Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 135583 dokumen yang sesuai dengan query
cover
Johansyah
"Litium titanat (Li4Ti5O12) merupakan kandidat yang menjanjikan sebagai anoda baterai Lithium-ion. Litium titanat disintesis menggunakan metode solid state dengan mencampurkan TiO2 xerogel yang dibuat dengan metode sol gel dan litium karbonat (Li2CO3) komersil. Dalam penelitian ini digunakan tiga variasi penambahan kadar massa Li2CO3, yaitu 0% (sampel LTO 1), 50% (sampel LTO 2), dan 100% (sampel LTO 3) melebihi stoikiometri. Karakterisasi menggunakan pengujian XRD, FESEM, UV-vis spectroscopy, dan BET telah dilakukan untuk mengetahui pengaruh kadar litium berlebih terhadap struktur, morfologi, dan energi celah pita sampel.
Hasil penelitian menunjukkan bahwa ukuran kristalit, ukuran diameter partikel, energi celah pita, dan luas permukaan masing-masing sampel berturut-turut adalah 8,27 nm, 8,44 μm, 3,88 eV untuk sampel LTO 1; 8,22 nm, 8,56 μm, 4,02 eV, 22,529 m2/gr untuk sampel LTO 2; 4,76 nm, 2,07 μm, 4,12 eV, 16,804 m2/gr untuk sampel LTO 3. Selain itu, litium berlebih yang digunakan dalam sintesis Li4Ti5O12 menyebabkan terbentuknya pengotor TiO2 rutile dan Li2TiO3. Senyawa Li4Ti5O12 hanya terbentuk pada sampel LTO 1 dan LTO 2. Untuk mensintesis senyawa Li4Ti5O12 menggunakan metode solid state tanpa menghasilkan pengotor dapat mengacu pada diagram fasa Li2O-TiO2 (28,64% mol Li2O-71,36% mol TiO2).

Lithium titanate (Li4Ti5O12) is a promising candidate for lithium ion battery anode. Lithium titanate was synthesized by solid state method using xerogel TiO2 was prepared by sol gel method and commercial lithium carbonate (Li2CO3). This research varies the content of Li2CO3 addition, 0% (sample LTO 1), 50% (sample LTO 2), and 100% (sample LTO 3) Li2CO3 mass excess. Characterization using XRD, FESEM, UV-vis spectroscopy, and BET testing was performed to observe the effect of adding lithium excess in structure, morphology, and band gap energy.
The results show that crystallite size, particle diameter, band gap energy, and surface area of each sample is 8,27 nm, 8,44 μm, 3,88 eV for sample LTO 1; 8,22 nm, 8,56 μm, 4,02 eV, 22,529 m2/gr for sample LTO 2; 4,76 nm, 2,07 μm, 4,12 eV, 16,804 m2/gr for sample LTO 3. Furthermore, the excess of lithium used for Li4Ti5O12 synthesis cause the formation of impurity compound such as rutile TiO2 and Li2TiO3. Li4Ti5O12 compound was successfully syntesized in sample LTO 1 and LTO 2. In order to synthesis pure Li4Ti5O12 without any impurities using solid state method, Li2O-TiO2 phase diagram (28,64% mol Li2O-71,36% mol TiO2) can be used as a reference.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S57004
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muksin, Author
"Litium titanat (Li4Ti5O12) merupakan senyawa yang digunakan sebagai anoda baterai ion litium. Senyawa litium titanat disintesis berdasarkan metode solid state dengan mereaksikan TiO2 xerogel yang dibuat dengan metode sol-gel dan litium oksida (Li2O). Dalam penelitian ini menggunakan tiga variasi penambahan kadar massa litium oksida (Li2O); massa Li2O sesuai stokiometri (0% melebihi stokiometri), 50% massa Li2O melebihi stokiometri dan 100% melebihi nilai stokiometri. Pengaruh dari penambahan kadar massa litium oksida (Li2O) pada struktur, morfologi, dan energi celah pita tersebut diamati. Sampel yang terbentuk diuji dengan menggunakan X-Ray diffraction, scanning electron microscope (SEM) dan UV-Vis spectroscopy.
Hasil penelitian menunjukan bahwa dengan penambahan massa Li2O sesuai stokiometri membentuk senyawa Li4Ti5O12 dan pengotor seperti TiO2 rutile dan Li2TiO3 dengan ukuran kristalit 13,7 nm, ukuran diameter partikel 0,540 μm band gap energy 3,864 eV, penambahan massa Li2O 50% melebihi stokiometri membentuk senyawa Li2TiO3 dengan ukuran kristalit 7,2 nm, ukuran diameter partikel 1,062 μm dan band gap energy 3,838 eV dan penambahan 100% massa Li2O melebihi stokiometri membentuk Li2TiO3 dengan ukuran kristalit 12,4 nm, ukuran diameter partikel 1,916 μm dan band gap energy 3,778 eV. Senyawa Li4Ti5O12 terbentuk hanya dengan penambahan Li2O sesuai stokiometri. Untuk mensintesis senyawa Li4Ti5O12 bebas dari pengotor mengunakan metode solid state dapat mengacu pada diagram fasa Li2O-TiO2 (29% mol Li2O-71% mol TiO2).

Lithium titanate (Li4Ti5O12) is anode material for application in lithium ion battery. Lithium titanate was synthesized by solid-state method using xerogel TiO2 was prepared by sol–gel process and commercial lithium oxide (Li2O) powder. This research uses 3 various content of lithium oxide (Li2O); 0% Li2O mass excess, 50% Li2O mass excess, and 100% Li2O mass excess. The effect of adding lithium oxide (Li2O) on structure, morphology of particle surface, and band gap energy was examined. Samples were obtained by X-ray diffraction, scanning electron microscope (SEM), ultraviolet visible (UV-Vis).
The results show with adding lithium oxide stoichiometry (0% Li2O excess) produces Li4Ti5O12 and impurities such as rutile TiO2 and Li2TiO3, it produces Li2TiO3 with 50% Li2O excess and it produces Li2TiO3 with 100% Li2O excess. In this research show with appropriate of stochiometry content (0% Li2O excess) produces Li4Ti5O12 with crystallite size is 13,7 nm and impurities namely Li2TiO3 with crystallite size is 22,8 nm and TiO2 with crystallite size 9,14 nm, diameter particle size is 0,540 μm and bandgap energy 3,864 eV. 50% Li2O excess produces Li2TiO3 with crystallite size 7,2 nm, diameter particle size is 1,062 μm and bandgap energy 3,838 eV and with 100% Li2O excess produces Li2TiO3 with crystallite size 12,4 nm, diameter particle size is 1,916 μm and band gap energy is 3,778 eV. The Li4Ti5O12 compound was formed only with appropriate of stoichiometry content. In order to make high purity of Li4Ti5O12 compound on solid state reaction, Li2O-TiO2 phase diagram (29% mol Li2O-71% mol TiO2) can be used as reference.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S56740
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anne Zulfia Syahrial
"Lithium titanate, Li4Ti5O12 (LTO) is a promising candidate as lithium ion battery anode material. In this investigation, LTO was synthesized by a solid state method using TiO2 xerogel prepared by the sol-gel method and lithium carbonate (Li2CO3). Three variations of Li2CO3 content addition in mol% or Li2CO3 molar excess were fabricated, i.e., 0, 50 and 100%, labelled as sample LTO-1, LTO-2 and LTO-3, respectively. The characterizations were made using XRD, FESEM, and BET testing. These were performed to observe the effect of lithium excess addition on structure, morphology, and surface area of the resulting samples. Results showed that the crystallite size and surface area of each sample was 50.80 nm, 17.86 m2/gr for LTO-1; 53.14 nm, 22.53 m2/gr for LTO-2; and 38.09 nm, 16.80 m2/gr for LTO-3. Furthermore, lithium excess caused the formation of impure compound Li2TiO3, while a very small amount of rutile TiO2 was found in LTO-1. A near-pure crystalline Li4Ti5O12 compound was successfully synthesized using the present method with stoichiometric composition with 0% excess, indicating very little Li+ loss during the sintering process."
Depok: Faculty of Engineering, Universitas Indonesia, 2016
UI-IJTECH 7:3 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Bambang Priyono
"Lithium Titanate (Li4Ti5O12) or (LTO) has a potential as an anode material for a high performance lithium ion battery. In this work, LTO was synthesized by a hydrothermal method using Titanium Dioxide (TiO2) xerogel prepared by a sol-gel method and Lithium Hydroxide (LiOH). The sol-gel process was used to synthesize TiO2 xerogel from a titanium tetra-n-butoxide/Ti(OC4H9)4 precursor. An anatase polymorph was obtained by calcining the TiO2 xerogel at a low temperature, i.e.: 300oC and then the hydrothermal reaction was undertaken with 5M LiOH aqueous solution in a hydrothermal process at 135oC for 15 hours to form Li4Ti5O12. The sintering process was conducted at a temperature range varying from 550oC, 650oC, and 750oC, respectively to determine the optimum characteristics of Li4Ti5O12. The characterization was based on Scanning Thermal Analysis (STA), X-ray Powder Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) testing results. The highest intensity of XRD peaks and FTIR spectra of the LTO were found at the highest sintering temperature (750oC). As a trade-off, however, the obtained LTO/Li4Ti5O12 possesses the smallest BET surface area (< 0.001 m2/g) with the highest crystallite size (56.45 nm)."
Depok: Faculty of Engineering, Universitas Indonesia, 2015
UI-IJTECH 6:4 (2015)
Artikel Jurnal  Universitas Indonesia Library
cover
Wildan Nugraha
"Telah dilakukan ekstraksi lihium karbonat dari mineral sintetis campuran Li2OAl2O3-SiO2. Mineral sintetis terbentuk dari campuran senyawa Li2O, Al2O3 dan SiO2 yang dikalsinasi pada suhu 1200 oC selama 90 menit menghasilkan mineral menyerupai β-spodumene. Pada awalnya dilakukan pelindian terhadap mineral sintetis menggunakan Na2CO3 pada sebuah autoclave. Dilanjutkan karbonasi dengan pengaliran gas CO2 hingga mendapatkan larutan LiHCO3. Kemudian larutan dikeringkan untuk mendapatkan lithium karbonat. Hasilnya, dengan meningkatnya rasio Na:Li pada saat pelindian, perolehan Li yang didapatkan semakin tinggi namun kadar Li2CO3 yang dihasilkan semakin rendah. Perolehan terbesar terjadi pada rasio Na:Li 1,6 dengan nilai 73,3%. Kadar Li2CO3 terbesar terjadi pada rasio Na:Li 0,8 dengan nilai 60,6%. Estimasi rasio Na:Li optimum pada proses ini adalah 0,93 untuk mendapatkan nilai perolehan Li dan kadar Li2CO3 sebesar 48%.

In this work, extraction of lithium carbonate from Li2O-Al2O3-SiO2 mixture has been simulated. Synthetic mineral was made by Li2O, Al2O3 and SiO2 mixture and calcinated at 1200 oC 90 minutes to form β-spodumene like minerals. Then, synthetic mineral was leached by Na2CO3 at an autoclave reactor. Followed by carbonation with CO2 gas flow to get LiHCO3. The solution then dried to recover lithium carbonate. The results showed that there has been an increase of lithium recovery along with the increase of Na:Li ratio in leaching stage. But there has been a decrease of lithium carbonate grade in the product. Highest lithium recovery obtained by 1,6 Na:Li ratio with 73,3%. Highest lithium carbonate grade obtained by 0,8 Na:Li ratio with 60,6%. Estimation optimum value of Na:Li ratio in this process was 0,93 to obtain 48% lithium recovery and lithium carbonate grade value."
Depok: Universitas Indonesia, 2014
S53948
UI - Skripsi Membership  Universitas Indonesia Library
cover
Slamet Priyono
"Sintesis serbuk Li4Ti5O12 yang didoping atom Al dan Na untuk material anoda pada baterai ion lithium telah berhasil dilakukan dengan metode reaksi padat. Doping Al pada Li4Ti5O12 bertujuan untuk menaikkan konduktifitas ionik dan memperkuat struktur sedangkan doping Na bertujuan untuk menurunkan tegangan operasi. Pendopingan dilakukan dengan mengikuti persamaan Li(4-(x/3+y))AlxNayTi(5-2x/3)O12 (x=0; 0,025; 0,05; 0.075 dan y= 0;1) dimana atom Al mensubtitusi Ti dan Li sedangkan atom Na mensubtitusi Li. Sintesis dilakukan melalui metoda metalurgi serbuk dengan menggunakan Li2CO3, TiO2-anatase, Al2O3 and Na2CO3 sebagai bahan baku. Pada penelitian ini, pengaruh subtitusi Na dan Al dalam Li4Ti5O12 terhadap struktur, morphologi, ukuran partikel, surface area dan performa elektrokimia diteliti secara detil.
Hasil penelitian menunjukkan bahwa doping ion Al pada Li4Ti5O12 tidak merubah struktur kristal Li4Ti5O12. Hasil FTIR menkonfirmasi tidak adanya perubahan struktur spinel pada gugus khas ketika didoping Al, dengan meningkatnya doping Al membuat tekstur butir menjadi berpori, ukuran partikel menurun dengan ukuran terkecil 20,32 μm, surface area meningkat dengan nilai tertinggi 8,25 m2/gr, konduktifitas ionik meningkat dengan konduktifitas terbaik adalah 8,5 x 10-5 S/cm, tegangan kerja sekitar 1,55 V dan kestabilan siklus terbaik diperoleh pada doping Al 0,025 dengan kapasitas maksimum 70 mAh/g. Sedangkan doping Na dalam Li4Ti5O12 menyebabkan perubahan struktur dengan terbentuk 3 phasa baru yaitu NaLiTi3O7, Li4Ti5O12, dan Li2TiO3.
Perubahan struktur juga dikonfirmasi dengan perubahan gugus khas hasil analysis FTIR. Sedangkan kenaikan doping Al menyebabkan phasa NaLiTi3O7 semakin dominan, tekstur butiran menjadi halus, ukuran partikel menurun dengan ukuran terkecil 30,89 μm, surface area menurun, konduktifitas ionic stabil pada 2,5 x 10-5 S/cm, potensial kerja di 1,3 V dan 1,55V, kestabilan struktur didapat pada doping Al 0,05 dengan kapasitas 90 mAh/g. Secara keseluruhan menunjukkan bahwa penambahan doping Al mampu meningkatkan konduktifitas ionik dan kestabilan siklus dan doping Na menurunkan tegangan kerja.

Synthesis of Li4Ti5O12 powder doped by Al and Na atoms for lithium ion battery anodes had been carried out using solid state reaction. Al doped on Li4Ti5O12 aim is to increase the ionic conductivity and strengthen the structure of Li4Ti5O12 while Na doped aimed is to decrease the operating voltage. Al and Na doped on Li4Ti5O12 had been carried out by following equation Li(4 - (x / 3 + y))AlxNayTi(5-2x/3)O12 (x = 0; 0,025; 0.05, 0.075 and y = 0, 1) where the Al atoms substitute Ti and Li while Na substituting Li atoms. Synthesis is conducted through a solid state reaction by using Li2CO3, TiO2-anatase, Al2O3 and Na2CO3 as raw materials. In this study, the effects of substitution of Na and Al in Li4Ti5O12 on the structure, morphology, particle size, surface area, and electrochemical performance were deep studied.
The results showed that the Al doped on the Li4Ti5O12 was not change crystal structure of Li4Ti5O12. FTIR results confirmed that the absence of changes spinel structure in fingerprint region when doped Al, with increasing Al doped make textures porous grains, particle size decreases to 20.32 μm, surface area increases with highest value of 8.25 m2/gr, conductivity is increased with the best conductivity 8.5 x 10-5 S/cm, , the working voltage of about 1.55 V and the best cycle stability was obtained on doping Al 0.05 and the maximum capacity is 70 mAh/g. While doping Na in Li4Ti5O12 caused structural changes to the three phases formed NaLiTi3O7, Li4Ti5O12, and Li2TiO3.
Tranformation on the structure is also confirmed by the changes in the fingerprint region with FTIR analysis. While the increase in Al doping causes NaLiTi3O7 phase become dominant, texture of granular becomes bigger and smoother, the particle size decreases to 30.89 μm, surface area decreases, the ionic conductivity was stable at 2.5 x 10-5 S/cm, The working potential in 1, 3 V and 1.55 V, the stability of the structure obtained on doping Al 0.05 and the maximum capacity of 90 mAh/g. Overall showed that the addition of Al doped can improve the ionic conductivity while stability of the cycle and the Na doped decrease the working voltage.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T42630
UI - Tesis Membership  Universitas Indonesia Library
cover
Hutabarat, Surya Dharma
"Sintesis Li4Ti5O12 telah banyak diteliti karena merupakan material yang menjanjikan sebagai anoda baterai ion lithium dibandingkan dengan anoda konvensional seperti carbon. Preparasi sampel TiO2 dilakukan melalui proses solgel Rw 3,5. Lithium titanat disintesiss dengan metode solid-state dengan variabel perbedaan kadar LiOH untuk mengetahui pengaruhnya terhadap struktur kristal, sifat elektrokimia lithium titanat yang dihasilkan. Sampel yang disinteis terdiri dari 3 jenis yaitu penambahan massa LiOH secara stokiometri, massa LiOH berlebih 50% dari stokiometri dan 100% berlebih dari stokiometri. Sampel dikarakterisasi menggunakan EDS, BET, XRD, SEM, dan UV-VIS.
Hasil penelitian menunjukkan, lithium titanat yang dihasilkan dengan perbandingan kadar LiOH dengan TiO2 secara stokiometri memilki tingkat kecocokan tertinggi, ukuran partikel dan energi celah terkecil dan luas permukaan terbesar bila dibandingkan dengan sampel yang kadar LiOH dibuat berlebih. Pengaruh dari perbedaan kadar LiOH dapat membentuk pengotor TiO2 rutile dan Li2TiO3.

Synthesis of Li4Ti5O12 has been widely studied as a promising material as an anode of lithium ion batteries compared to conventional anodes like carbon. Preparation sample of TiO2 is done through a process sol-gel Rw 3.5. Lithium titanate synthesized by solid-state method with variable of LiOH ratio to determine the their effects on the crystal structure, electrochemical properties of lithium titanate produced. Samples were synthesized consisting of three types, which are the addition of LiOH in stoichiometric, mass excess LiOH 50% and 100% of the stoichiometric. The samples were characterized using EDS, BET, XRD, SEM, and UV-VIS.
The results showed, lithium titanate synthesized by stoichiometric ratio of LiOH and TiO2 have the highest match rate, lowest particle size and energy gap and largest surface area, compared to samples synthesized excessive levels of LiOH. The effect of mass variation of LiOH can make impurities like TiO2 rutile and Li2TiO3.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S56947
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kelvin Muhammad Farros
"Litium yang sekarang menjadi salah satu material paling dicari karena sifatnya yang dapat digunakan sebagai baterai menjadi salah satu faktor untuk dilakukan proses peningkatan kadar dari sumber batuan. Froth flotation merupakan suatu proses yang dilakukan untuk memisahkan mineral yang ingin diambil dengan pengotornya berdasarkan dengan sifat hidrofobik dan hidrofilik dari mineral. Keberhasilan proses froth flotation ditentukan oleh beberapa parameter seperti ukuran partikel, pH, waktu, dan penggunaan zat aditif seperti kolektor dan frother. Berdasarkan studi literatur didapatkan hasil yang maksimal pada ukuran partikel -0,074 mm, kondisi pH basa 8-10, waktu 5 menit, dan menggunakan asam oleat/sodium oleat NaOL)/tributyl tetradecyl phosphonium chloride TTPC. Penggunaan aktivator Fe3+ juga meningkatkan hasil persentase recovery. Parameter-parameter tersebut yang diketahui dapat meningkatkan persentase recovery dikarenakan dapat memaksimalkan kerja kolektor dalam memisahkan mineral.

Lithium is now one of the most sought after materials because of its nature which can be used as a battery to be one of the factors for the process of increasing lithium content from rock source. Froth flotation is a process that is carried out to separate the minerals with the impurities based on the hydrophobic and hydrophilic properties of the mineral. The success of froth flotation process is determined by several parameters such as particle size, pH, time, and the use of additives such as collectors and frother. Based on literature studies, maximum results were obtained at partcle size of -0.074 mm, alkaline pH conditions 8-10, 5 minutes, and using oleic acid/sodium oleic NaOL/tributyl tetradecyl phosphonium chloride TTPC. The use of activator Fe3+ also increases the percentage recovery results. These parameters are known to increase the percentage of recovery because they can maximize the work of collector in separating minerals."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rohib
"Perkembangan dunia elektronika dan kendaraan bermotor berbasis tenaga baterai beberapa tahun ini meningkat pesat dan diyakini akan terus berkembang dimasa-masa yang akan datang sehingga kebutuhan akan bahan baku baterai pun meningkat dari tahun ke tahun. Salah satu bahan baku baterai yang dinilai paling baik adalah logam Litium (Li). Litium dipilih diantaranya karena memiliki sifat elektropositifnya yang tinggi, ringan dan kemampuan penyimpanan energinnya yang tidak menurun ketika proses pengisian kembali belum penuh namun sudah diputus (anti memory effect).
Penelitian ini dilakukan untuk mengekstraksi Litium dari mineral Sugilite dengan menggunakan metode roasting dengan dicampurkan K2SO4 dan water leaching serta mengetahui pengaruh suhu roasting dan perbandingan cairan : padatan pada saat proses leaching . Untuk karakterisasi sampel menggunakan X- RD yang dilengkapi dengan software X-RD Match dan JCPDS, X-RF, EDS, STA dan AAS.
Penambahan K2SO4 pada mineral sugilite memberikan peningkatan peyerapan panas sebesar 14,110C dan ΔH energi sebesar 7,7595 J/g. Hasil ekstraksi optimum didapatkan nilai recovery sebesar 26,8 ppm yang dilakukan pada suhu roasting 900 0C dan perbandingan padat : cair = 2,5:1.

Development of the electronic world and motor vehicle based battery power increased rapidly in recent years and is believed will be continue to grow in the future, And because of that the needs of the raw materials for batteries has increased from year to year. One of the raw material is considered as the best battery is Lithium (Li). Lithium is chosen because it has high electropositive, light and energy storage capability is not back down when the charging process is not full yet been disconnected (anti memory effect).
This study was conducted to extract Lithium from mineral Sugilite using roasting method with K2SO4 and water leaching. Variables used to deterrmine this study are the effect of roasting temperature and ratio of liquid : solid in leaching process. For characterization of sample using X-RD is equipped with X-RD Match software and JCPDS, X-RF, EDS, STA and AAS.
The addition of K2SO4 on Sugilite cause the heat absorption increased to 14.110C and >H energy 7.7595 J /g. Results obtained optimum extraction got recovery value of lithium is 26.8 ppm. This result perfomed at a temperature of 9000C and ratio roasting solid : liquid = 2.5 : 1.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S53027
UI - Skripsi Membership  Universitas Indonesia Library
cover
Teguh Imam Burhanudin
"Mineral sintetis yang terbentuk dari campuran Al,03, LiOH dan SiO, dan dipanggang pada temperatur 1200°C, merupakan bahan yang digunakan pada penelitian ekstraksi lithium ini. Dengan tujuan mengetahui titik optimum waktu proses pelindian dengan menggunakan pelarut KOH di dalam muffle furnace. Selain itu, untuk mengetahui titik optimum laju alir gas CO, dalam proses pengendapan larutan LiOH_ hasil pelindian sampai menjadi endapan LizCO3. Hasil penelitian menunjukkan bahwa terjadi peningkatan produk lithium yang larut membentuk LiOH seiring dengan semakin lamanya waktu pelindian. Dimana waktu optimumnya adalah 90 menit dengan recovery lithium pada proses pelindian sebesar 11.76%. Selain itu, pada proses pengendapan larutan LiOH menjadi endapan LizCO3 mengalami kenaikan recovery lithium seiring dengan kenaikan laju alir gas CO 2. Dimana laju alir optimum adalah 1.5. liter/menit dengan recovery lithium pada proses pengendapan sebesar 63.01%. Sedangkan nilai recovery total proses ekstraksi lithium dari mineral sintetis sampai menjadi endapan LixCO3 adalah sebesar 6.86%.

Synthetic mineral which formed from the mixture of Al,O3, LiOH and SiO>2 and was roasted at 1200°C, is a material which was used in this lithium extraction research. It is to find optimum time point of the leaching process using KOH solvent in muffle furnace. In addition, to find optimum flow rate point of CO gas in the process of precipitating LiOH solution as the leaching result until it becomes LizCO3 precipitation. The research results show that there is an increase of Li product that dissolved which formed LiOH along with the increase of the length of leaching process. The optimum length is at 90 minutes with recovery lithium. in leaching process as much as 11.76%. In addition, within process of precipitation LiOH solution to be LixCO3 deposition there is an increase of recovery lithium along with the increase of CO» gas flow rate. The optimum flow rate is rate 1.5 litre per minute with recovery lithium at precipitation process value at 63.01%. Whereas the value of the total efficiency of the lithium extracting process from synthetic mineral until it becomes deposition is worth 6.86 %"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S47076
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>