Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 124102 dokumen yang sesuai dengan query
cover
Pane, Paulus Andryanto
"Pada penelitian ini telah diterapkan metode fotoelektrokatalisis menggunakan elektroda IWCGT (Inner Wall Conductive Glass Tube), yaitu film TiO2 yang dilekatkan pada bagian dalam dinding tabung gelas berpenghantar. Preparasi lapisan tipis TiO2 dilakukan dengan metode sol gel, di mana titanium tetraiso propoksida digunakan sebagai prekursor TiO2 dan dietanolamin sebagai agen pengkompleks, serta polietilen glikol (PEG) sebagai cetakan, agar didapatkan film berpori. Terhadap film TiO2 yang dilapiskan pada bagian dalam dinding tabung dilakukan karakterisasi dengan UV-DRS (Diffuse Reflectance Spectrophotometry) dan SEM (Scanning Electron Microscope). Hasil UV-DRS menunjukkan bahwa TiO2 hasil sintesis memiliki band gap sebesar 3.12 eV. Hasil SEM menunjukkan lapisan tipis TiO2 memiliki pori dengan ukuran rata-rata 300nm. Uji aktifitas fotoelektrokatalitik awal telah dilakukan dan didapatkan hasil bahwa terdapat perbedaan nilai arus cahaya dari tabung tanpa TiO2 dan tabung terlapisi TiO2. Arus cahaya yang lebih baik dihasilkan oleh tabung yang terlapisi TiO2 dan semakin meningkat dengan adanya jumlah pelapisan hingga 3 kali. Tabung berpenghantar yang telah dilapisi oleh TiO2 digunakan sebagai elektroda kerja, kawat Pt sebagai elektroda bantu, dan Ag/AgCl sebagai elektroda pembanding. Rangkaian sel fotoelektrokimia ini kemudian digunakan untuk mendegradasi zat warna Methylene Blue. Rangkaian ini diuji aktifitas foto elektro kata lisisnya dengan variasi potensial 200, 300, dan 400mV. Hasil terbaik diperoleh menggunakan potensial 400mV dengan persentase hasil degradasi sebesar 99,86% dan laju reaksi sebesar 5,8 x 10-2 ppm/menit selama 100 menit degradasi. Pada potensial optimum, dilakukan variasi konsentasi oksigen terlarut dan didapatkan hasil yang tidak begitu signifikan pada konsentrasi oksigen terlarut 0 ppm, 7,08 ppm, dan 20 ppm. Hasil terbaik diperoleh pada pengaruh konsentrasi oksigen terlarut 20 ppm dengan persen dye removal sebesar 99,93% dan tetapan laju reaksi 6,4 x 10-2 ppm/menit dalam waktu 80 menit.
In this research, a Photoelectrocatalytic method has been applied using electrodes IWCGT (Inner Wall Conductive Glass Tube), in which TiO2 is coated on the inside wall of the conductive glass tube. Preparation of TiO2 thin film was made by sol-gel method, in which Titanium tetraisopropoxide used as a precursor of TiO2 and diethanolamine as a complexing agent, and polyethylene glycol (PEG) as a template, in order to obtain a porous film. Against the TiO2 films coated on the inside wall of the tube characterization with UV-DRS (Diffuse Reflectance Spectrophotometry) and SEM (Scanning Electron Microscope). UV-DRS results showed that the synthesized TiO2 has a 3.12 Band Gap measured. SEM results showed a thin layer of TiO2 was formed pores with an average size of 300 nm. Photo electro catalytic activity test has been performed and showed that there are differences in activity photocurrent of the tube without TiO2 and TiO2 coated tubes. A better photocurrent activity generated by TiO2 coated tubes and increasing the presence of up to 3 times the amount of coating. Conductive glass tube that has been coated by TiO2 is used as the working electrode , Pt wire as an auxiliary or a counter electrode, and Ag/AgCl electrode as a reference electrode. This photoelectrochemical cell circuit is used to degrade the Methylene Blue dye. The circuit was tested with a variety of potential activities in 200, 300, and 400mV. The best results are obtained using 400mV potential with a percentage of 99.86 % of degradation and reaction rate of 5.8 x 10-2 ppm/min for 100 minutesdegradation. The variation of dissolved oxygen concentration had been given and the obtained results are not so significant in the dissolved oxygen concentration of 0 ppm, 7.08 ppm, and 20 ppm. The best results obtained on the effect of dissolved oxygen concentration of 20 ppm to 99.93% percent of degradation and reaction rate constant of 6,4 x 10-2 ppm/min in 80 minutes."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam, 2014
S57157
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adinda Rifany
"Pengujian kinerja sistem Quantum Dot Sensitized Solar Cell (QDSSC) termodifikasi dengan menggunakan elektroda counter TiO2 nanotubes untuk mendegradasi Methylene Blue pada zona katalisis telah berhasil dilakukan. Metode Successive Ionic Layer Adsorption and Reaction (SILAR) dengan bantuan ultrasonikasi digunakan untuk melekatkan CdS nanopartikel pada permukaan TiO2 nanotubes yang disintesis dengan metode anodisasi. Karakterisasi dilakukan menggunakan Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), dan Fourier Transform Infra Red (FTIR).
Hasil pengukuran photocurrent menggunakan potensiostat menunjukkan bahwa TiO2 nanotubes aktif pada daerah UV sedangkan TiO2 nanotubes/CdS nanopartikel aktif pada daerah visible. Pada uji performa sistem QDSSC termodifikasi dengan menggunakan elektroda counter TiO2 nanotubes untuk mendegradasi Methylene Blue, diperoleh hasil degradasi optimum sebesar 42,67% pada kondisi zona solar cell disinari lampu visible dan elektroda counter TiO2 nanotubes disinari lampu UV.

A performance testing of modified Quantum Dot Sensitized Solar Cell (QDSSC) employing TiO2 nanotubes as a counter electrode to degrade the Methylene Blue at the catalytic zone has been successfully carried out. Successive Ionic Layer Adsorption and Reaction (SILAR) method with ultrasonication used to attach the CdS nanoparticles on the surface of TiO2 nanotubes were grown on titanium plate by anodization method. Characterization was performed using Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), and Fourier Transform Infra Red (FTIR).
The Results of photocurrent measurements using the potentiostat indicates that TiO2 nanotubes were active in the UV region while TiO2 nanotubes/CdS nanoparticles were active in the visible region. In the modified QDSSC system with employing TiO2 nanotubes as a counter electrode performance test to degrade the Methylene Blue, the results indicate an optimum degradation of 42.67% on the condition solar cell?s zone illuminated by visible light while TiO2 nanotubes counter electrode illuminated by UV light.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S62393
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aritonang, Anthoni Batahan
"ABSTRAK
Disertasi ini membahas tentang metode yang praktis dan biaya murah untuk membuat fotokatalis Ag/N ko-doped TiO2 bersifat responsif terhadap cahaya sinar tampak dan diterapkan sebagai elektroda sistem fotoelektrokatalitik. Penelitian ini diawali sintesis film N-doped TiO2 pada permukaan kaca konduktif SnO2F dengan metode sol-gel menggunakan titanium tetraisopropoksida Ti OC4H9 4 sebagai prekursor TiO2. Berdasarkan hasil karakterisasi diketahui doping N pada struktur kisi TiO2 telah berhasil, namun demikian aktivitas fotokatalisisnya masih rendah. Tahapan penelitian berikutnya, film N-doped TiO2 disintesis di atas permukaan logam Ti dengan metode anodisasi menggunakan foil Ti dalam elektrolit etilen glikol yang mengandung amonium florida NH4F; 0,3 , air 0,3 dan trietilamina 0,02 . Potensial diatur tetap 40 V selama 60 detik, hingga didapatkan amorfous Ti OH 6 dan trietilamina tersolvasi di permukaannya. Perlakuan kalsinasi terhadap amorfous Ti OH 6 pada suhu 450oC kondisi atmosferik N2 selama 3 jam, menyebabkan beberapa atom O disubstitusi oleh atom N dalam struktur kisi TiO2 membentuk kristal N-doped TiO2 yang memiliki band gap 2,7 eV. Untuk meningkatkan aktivitas fotokatalisis di daerah sinar tampak, permukaan N-doped TiO2 didekorasi dengan partikel Ag secara deposisi elektrokimia, menggunakan larutan AgNO3-EDTA dengan potensial deposisi 1V dan variasi waktu 5-25 detik, hingga didapatkan fotokatalis Ag/N ko-doped TiO2. Hasil pengukuran XRD memperlihatkan Ag/N ko-doped TiO2 terdiri dari kristal anatase, dan diamati puncak difraksi pada daerah 2 Theta 44,8o yang merupakan karakteristik Ag 111 , membuktikan bahwa partikel Ago telah terdeposisi pada matrik N-doped TiO2. Foto FESEM memperlihatkan morfologi permukaan N-doped TiO2 berbentuk nanotube, yang memiliki tebal dinding tube rata-rata 15 nm, diameter mulut tube 70 nm dan tinggi 900 nm. Hasil pengukuran HRTEM memperlihatkan partikel Ago berukuran 15-40 nm dan mapping EDX membuktikan bahwa nanopartikel Ago terdistribusi merata di permukaan N-doped TiO2 dengan rasio atom 0,61 . Spektrum XPS N 1s pada daerah binding energi 400,6 eV membuktikan keberadaan atom N dalam matrik Ag/N ko-doped TiO2 sebagai indikasi pembentukan ikatan N-Ti-O yang didukung hasil pengukuran FTIR. Spektrum XPS Ag 3d memperlihatkan puncak serapan ganda yang terpisah pada binding energi 368,6 eV dan 374,6 eV, dengan energi pemisahan 6,0 eV, memperkuat bukti bahwa Ag terdeposisi sebagai partikel Ago. Partikel Ago terdeposisi meningkatkan kemampuan N-doped TiO2 menyerap sinar tampak l=550 nm sebagai kontribusi serapan surface plasmon resonance SPR . Tahapan penelitian selanjutnya, Ag/N ko-doped TiO2 digunakan sebagai elektroda kerja sistem fotoelektrokatalitik FEK dengan pemberian bias potensial. Berdasarkan uji kinerja elektroda pada degradasi larutan MB secara fotoelektrokatalisis FEK , terbukti bahwa elektroda Ag/N ko-doped TiO2 memiliki aktivitas fotokatalisis yang tinggi, mampu mendegradasi larutan MB pada konsentrasi 10 ppm selama 4 jam, memberikan rasio MB terdegradasi 92 , lebih tinggi dibandingkan dengan N-doped TiO2 dan TiO2 masing-masing mampu mendegradasi 56 dan 14 . Pemberian bias potensial 0,2 V pada permukaan elektroda Ag/N ko-doped TiO2, mampu meningkatkan aktivitas FEK degradasi MB, memberikan konstanta laju FEK k=9x10-3/menit , yang mana 4,5 kali lebih cepat dibandingkan dengan proses fotokatalisis FK tanpa pemberian bias potensial k=2x10-3/menit . Beberapa faktor yang mempengaruhi FEK degradasi MB telah dievaluasi, yakni pH optimum adalah 9,0 ; bias potensial optimum 0,2 V dan konsentrasi awal larutan MB optimum 10 ppm. Elektroda Ag/N ko-doped TiO2 yang dikembangkan memiliki kestabilan yang tinggi, setidaknya 5 kali pemakaian masih memperlihatkan aktivitas fotokatalitik yang baik sehingga sangat ekonomis untuk diterapkan dalam mendegradasi polutan organik.

ABSTRACT
The dissertation discusses practical and inexpensive methods for synthesis of Ag N co doped TiO2 photocatalysts responsive to visible light and used as photoelectrocatalytic electrodes system. Initial phase of this study was synthesized N doped TiO2 film on SnO2 F conductive glass surface with sol gel method using titanium tetraisopropoksida Ti OC4H9 4 as TiO2 precursor. Based on the characterization results known doping N on TiO2 lattice structure has been successful, however photocatalysis activity is still low. The next stage of the study, the N doped TiO2 film was synthesized on the surface of the Ti metal by anodizing method using a Ti foil in an ethylene glycol electrolyte containing ammonium fluoride NH4F 0.3 , water 0.3 and triethylamine 0.02 . The anodizing process is carried out at a potential of 40 V for 1 hour, forming an amorphous Ti OH 6 and triethylamine dissolved on its surface. Calcined treatment of amorphous Ti OH 6 at 450 C atmospheric conditions N2 for 3 hours, causing some O atoms substituted by N atom in lattice structure of TiO2 to form N doped TiO2 crystals having band gap of 2.7 eV. This method is very effective and efficient, where the N doping process takes place optimally and simultaneously with the formation of TiO2 crystal. To improve the photocatalysis activity in visible light region, the surface of N doped TiO2 was decorated with Ag particles by electrochemical deposition method, using AgNO3 EDTA solution with a potential deposition 1V and a time variation 5 25 second, to obtain Ag N co doped TiO2 photocatalyst. The XRD measurements showed that Ag N co doped TiO2 consisted of anatase crystals, and observed the diffraction peak at 2 Theta 44.8o region which is characteristic of Ag 111 , proving that the Ago particle has been deposited on an N doped TiO2 matrix. FESEM images show the surface morphology of N doped TiO2 in the form of nanotubes, which have an average thickness of 15 nm tube wall, 70 nm diameter mouth tube and 900 nm height. The HRTEM measurements show that Ago particles of 15 40 nm and EDX mapping demonstrate that Ago nanoparticles are evenly distributed on the surface of N doped TiO2 with an atomic ratio of 0.61 . The XPS N 1s spectrum in the energy binding region of 400.6 eV proves the presence of N atoms in the Ag N co doped TiO2 matrix as an indication of N Ti O bond formation supported by FTIR measurements. The XPS Ag 3d spectrum shows a separate double absorption peak on energy bindings of 368.6 eV and 374.6 eV, with a 6.0 eV separation energy, reinforcing evidence that Ag is deposited as an Ago particle. The Ago particle enhances the ability of N doped TiO2 to absorb the visible light l 550 nm as a contribution of surface plasmon resonance SPR absorption. The next step of this research, the Ag N co doped TiO2 is used as the electrode of photoelectrocatalytic PEC system and potential bias was applied. Based on the electrode activity test on the degradation of MB solution by photoelectrocatalysis PEC , it is proved that the Ag N co doped TiO2 electrode has high photocatalytic activity, capable of degrading the MB solution at 10 ppm concentration for 4 hours, giving a degradable MB ratio of 92 higher compared with N doped TiO2 and TiO2 respectively were able to degrade 56 and 14 . The potential bias was applied 0.2 V on the surface of the Ag N co doped TiO2 electrode, capable of increasing the PEC activity of MB degradation, gives PEC rate constants k 9x10 3. min 1 , which is 4.5 times faster than by photocatalysis PK without potential bias k 2x10 3.min 1 . Several factors affecting the PEC degradation of MB have been evaluated, ie optimum pH is 9.0 optimum potential bias of 0.2 V and initial concentration of optimum MB solution is 10 ppm. The Ag N co doped TiO2 electrode developed has a high stability of photocatalytic activity, at least 5 times the use still showing good photocatalytic activity so it is very economical to apply in degrading organic pollutants. "
2018
D2387
UI - Disertasi Membership  Universitas Indonesia Library
cover
Saskia Andiane Hidayat
"Nanokomposit BiFeO3/LaFeO3 dan BiFeO3/LaFeO3/Graphene dengan variasi persen berat (wt.%) graphene sebanyak 3, 5, dan 10 wt.% telah berhasil difabrikasi menggunakan metode berbantuan ultrasonik. Tidak adanya pengotor dan fasa lain pada nanokomposit ditunjukkan dari hasil karakterisasi X-ray Diffraction (XRD) dan X-ray Fluorescence (XRF). Keberadaan material graphene dan interaksinya dengan nanokomposit BiFeO3/LaFeO3 yang tidak terdeteksi oleh pengukuran XRD dan XRF dapat dilihat dengan jelas melalui pengukuran X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric Analysis (TGA), dan Raman Spectroscopy. Pengukuran UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis DRS) menunjukkan bahwa energi celah pita berkurang karena adanya material graphene. Kehadiran grafena sangat terlihat pengaruhnya pada hasil pengukuran isoterm adsorpsi-desorpsi N2 yang ditandai dengan peningkatan luas permukaan yang drastis dan perubahan bentuk pori-pori permukaan. Nanokomposit BiFeO3/LaFeO3/Graphene menunjukkan aktivitas fotokatalitik yang lebih unggul dibandingkan dengan BiFeO3, LaFeO3, dan BiFeO3/LaFeO3 pada paparan cahaya tampak. Uji reusability menunjukkan stabilitas nanokomposit pada penggunaan berulang sebanyak 4 kali.

BiFeO3/LaFeO3 and BiFeO3/LaFeO3/Graphene nanocomposites with variations in weight percent (wt.%) graphene as much as 3, 5, and 10 wt.% have been successfully fabricated using ultrasonic-assisted methods. The absence of impurities and other phases in the nanocomposite was shown from the results of X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) characterization. The presence of graphene material and its interactions with BiFeO3/LaFeO3 nanocomposites that were not detected by XRD and XRF measurements could be clearly seen through X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric Analysis (TGA), and Raman Spectroscopy measurements. Measurement of UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis DRS) showed that the band gap energy was reduced due to the presence of graphene material. The presence of graphene has a very visible effect on the measurement results of the N2 adsorption-desorption isotherm which is characterized by a drastic increase in surface area and a change in the shape of the surface pores. BiFeO3/LaFeO3/Graphene nanocomposite showed superior photocatalytic activity compared to BiFeO3, LaFeO3, and BiFeO3/LaFeO3 on exposure to visible light. The reusability test showed the stability of the nanocomposite on repeated use 4 times."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siti Nurjanna
"Telah dilakukan degradasi Congo Red dalam air melalui proses fotokatalisis menggunakan TiO2 yang diimobilisasi dengan metoda sol-gel pada dinding bagian dalam kolom tabung gelas. Katalis TiO2 dibuat dari prekursor Titanium tetra isopropoksida (TTIP) dengan metoda sol-gel yang dikalsinasi pada suhu 400 oC. Karakterisasi TiO2 dengan XRD menunjukkan bahwa kristal TiO2 mempunyai struktur anatase, dengan ukuran partikel TiO2 sekitar 8,99 nm. Tabung gelas yang telah dilapisi TiO2 bagian dinding dalamnya dirangkai dalam sistem reaktor fotokatalisis. Rangkaian instrumen ini terdiri dari satu unit reaktor sistem batch yang terdiri dari lampu UV 22 watt (black light). Sistem reaktor dilengkapi dengan aerator yang bertujuan meningkatkan transfer massa dan ketersediaan oksigen larutan sampel dalam tabung gelas sehingga diharapkan dapat meningkatkan proses fotodegradasi. Absorbsi foton oleh TiO2 akan menghasilkan pasangan elektron dan hole positif pada permukaan yang kontak dengan larutan, dan memicu reaksi degradasi zat organik yang terdapat dalam larutan.
Dalam penelitian ini dipelajari pengaruh jumlah lapisan TiO2, konsentrasi awal Congo Red, nilai pH dan nilai daya hantar listrik serta keberadaan senyawa intermediet dengan HPLC. Pengamatan yang dilakukan adalah perubahan spektrum serapan dari puncak serapan spesifik pada spektra serapan larutan Congo Red sebelum dan sesudah iradiasi menggunakan spektrofotometer UV-Vis. Terjadinya degradasi Congo Red ditunjukkan dengan adanya penurunan konsentrasi larutan, penurunan nilai pH, kenaikan nilai daya hantar listrik dan terbentuknya asam oksalat sebagai senyawa intermediet. Sebagai kontrol percobaan, dilakukan iradiasi sinar UV tanpa TiO2 dan menggunakan TiO2 tanpa sinar UV.
Hasil dari kedua kontrol percobaan ini tidak menunjukkan berkurangnya konsentrasi Congo Red secara signifikan. Dari hasil uji optimasi reaktor diperoleh jumlah lapisan optimum sebanyak delapan lapis TiO2. Laju degradasi Congo Red meningkat dengan semakin tingginya konsentrasi awal sampai batas konsentrasi optimum pada 50 ppm dengan persentase degradasi mencapai 99,0%. Dari hasil perhitungan kinetika Langmuir-Hinshelwood diperoleh tetapan laju reaksi, kr sebesar 1,311ppm/menit dan tetapan adsorpsi, K sebesar 0,043/ppm. Efisiensi reaktor sebagai nilai quantum yield adalah 77%. Produk senyawa intermediet yang terbentuk hasil degradasi Congo Red berupa asam oksalat yang ditandai adanya penurunan kadar asam oksalat selama iradiasi 11,5 jam.

Photocatalytic degradation of Congo Red in water was conducted in a reactor which consist of immobilized TiO2 film coated on to inner wall of glass column tube (IWGCT-TiO2). The TiO2 film was prepared, from titanium tetra isopropoxide (TTIP) as a precursor, by a sol-gel method and calcination at 400 oC. The resulted TiO2 was characterized by mean of UV-Vis spectrometry, XRD and SEM. It was observed that the film has a specific UV-Vis absorption started at 390 nm (that can be attributed to band gap of anatase), unique diffraction intensity at 2θ 25o (attributed to anatase), approximately 8.99 nm crystalite size (predicted from a Scherrer equation), and showsed a good coverage on the glass substrate. The IWGCT-TiO2 then was arranged in a batch reactor system where a 22 watt black UV light was used as the light source and equipped with an aerator to enhance mass transfer and oxygen availability. Upon UV-Vis light illumination, TiO2 surface will generate electron and positive hole that subsequently initiate degradation reaction of organic chemical in adjascent solution.
Series investigation on photo catalytic degradation of Congo Red solution during this research revealed that thickness of TiO2 film resulted from eight times coating give an optimum performance. Optimum photo catalytic degradation rate of Congo Red solution was observed at 50 ppm (initial concentration), where almost 99.0% of Congo Red disappeared during 240 minutes treatment. Langmuir-Hinshelwood kinetic evaluation reveal that typical reaction rate constant, kr is 1,311 ppm/minute and adsorption constant, kr is 0,043/ppm were obtained. As for the present experimental setting, the reactor efficiency evaluation give a quantum yield value, of approximately 77%, for a 11.5 hours reaction time.
It was observed during 11.5 hours photo catalytic degradation of Congo Red there were an occurrence of intermediate simple organic compounds (e.g. oxalic acid and others) before a complete mineralization occurred. Control experiments (the present of UV light but without TiO2 and the present of TiO2 but without light) were conducted for each of all experimental setting and indicated no significant degradation of Congo Red.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
T40084
UI - Tesis Open  Universitas Indonesia Library
cover
Tiur Elysabeth
"Hidrogen merupakan bahan bakar alternatif yang bersih dan ramah lingkungan. Beberapa penelitian telah mengembangkan produksi hidrogen dari dekomposisi amoniak. Hal ini cukup menjanjikan, karena metode ini tidak menghasilkan CO2 dan mampu mengatasi permasalahan limbah. Amoniak merupakan sumber potensial untuk peningkatan permintaan hidrogen. Fotoelektrokatalisis merupakan teknologi alternatif untuk menghasilkan hidrogen dari dekomposisi amoniak dengan energi rendah dan ramah lingkungan. Namun, bagian terpenting pada metode ini yaitu fotoanoda yang berbasis titania nanotube perlu dimodifikasi untuk mendapatkan fotoanoda yang lebih efesien dan efektif dalam mendegradasi amoniak dan produksi hidrogen secara simultan. Tujuan utama dari penelitian ini adalah mendapatkan fotoanoda berbasis titania nanotube yang memiliki performa yang tinggi dalam mendegradasi amoniak dan memproduksi hidrogen secara fotoelektrokatalisis. Modifikasi dilakukan dengan menambahkan dopan nitrogen secara insitu saat anodisasi dan sensitasi CuO yang menggunakan dua metode yaitu insitu saat anodisasi dan successive ionic layer adsorption reaction (SILAR), kemudian menentukan loading nitrogen dan CuO yang optimal dan mengkombinasi keduanya pada titania nanotube untuk membuktikan efek sinergis dari keduanya. Selain itu, penelitian ini juga bertujuan mengajukan mekanisme yang terjadi pada proses degradasi amoniak dan produksi hidrogen secara simultan dengan metode fotoelektrokatalisis.
Pada penelitian ini dilakukan karakterisasi morfologi, spektrum serapan cahaya, kristalografi titania nanotube, bilangan oksidasi elemen penyusun fotoanoda, gugus fungsi yang terbentuk masing-masing menggunakan FESEM-EDX dan TEM, UV-Vis DRS, XRD, XPS, dan FTIR. Besar energi bandgap dan ukuran kristal dihitung menggunakan fungsi Kubelka Munk dan persamaan Scheerrer. Respon fotoelektrokimia diamati menggunakan Potensiostat dan diagnostic perubahan respon material yang dimodifikasi disajikan dalam bentuk Applied Bias Photon to current Eficiency (ABPE). Reaktor fotoelektrokatalisis (PEC) yang digunakan untuk proses degradasi amoniak dan produksi hidrogen secara simultan terdiri dari sel fotoelektrokimia yang dimodifikasi. Sel fotoelektrokimia dilengkapi dengan sumber sinar foton lampu Mercury 250W, dan jaringan yang menghubungkan reaktor dengan GC TCD untuk mengukur gas hidrogen yang terbentuk. Konsentrasi amoniak diukur menggunakan spektrofotometer dengan metode Nessler. Senyawa intermediet yang terbentuk diukur menggunakan spektrofotometer dengan metode SNI 6989-74-2009.
Hasil penelitian membuktikan bahwa titania nanotube yang dimodifikasi dengan dopan N diperoleh penyisihan amoniak dan produksi hidrogen maksimum sebesar 74.4% dan 561 mmol/m2 oleh 3N-TiNTAs. Pada perbandingan metode deposisi CuO diperoleh penyisihan amoniak maksimum sebesar 50,1% dan produksi hidrogen sebesar 392.85 mmol/m2 menggunakan CuO-TiNTAs SILAR. Produksi hidrogen tertinggi pada variasi loading CuO dicapai oleh 7CuO-TiNTAs sebesar 910.14 mmol/m2. Namun, uji kinerja pada modifikasi TiNTAs dengan kombinasi dopan N dan sensitiser CuO hanya dapat menyisihkan amoniak dan produksi hidrogen yang dihasilkan hanya sebesar 28.03% dan 66.61 mmol/m2.

Hydrogen is a clean and environmentally friendly alternative fuel. Several studies have developed hydrogen production from ammonia decomposition. It is promising because this method does not produce CO2 and can overcome waste problems. Ammonia is a potential source for increasing hydrogen demand. Photoelectrocatalytic is an alternative technology to produce hydrogen from ammonia decomposition with low energy and is environmentally friendly. However, the most important part of this method is the photoanode based on titania nanotubes needs to be modified to get the more efficient and effective photoanode in simultaneously degrading ammonia and producing hydrogen. The main objective of this research is to obtain a photoanode based on titania nanotubes, which have high performance in photoelectrocatalytic ammonia degradation and hydrogen production. Modifications were conducted by adding nitrogen dopants by in situ during anodization and CuO sensitization using two methods, namely in situ anodization and successive ionic layer adsorption reaction (SILAR), then determining the optimal loading of nitrogen and CuO and combining both on titania nanotubes to prove the synergistic effect of both of them. Additionally, this study also proposes a mechanism that occurs in the simultaneously degradation of ammonia and hydrogen production by the photoelectrocatalytic method.
In this study, the characterization of morphology, light absorption spectrum, crystallography of titania nanotubes, the oxidation number of photoanode constituent elements, functional groups formed using FESEM-EDX and TEM, UV-Vis DRS, XRD, XPS, and FTIR, respectively, were conducted. Bandgap energy and crystal size were calculated using the Kubelka–Munk function and Scherrer equation. The photoelectrochemical response was observed using a potentiostate and diagnostic changes in the response of the modified material were presented in the form of Applied Bias Photon to Current Efficiency (ABPE). The photoelectrocatalytic reactor (PEC) used for the simultaneously degradation of ammonia and hydrogen production consists of a modified photoelectrochemical cell. The photoelectrochemical cell is equipped with 250 W Mercury lamp as a photon beam source and a network connecting the reactor with GC TCD to measure the hydrogen gas formed. Ammonia concentration was measured using a spectrophotometer with the Nessler method. The intermediate compounds formed were measured using a spectrophotometer using the SNI 6989-74-2009 method.
The results showed that titania nanotubes modified with N-dopants obtained maximum ammonia removal and hydrogen production of 74.4% and 561 mmol/m2 by 3N-TiNTAs. In the comparison of the CuO deposition method, the maximum ammonia removal was 50.1% and hydrogen production was 392.85 mmol/m2 using CuO-TiNTAs SILAR. The highest hydrogen production in the CuO loading variation was achieved by 7CuO-TiNTAs of 910.14 mmol/m2. However, the performance test on modified TiNTAs with a combination of N dopants and CuO sensitizer could only remove ammonia and the resulting hydrogen production was only 28.03% and 66.61 mmol/m2, respectively.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Indrianita Lionadi
"Nanokomposit Perak, Titanium dioksida, dan Mangan (II,III) oksida (Ag/TiO2/Mn3O4) dengan berbagai rasio molar telah disintesis menggunakan metode hidrotermal. Pengukuran difraksi sinar-X (XRD) mengkonfirmasi struktur nanokomposit Ag/TiO2/Mn3O4 yang terdiri dari struktur kubik Ag, TiO2 anatase, dan Mn3O4 tetragonal. Rasio komposisi unsur nanokomposit Ag/TiO2/Mn3O4 diselidiki dengan fluoresensi sinar-X (XRF). Efek sinergis Ag, TiO2 dan Mn3O4 dapat meningkatkan efisiensi nanokomposit sebagai fotokatalis. Peningkatan efisiensi ditunjukkan dengan melebarnya rentang absorbansi pada hasil pengukuran UV-Vis Diffuse Reflectance. Pengukuran adsorpsi-desorpsi nitrogen menunjukkan bahwa penambahan geraham TiO2 mengakibatkan penurunan luas permukaan spesifik nanokomposit Ag/TiO2/Mn3O4, sedangkan hasil sebaliknya diberikan dengan penambahan geraham Mn3O4. Pada uji fotokatalitik, hasil terbaik ditunjukkan oleh nanokomposit Ag/TiO2/Mn3O4 dengan dominasi Mn3O4 untuk radiasi UV dan cahaya tampak. Pada kondisi optimum, nanokomposit Ag/TiO2/Mn3O4 mampu mendegradasi metilen biru hingga 91% dengan penyinaran selama 2 jam. Uji scavenger mengidentifikasi lubang sebagai spesies yang berkontribusi paling besar pada proses fotokatalitik ini. Uji reusabilitas dan stabilitas pada nanokomposit Ag/TiO2/Mn3O4 menunjukkan hasil positif.

Silver, Titanium dioxide, and Manganese (II,III) oxide (Ag/TiO2/Mn3O4) nanocomposites with various molar ratios have been synthesized using the hydrothermal method. X-ray diffraction (XRD) measurements confirmed the structure of the Ag/TiO2/Mn3O4 nanocomposite consisting of a cubic structure of Ag, TiO2 anatase, and tetragonal Mn3O4. The elemental composition ratio of Ag/TiO2/Mn3O4 nanocomposite was investigated by X-ray fluorescence (XRF). The synergistic effect of Ag, TiO2 and Mn3O4 can increase the efficiency of nanocomposites as photocatalysts. The increase in efficiency is indicated by the widening of the absorbance range on the measurement results of UV-Vis Diffuse Reflectance. The nitrogen adsorption-desorption measurements showed that the addition of TiO2 molars resulted in a decrease in the specific surface area of ​​the Ag/TiO2/Mn3O4 nanocomposite, while the opposite result was given by the addition of Mn3O4 molars. In the photocatalytic test, the best results were shown by the Ag/TiO2/Mn3O4 nanocomposite with the dominance of Mn3O4 for UV radiation and visible light. Under optimum conditions, Ag/TiO2/Mn3O4 nanocomposite was able to degrade methylene blue up to 91% with irradiation for 2 hours. The scavenger test identified pits as the species that contributed most to this photocatalytic process. Reusability and stability tests on Ag/TiO2/Mn3O4 nanocomposites showed positive results."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Heidar
"Degradasi metilen biru di dalam air dapat dilakukan dengan proses fotokatalitik menggunakan material semikonduktor seperti CuBi2O4 dan rGO. Pengaplikasian kekosongan oksigen pada material semikonduktor mampu meningkatkan aktivitas fotokatalitik material tersebut. Penelitian ini bertujuan untuk mensintesis nanokomposit CuBi2O4-V0/rGO untuk fotodegradasi metilen biru. Tahap pertama katalis CuBi2O4 berhasil disintesis dengan metode hidrotermal dan katalis CuBi2O4-V0 dengan kekosongan oksigen berhasil disintesis dengan metode reduksi kimia yang dibuktikan dengan puncak XRD dan spektroskopi Raman. Energi celah pita CuBi2O4 dan CuBi2O4-V0 masing masing diperoleh sebesar 1,54 eV dan 1,46 eV yang dibuktikan dengan karakterisasi UV-Vis DRS. Keberadaan kekosongan oksigen pada material CuBi2O4 mempengaruhi sifat elektronik material tersebut yang dapat dibuktikan dengan energi celah pitanya yang lebih sempit dibanding material CuBi2O4 tanpa kekosongan oksigen. Kemudian nanokomposit CuBi2O4-V0/rGO berhasil disintesis yang dapat dibuktikan dengan karakterisasi Raman yang menunjukkan kombinasi dari puncak khusus CuBi2O4-V0 dan puncak rGO. Energi celah pita nanokomposit CuBi2O4-V0/rGO diperoleh sebesar 1,60 eV dapat digunakan untuk fotodegradasi zat warna metilen biru pada daerah sinar tampak dan adanya rGO pada nanokomposit diharapkan mampu menahan laju rekombinasi elektron/hole dan memaksimalkan proses adsorpsi pada katalis. Aktivitas fotokatalitik nanokomposit CuBi2O4-V0/rGO menunjukkan hasil yang tertinggi dengan degradasi mencapai 82,58%. Mengikuti kinetika pseudo orde 1 nilai konstanta laju reaksi untuk nanokomposit CuBi2O4-V0/rGO yaitu 2,9 x 10-2 menit-1.

The degradation of methylene blue in water can be carried out by a photocatalytic process using semiconductor materials such as CuBi2O4 and rGO. The application of oxygen vacancies to semiconductor materials can increase the photocatalytic activity of these materials. This study aims to synthesize CuBi2O4-V0/rGO nanocomposite for photodegradation of methylene blue. The first stage, CuBi2O4 catalyst was successfully synthesized by hydrothermal method and CuBi2O4-V0 catalyst with oxygen vacancy was synthesized by chemical reduction method by XRD and Raman spectroscopy. The band gap energies of CuBi2O4 and CuBi2O4-V0 are 1.54 eV and 1.46 eV respectively by the UV-Vis DRS characterization. The presence of oxygen vacancies in CuBi2O4 materials affects the electronic properties of these materials which can be proven by narrower band gap energy than CuBi2O4 materials without oxygen vacancies. Furthermore, the CuBi2O4-V0/rGO nanocomposite was successfully synthesized by Raman characterization shows the combination of a special CuBi2O4-V0 and an rGO peak. The band gap energy of CuBi2O4-V0/rGO nanocomposite obtained 1.60 eV for photodegradation of methylene blue dye in the visible light region and the presence of rGO in the nanocomposite is expected to be able to withstand the electron/hole recombination rate and maximize the adsorption process on the catalyst. Photocatalytic activity of CuBi2O4-V0/rGO nanocomposite showed the highest yield with degradation is 82.58%. Kinetics of reaction obey pseudo first-order with reaction rate constant for CuBi2O4-V0/rGO nanocomposites is 2.9 x 10-2 min-1."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hendry
"ABSTRAK
Penelitian ini membahas pengaruh penambahan material nanographene platelets NGP dan nanoparticles Ag pada komposit Fe3O4/CuO/ZnO dengan menggunakan metode sol-gel dilanjutkan dengan metode co-precipitation. Komposit yang terbentuk kemudian dikarakterisasi dengan menggunakan X-ray diffraction XRD , Energy-Dispersive X-ray EDX , Thermal Gravimetric Analysis TGA , Fourier Transform Infrared FT-IR , UV-Visible Diffuse Reflectance UV-Vis , UV-Vis Absorbance spectroscopy, Scanning Electron Microscopy SEM dan Transmission Electron Microscopy TEM . Pengujian karakterisasi menunjukkan bahwa material yang disentasis merupakan gabungan dari nanoparticles Ag, Fe3O4, CuO, ZnO, dan NGP, sesuai dengan yang diinginkan. Pengujian aktivitas catalytic photo-, sono-, dan sonophotocatalytic dilakukan dengan menggunakan methylene blue MB sebagai model polutan pada keadaan cair. Penambahan Ag dan NGP menunjukkan peningkatan aktivitas catalytic dibandingkan dengan pure komposit Fe3O4/CuO/ZnO. Pengujian scavengers didapatkan bahwa hole dan hydroxyl radicals merupakan spesies dominan dalam aktivitas catalytic. Terakhir, sampel yang dibuat menunjukkan kestabilitasan dalam degradasi limbah selama 4 kali percobaan berulang reusability , hal tersebut menunjukkan potensi dari material Ag/Fe3O4/CuO/ZnO/NGP komposit sebagai degradasi limbah.

ABSTRACT
This research discusses the effect of adding nanographene platelets NGP and Ag nanoparticles onto Fe3O4 CuO ZnO composites by using sol gel method followed by simple co precipitation method. The as prepared composites were characterized using X ray diffraction XRD , Energy Dispersive X ray EDX , Thermal Gravimetric Analysis TGA , Fourier Transform Infrared FT IR , UV Visible Diffuse Reflectance UV Vis , UV Vis Absorbance spectroscopy, Scanning Electron Microscopy SEM dan Transmission Electron Microscopy TEM . Characterization tests show that the as prepared samples are combination of desired Ag, Fe3O4, CuO, ZnO, and NGP nanoparticles. The catalytic activity photo , sono , and sonophotocatalytic was performed using methylene blue MB as the pollutant model in aqueous solution. The addition of Ag nanoparticles and NGP showed an increase in catalytic activity compared to pristine Fe3O4 CuO ZnO composites. The scavengers test showed that hole and hydroxyl radicals are the dominant species in catalytic activity. Finally, the Ag Fe3O4 CuO ZnO NGP composite exhibits good catalytic stability in four times cycling processes."
2017
S67128
UI - Skripsi Membership  Universitas Indonesia Library
cover
Erin Caroline
"Metilen biru merupakan pewarna organik berbahaya dari limbah industri tekstil yang menyebabkan permasalahan lingkungan yang serius. Degradasi metilen biru dapat dilakukan melalui proses fotokatalisis dengan semikonduktor berbasis oksida logam seperti NiO dan CuBi2O4. Pada penelitian ini, NiO disintesis melalui metode sol-gel, sedangkan CuBi2O4 disintesis melalui metode solvotermal. Nanokomposit NiO/CuBi2O4 telah berhasil dikembangkan dengan memodifikasi NiO dan CuBi2O4 melalui metode grinding-annealing, yang dikonfirmasi oleh hasil karakterisasi XRD, FTIR, TEM, dan UV-Vis DRS. Penurunan nilai energi celah pita NiO dari 3,39 eV akibat keberadaan CuBi2O4 dapat diamati. Energi celah pita NiO pada NiO/CuBi2O4 1:1, 1:2, dan 2:1 yang diperoleh dari hasil karakterisasi UV-Vis DRS adalah 2,95 eV, 2,89 eV, dan 3,15 eV. Selain itu, aktivitas fotokatalitik NiO, CuBi2O4, dan NiO/CuBi2O4 sebagai katalis juga dievaluasi melalui degradasi metilen biru di bawah radiasi sinar tampak selama 3 jam. Hasil menunjukkan bahwa modifikasi NiO dengan CuBi2O4 dapat meningkatkan aktivitas fotokatalitik. Persentase fotodegradasi metilen biru dengan 10 mg katalis NiO/CuBi2O4 2:1 adalah 74,12% dengan konstanta laju sebesar 6,07×10–3 menit–1, yang lebih tinggi dibandingkan NiO dan CuBi2O4 tanpa modifikasi

Methylene blue is a hazardous organic dye from textile industrial effluents which causes serious environmental problems. Degradation of methylene blue could be carried out through photocatalysis process using metal oxide-based semiconductors such as NiO and CuBi2O4. In this study, NiO was synthesized by sol-gel method, while CuBi2O4 was synthesized by solvothermal method. NiO/CuBi2O4 nanocomposite was successfully developed by modifying NiO and CuBi2O4 through grinding-annealing method, which was confirmed by the results of XRD, FTIR, TEM, and UV-Vis DRS characterization. The decrease in bandgap energy value of NiO from 3.39 eV due to the presence of CuBi2O4 could be observed. The bandgap energies of NiO in NiO/CuBi2O4 1:1, 1:2, and 2:1 obtained from the results of UV-Vis DRS characterization were 2.95 eV, 2.89 eV, and 3.15 eV. Furthermore, the photocatalytic activity of NiO, CuBi2O4, and NiO/CuBi2O4 as catalysts were also evaluated by methylene blue degradation under visible light irradiation for 3 hours. The results showed that modification NiO with CuBi2O4 could enhance the photocatalytic activity. The percentage of methylene blue photodegradation using 10 mg NiO/CuBi2O4 2:1 catalyst was 74.12% with a rate constant of 6.07×10–3 min–1, which was higher than NiO and CuBi2O4 without modification."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>