI - Tesis Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 2008
06/Wah/p
UI - Laporan Penelitian  Universitas Indonesia Library
cover
M. Rizqy Septyandy
"Atribut seismik merupakan informasi yang diperoleh dari data seismik yang dapat digunakan untuk memprediksi suatu target petrofisika baik secara numerik maupun analitik. Walaupun hubungan antara atribut seismik dengan karakteristik suatu batuan dan reservoar tidak dapat didefinisikan secara spesifik, banyak sumber yang menunjukkan bahwa atribut seismik merupakan salah satu parameter untuk mengklasifikasikan karakter dari suatu batuan.
Skripsi ini menunjukkan hasil proses yang dilakukan oleh ANN yang dapat membuat suatu hubungan antara atribut seismik dengan saturasi air (Sw). Tujuan utama penelitian ini adalah memprediksi penyebaran lateral saturasi air (Sw) yang diperoleh dari atribut seismik. Pada tahap awal, hubungan antara log saturasi air (Sw) dengan satu tras seismik yang berhimpit ditentukan dengan menggunakan metode ANN. Setelah jaringan terbentuk, metode tersebut diterapkan untuk seluruh tras seismik yang ada pada suatu volume seismik. Atribut seismik yang dijadikan masukan adalah amplitudo, impedansi akustik, frekuensi sesaat, dan kuat refleksi (amplitudo sesaat).
Jaringan yang digunakan adalah Backpropagation dengan 5 lapisan yang masing-masing memiliki 40, 30, 20, 10 dan 1 neuron. Metode pelatihannya menggunakan metode resilent backpropagation. Hasil proses jaringan ini memiliki nilai korelasi 96 % dengan nilai validasi sebesar 60 % dan nilai rata-rata error kuadrat (rmse) 3.01 %.

A seismic attribute information, which is obtained from seismic data, can be used to predict petrophysical properties analytically as well as numerically. Although the relationship between seismic attributes with rock properties can not be specifically defined, many papers indicated that seismic attributes can be used to characterize the rock.
This work shows the application of ANN algorithm to generate the relationship between seismic attributes and water saturation (Sw). The main objective of this study is to predict the lateral distribution of water saturation (Sw), which is derived from seismic data. The first step, the relationship between water saturation (Sw) and a trace seismic, which coincide with well log data, is determined using the ANN. After the network is defined, the method can then be applied to all existing seismic traces in a seismic volume. The input of seismic attributes is amplitude, acoustic impedance, instantaneous frequency, and reflection strength (amplitude envelope).
We use bacpropagation network with 5 layers each having 40, 30, 20, 10 and 1 neuron. The training method is resilent backpropagation. This network produces good agreement between predicted water saturation (Sw) and targeted water saturation (Sw), which is indicated by correlation coefficient of 96 %, validation coefficient of 60 % and root mean square error (rmse) of 3.01 %.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S2000
UI - Skripsi Open  Universitas Indonesia Library
cover
Fariz Zhafari
"Sistem pendingin pada sebuah bangunan menyumbang energy yang cukup besar pada total energy dari bangunan tersebut. Pemilihan dan penghematan system pendingin yang tepat akan membantu untuk mengurangi konsumsi energy pada system pendingin bangunan. Salah satu cara penghematan pada system pendingin adalah dengan menggunakan bahan-bahan renewable energy sebagai sumber energinya. Gedung Mechanical Research Center yang berada di wilayah Fakultas Teknik Universitas Indonesia, Depok, Jawa Barat telah menggunakan system pendingin absorpsi tenaga matahari guna memanfaatkan sumber panas terbarukan yang dapat menghemat konsumsi energy pada suatu gedung.
Tujuan penelitian ini mencoba untuk mengevaluasi besar konsumsi energy yang dikeluarkan oleh absorption chiller pada gedung MRC, evaluasi dilakukan dengan simulasi menggunakan perangkat lunak IES-VE, IES-VE adalah perangkat lunak yang membantu penggunanya untuk mendesain dan mengevaluasi fenomena-fenomena pada suatu bangunan hasil yang didapat dari simulasi ini akan digunakan sebagai perbandingan terhadap hasil artificial intelligence menggunakan metode artificial neural network dan fuzzy.

Cooling systems in a building contribute considerable energy to the total energy of the building. Choosing and saving the right cooling system will help to reduce energy consumption in building cooling system. One way of saving on the cooling system is to use renewable energy as a source of energy. Building Mechanical Research Center located in the Faculty of Engineering, University of Indonesia, Depok, West Java has been using solar energy absorption cooling system to utilize renewable heat sources that can save energy consumption in a building.
The purpose of this study was to evaluate the energy consumption of absorption chiller in the MRC building, the evaluation was done by simulation using IES VE software, IES VE is software that help its users to design and evaluate phenomena in a building result Obtained from this simulation will be used in comparison to artificial intelligence result using artificial neural network and fuzzy method.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67968
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>