Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 150928 dokumen yang sesuai dengan query
cover
Priscilla Deni
"Bioplastik berbahan dasar pati dan serat alam yang dihasilkan dari penelitian-penelitian terdahulu masih berlum mampu menyamai kualitas plastik konvensional terutama dalam hal kekuatan mekanis, ketahanan terhadap air serta stabilitas termalnya. Penelitian ini bertujuan untuk meningkatkan kualitas bioplastik melalui teknik praperlakuan serat, modifikasi nanofiller dan penggunaan filler hibrid. Bahan baku utama yang digunakan dalam penelitian ini yaitu pati jagung sebagai matriks, serat batang pisang dan selulosa bakteri sebagai filler dan gliserol sebagai plasticizer. Serat batang pisang diberi praperlakuan meliputi metode alkalinasi, bleaching dan enzimatis. Kemudian serat batang pisang yang telah diberi praperlakuan optimum dan selulosa bakteri akan dipreparasi melalui teknik hidrolisis menjadi nanoselulosa. Nanoselulosa serat dan bakteri inilah yang akan digunakan sebagai filler hibrid dalam bioplastik. Bioplastik yang dihasilkan akan dikarakterisasi sifat mekanisnya, laju transmisi uap air, stabilitas termal, dan biodegradabilitasnya. Struktur dari bioplastik dikonfirmasi dengan analisis FESEM, FTIR dan XRD. Praperlakuan serat dan penggunaan nanofiller terbukti mampu meningkatkan karakteristik mekanis dari bioplastik yang dihasilkan dengan persentase nanofiller optimum adalah 15% dari massa pati. Komposisi filler hibrid dengan nilai kuat tarik tertinggi dimiliki oleh bioplastik dengan rasio nanoselulosa bakteri terhadap nanoselulosa serat 50:50 sebesar 1,73 MPa dan untuk modulus Young tertinggi dimiliki bioplastik dengan rasio nanoselulosa bakteri terhadap nanoselulosa serat 25:75 sebesar 60,19 MPa. Penggunaan filler hibrid tidak menghasilkan peningkatan karakteristik mekanis bioplastik tetapi meningkatkan ketahanan terhadap air dan stabilitas termal bioplastik. Ketahanan terhadap air terbaik dimiliki oleh bioplastik dengan filler sebanyak 15% dengan rasio nanoselulosa serat terhadap nanoselulosa bakteri 25:75 yakni laju transmisi uap air sebesar 632 g/m2 per 24 jam. Stabilitas termal terbaik dimiliki oleh bioplastik dengan filler sebanyak 15% dengan rasio nanoselulosa bakteri terhadap nanoselulosa serat 25:75 yakni temperatur trasisi gelas 39,75 °C dan kapasitas panas 0,242 J/g°C. Berdasarikan soil burial test selama 9 hari, diperoleh bahwa bioplastik degan tingkat biodegradasi tertinggi dimiliki oleh pati jagung tanpa filler sebesar 25,76% dan biodegradasi terendah oleh bioplastik dengan filler 15% nanoselulosa bakteri sebesar 18,88%. Soil burial test dilakukan pada kelembaban 66% dan temperatur 26-28 °C.

Bioplastic based on starch and natural fibre resulted from previous reserachs have not had the same quality as conventional plastic especially in mechanical strength, water absorption resistance, and thermal stability. The objective of this reasearch is to improve the wuality of bioplastic resulted from previous researchs through fibre pretreatment techniques, nanofiller modification, and hybrid filler utilization. The main raw materials that are used in this research are corn starch as matrix, banana pseudostem fibre and bacterial cellulose as filler, and glycerol as plasticizer. Banana pseudostem fibre is treated by alkalinization, bleaching and enzymatic method. Then optimum treated banana pseudostem and bacterial cellulose will be prepared through hydrolysis technique into nanocellulose. These fibre and bacterial nanocellulose will be used as hybrid filler in bioplastic. Bioplastic’s mechanical characteristic, water vapour transmission rate, thermal stability and biodegradability will be characterized. Bioplastic’s structure will be confirmed by FESEM, FTIR, and XRD analysis. Utilization of nanofiller dan fibre pretreatment can improve mechanical characteristic of bioplastic. Nanofiller percentage that resulted in the best mechanical characteristic is 15% from starch mass content. Hybridfiller composition that results in highest tensile strength is obtained by bioplastic with bacterial nanocellulose to fibre nanocellulose ratio 50:50 with value 1,73 MPa and the highest modulus Young is obtained by bioplastic with bacterial nanocellulose to fibre nanocellulose ratio 25:75 with value 60,19 MPa. The best water absorption resistance is obtained by bioplastic with fibre nanocellulose to bacterial nanocellulose ratio 25:75 with water vapour transmission rate value 632 g/m2 per 24 hours. The highest thermal stability is obtained by bioplastic with bacterial nanocellulose to fibre nanocellulose ratio 25:75 with glass transition temperature value 39,758°C and heat capacity 0,242 J/g0C. Based on soil burial test for 9 days, the highest biodegradation rate is obtained by corn starch without filler 25,76% and the lowest by bioplastic with 15% bacterial nanocellulose 18,88%. Soil burial test is done in 66% humidity and temperature 26-28°C.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54853
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rena Carissa
"Plastik food grade yang biodegradable namun tetap kuat dan tahan air seperti plastik sintetis merupakan topik riset yang banyak digemari dewasa ini. Pada penelitian ini, dalam rangka meningkatkan kekuatan mekanik dan ketahanan air bioplastik filler alami, selulosa bakteri ditambahkan untuk menghasilkan bioplastik filler hibrid. Filler serat batang pisang dan selulosa bakteri dalam jumlah tertentu didispersikan dalam air distilasi di ultrasonic processor. Selanjutnya, pati dimasukkan dan campuran dipanaskan hingga pati tergelatinisasi. Campuran kemudian dicetak dan dikeringkan. Hasil penelitian menunjukkan bahwa persentase filler 10% merupakan nilai optimum yang menghasilkan kekuatan mekanik paling tinggi. Komposisi filler hibrid yang menghasilkan bioplastik paling kuat adalah 25% serat batang pisang dan 75% selulosa bakteri, dengan kuat tarik 4,599 MPa dan modulus 174,1 MPa. Meskipun demikian, kekuatan mekanik bioplastik filler hibrid masih kalah dibandingkan dengan bioplastik filler tunggal. Di sisi lain, penambahan selulosa bakteri terbukti meningkatkan ketahanan air, dengan laju transmisi air 3,8958 g/m2/jam pada bioplastik filler 10% serat batang pisang dan 35% selulosa bakteri. Karakteristik bioplastik dikonfirmasi dengan analisis SEM, FTIR, dan XRD. Dari soil burial test selama 9 hari, didapatkan bahwa filler serat batang pisang menurunkan kecepatan biodegradasi bioplastik sebesar 6.9%.

Food grade bioplastic has become a popular research topic these days. However, further study still needs to be conducted, to develop bioplastic that has comparable mechanical and water barrier properties with synthetic plastic. In this research, to improve the mechanical and water barrier properties of plant cellulose filled bioplastic, bacterial cellulose is added to create hybrid filled starch bioplastic. The filler banana pseudostem fibre and bacterial cellulose were first dispersed in distilled water, starch was added and mixture was heated until gelatinization occured. The mixture was then casted and dried in the oven. Research proved that 10% was an optimum filler percentage, which resulted in the highest mechanical strength of bioplastic. The hybrid filler composition that gave the best mechanical properties was 25% banana pseudostem fibre and 75% bacterial cellulose, with tensile strength 4.599 MPa and modulus 174.1 MPa. However, bioplastic with hybrid filler was not as strong bioplastic with single filler. On the other hand, the addition of bacterial cellulose proved to give positive effect to water barrier properties, bioplastic filled with hybrid 10% banana pseudostem fibre and 35% bacterial cellulose had water vapour transmission rate 3,8958 g/m2/hour. The mechanical and water barrier properties of bioplastic was confirmed with SEM, FTIR, and XRD analysis. Soil burial test for 9 days proved that banana pseudostem filler decreased 6,9% of corn starch bioplastic biodegradation rate. "
Depok: Fakultas Teknik Universitas Indonesia, 2013
S45187
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dinda Amalia
"Bioplastik merupakan plastik yang terbuat dari bahan terbarukan dan dapat terurai dengan cepat. Pada penelitian ini menggunakan kulit jagung sebagai penguat bahan pembuat bioplastik. Pembuatan bioplastik menggunakan maizena dengan penguat kulit jagung dilakukan penambahan kitosan dan sorbirol untuk mendapatkan bioplastik dengan sifat mekanik yang baik. Ukuran butiran kulit jagung yang digunakan adalah 150 mesh dan 200 mesh sedangkan variasi kitosan yang digunkan adalah 0.02 wt; 0,04 wt; 0,06 wt; 0,08 wt dan 0,1 wt.
Hasil penelitian ini menunjukan bioplastik dengan ukuran butiran kulit jagung 150 mesh dengan variasi kitosan 0,04 menghasilkan sifat mekanik yang paling baik, yaitu dengan nilai kuat tarik 1.717,64 N/cm2, elongasi 10,05 , modulus young 116,68 N/cm2 dan kuat sobek 763,86 mN. Pengaruh lingkungan menyebabkan bioplastik mengalami degradasi di dalam tanah 70 -100 selama 21 hari, pada udara terbuka terjadi jamur setelah 14 hari dan tahan pada 140o C selama 1 jam.

Bioplastic is a plastic made from renewable material and can decompose quickly. In this research used corn husk as filler bioplastic ingredients. Making bioplastic is done by adding corn starch maizene with corn husk as filler, chitosan and sorbitol to obtain bioplastic with good mechanical properties. Corn husk grain size were used 150 mesh and 200 mesh while chitosan variations were used 0.02 wt 0.04 wt 0.06 wt 0.08 wt and 0.1 wt.
The results of this research showed that bioplastic with 150 mesh corn husk grain size with 0.04 wt chitosan yielded the best mechanical properties, it is with tensile strength value 1,717.64 N cm2, elongation 10.05 , modulus young 116.68 N cm2 and tear strength 763.86 mN. Environment influence made bioplastics degraded in soil 70 100 for 21 days, in open air fungus occured after 14 days and endured at 140oC for 1 hour.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S68533
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aldriez Tresna Fachrezzy
"Bioplastik sebagai alternatif plastik konvensional dapat disintesis dengan berbahan dasar poli(vinil alkohol) (PVA) dan bahan alami di alam yaitu pati dari tepung tapioka. Bioplastik disintesis melalui metode ikat silang (crosslinking) dengan ditambahkan asam maleat dimana terjadi reaksi esterifikasi Fischer yang bertujuan untuk mengurangi mobilitas dari struktur dan dapat meningkatkan kekuatan mekanis dari polimer plastik yang disintesis. Plastik tersebut lalu ditambahkan dengan filler selulosa yang termodifikasi dengan asam palmitat yang berguna untuk menurunkan tingkat asupan air dan meningkatkan kekuatan daripada lapisan campuran PVA/Pati sehingga menghasilkan produk bioplastik biodegradable yang memiliki sifat ketahanan tarik yang tinggi dan memiliki tingkat swelling yang rendah. Plastik tersebut lalu dikarakterisasi dan diuji tingkat kekuatan tarik, kelarutan dan kemampuan swelling.

Bioplastics as an alternative to conventional plastic can be synthesized from poly(vinyl alcohol) (PVA) and natural ingredients in nature such as starch especially from tapioca flour. Bioplastic was synthesized through a crosslinking method by adding maleic acid where a Fischer esterification reaction occurs which aims to reduce the mobility of the structure and can increase the mechanical strength of plastic. The plastic was then added with cellulose which was modified with palmitic acid which is useful to reduce the level of water intake and increase the strength of the PVA/starch mixture layer to produce bio-based plastic products that are biodegradable but can also can have high tensile resistance features, be resistant to water and have a low level of swelling. The plastic was then characterized and tested the level of tensile strength, solubility and swelling ability."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fitri Anisa
"Istilah bioplastik mengacu pada bahan kemasan yang berasal dari material terbarukan maupun material yang dapat terdegradasi lingkungan. Dalam penelitian ini, bioplastik diproduksi dari pati ubi jalar dengan filler serat unggas bulu ayam. Penambahan filler bertujuan untuk meningkatkan kekuatan mekanik dan ketahanan air bioplastik. Filler divariasikan sebesar 0%, 2,5%, 5%, 10% dan 20% dari massa pati. Sintesis bioplastik dilakukan melalui metode melt intercalation. Penambahan serat bulu ayam menurunkan kekuatan mekanik, ketahanan air dan biodegradabilitas bioplastik. Penambahan 2,5% filler bulu ayam menurunkan nilai kuat tarik dari 6,149 MPa menjadi 2,117 MPa, menaikan elongasi dari 19,98% menjadi 47,57% menurunkan modulus young dari 30,775 MPa ke 8,514 MPa, menaikan laju transmisi uap air dari 5,5 g/m2.jam menjadi 6,93 g/m2.jam dan menurunkan laju biodegradabilitas sebesar 3,65%. Karakteristik fisiologi dan morfologi bioplastik dikonfirmasi melalui uji FTIR, SEM, XRD dan UV-vis.
Pada variasi massa matriks 10 gram, kekuatan mekanik dan ketahan air bioplastik meningkat sebesar 11% dan 43,5%. Produksi bioplastik dilanjutkan pada skala yang lebih besar untuk membandingkan karakteristik bioplastik hasil produksi scale up dengan produksi skala laboratorium. Peningkatan skala dilakukan pada produksi bioplastik dengan persentase filler 2,5%, dengan peningkatan 25 kali skala laboratorium. Bioplastik hasil produksi scale up nilai kuat tarik sebesar 5,082 MPa, elongasi 16,21% , modulus young 31,350 MPa serta nilai laju transmisi uap air sebesar 7,65 g/m2jam. Uji FTIR, SEM dan XRD menunjukan bahwa bioplastik memiliki gugus fungsi dan struktur kristalinitas yang sama.

The term bioplastic refers to plastics derived from renewable resources or materials that can be degraded environment. In this study, bioplastic produced from sweet potato starch with chicken feather fiber as fillers. The addition of filler aims to improve mechanical strength and water barrier properties of bioplastic. Filler varied at 0 %, 2,5 %, 5 %, 10 % and 20 % of the starch mass. Synthesis of bioplastics made by melt intercalation method. The addition of chicken feather fibers decreased mechanical strength, water barrier and biodegradability of bioplastics. The addition of 2,5% chicken feather fiber decreased the value of tensile strength from 6,270 MPa to 2,117 MPa, increased the elongation from 19,98% to 47,57% decreased modulus from 30,775 MPa to 8,514 MPa, increase WVTR value from 5,5 g/m2.h to 6,93 g/m2.h and decreased biodegradability of 3,65%. The mechanical and water barrier properties of bioplastic was confirmed with SEM, FTIR, and XRD analysis.
Variations mass matrix at 10 gram, increased the mechanical strength and water barrier properties of bioplastic by 11 % and 43,5 %. The production of bioplastic continues on a larger scale to compare both characteristic. Scalling up done at 25 times laboratory scale on production bioplastic with filler 2,5 %. The resulting bioplastic has tensile strength 5,082 MPa, elongation 16,21 %, modulus 31,350 MPa and water vapor transmission rate 7,65 g/m2h. Analysis FTIR, SEM and XRD showed that bioplastics have same functional groups and crystallinity structure with laboratorium scale bioplastic.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46841
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hana Nabila Anindita
"Dalam penelitian ini dilakukan pembuatan komposit semikonduktor dengan menggunakan matriks akrilik yang ditambahkan dengan dua jenis filler yakni ZnO dan serat nata de coco. Tujuan dari penelitian ini adalah untuk mendapatkan material komposit semikonduktor yang memiliki kekuatan mekanik, serta ketahanan termal yang baik. Metode yang digunakan adalah polimerisasi in situ dimana filler dan monomer matriks yang berupa resin dicampurkan kemudian ditambahkan katalis sebanyak 1% berat resin untuk mempercepat polimerisasi sehingga didapat komposit dengan filler yang terdistribusi di dalam polimer akrilik setelah didiamkan selama 12 jam. Komposit ini kemudian diukur modulus elastisitas, suhu transisi gelas, serta konduktivitas listriknya. Penambahan filler nata de coco mampu meningkatkan modulus elastisitas dan suhu transisi gelas dari akrilik. Modulus elastisitas serta suhu transisi gelas tertinggi dicapai oleh komposit akrilik/nata de coco dengan persen volume sebesar 30% yakni 2,68 GPa dan 199,47oC.
Secara umum penambahan filler ZnO dan nata de coco meningkatkan konduktivitas dari komposit. Komposit yang dihasilkan dapat dinyatakan sebagai material semikonduktor karena berada pada rentang konduktivitas 10-8-103 S/cm. Komposit dengan sifat semikonduktor yang paling baik adalah komposit akrilik/ZnO dengan persen volume ZnO sebesar 30% dengan konduktivitas sebesar 2,7 x 10-7 S/cm. Komposit dengan kombinasi filler ZnO sebesar 20% dan nata de coco 10% volume memberikan modulus elastisitas serta suhu transisi gelas yang lebih tinggi dari komposit akrilik/ZnO yakni mencapai 1,79 GPa dan 175,73oC. Sementara konduktivitas dari komposit tersebut lebih tinggi dari konduktivitas akrilik/nata de coco yakni mencapai 1,9 x 10-7 S/cm.

Synthesis of semiconductor composite using acrylic matrix filled with ZnO and nata de coco fiber has been conducted in this research. The purpose of this research is to obtain semiconductor composite material that have a good mechanical strength and thermal resistance. In situ polymerization method is used in this research where fillers and matrix monomer are mixed and then 1%wt of catalyst is added into the mixture to make it polymerizes faster. After 12 hours, the composite with acrylic matrix and filler is ready to be characterized. Three parameters are characterized in this research such as elastic modulus, glass transition temperature, and electric conductivity of the composite. The addition of nata de coco filler can increase the elastic modulus and glass transition temperature of the acrylic. The highest elastic modulus and glass transition temperature is obtained from acrylic/nata de coco composite with 30% filler volume percentage that reach 2,68 GPa and 199,47oC.
In general the addition of ZnO and nata de coco filler can increase the conductivity of the composite. The composites that has been made in this research can be classified as semiconductor material because the conductivity is in the range of 10-8-103 S/cm. Composite that has a high semiconductor characteristic is obtained from acrylic/ZnO composite with 30% filler volume percentage that reach 2,7 x 10-7 S/cm. The composite with 20% volume of ZnO filler and 10% volume of nata de coco gives a higher elastic modulus and glass transition temperature than those in acrylic/ZnO composite that reach 1,79 GPa and 175,73oC. In addition, the conductivity of this composite is 1,9 x 10-7 S/cm which is higher than the conductivity of acrylic/nata de coco composite.;
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T44494
UI - Tesis Membership  Universitas Indonesia Library
cover
Darmansyah
"Indonesia adalah negara yang memiliki potensi besar dalam sumber daya alam, potensi-potensi alam tersebut yang dapat dikembangkan salah satunya adalah serat alam. Serat alam yang cukup potensial untuk dikembangkan lebih jauh saat ini adalah serat nata de coco. Nata de coco adalah hasil proses fermentasi air kelapa dengan menggunakan bakteri Acetobacter xylinum. Secara kimiawi, serat yang terkandung di dalam nata de coco adalah selulosa, dimana saat ini serat selulosa telah diaplikasikan untuk berbagai keperluan lain, misalnya untuk diafragma transduser, kulit buatan, bahan pencampuran kertas, karbon film elektrokonduktif dan lain sebagainya. Untuk mendapatkan material serat yang kuat diperlukan perlakuan khusus, yaitu dengan menambahkan material lain seperti nanofiller SiO2, Al2O3, dan clay, lalu dipadukan dengan berbagai jenis resin, sehingga material komposit berbahan dasar serat tersebut, memiliki sifat yang lebih kuat dari logam alloy dan material high strength lainnya.
Dalam penelitian ini telah dilakukan pembuatan serat nata de coco dan komposit serat-filler-resin, yang mana variasi nutrisi dan pH yang paling baik adalah variasi dengan konsentrasi gula 2,0% w/v; urea 0,5% w/v dan asam asetat 0,3% v/v (pH 3,8), variasi ini menghasilkan tebal serat basah sekitar 14,57 mm dan massa serat sekitar 595 gram dari 700 ml media air kelapa. Dari karakterisasi dengan menggunakan XRD diketahui bahwa struktur serat nata de coco yang dibuat adalah material serat selulosa dengan puncak intensitas utama terletak pada posisi 2θ di antara 26º ? 26,5º. Sedangkan pengujian dengan menggunakan SEMEDX menunjukkan bahwa nanofiller telah terdistribusi merata di dalam serat. Dan dari uji mekanik dengan menggunakan alat uji kuat tarik (Ultimate Tensile Strength) diketahui pula bahwa serat nata de coco murni memiliki kuat tarik sebesar 390,39 MPa dan young modulus sekitar 11,198 GPa.

Indonesia is the country that has great potential of natural resources, natural potentials that can be developed is a natural fiber. One of the potential natural fibers that can be developed at this time is nata de coco. Nata de coco is a result of fermentation of coconut water using the bacteria Acetobacter xylinum. Fiber contained in the Nata de coco is cellulose, cellulose fibers, where it currently has can be applied to various other purposes such as the diaphragm transducer, artificial leather, paper mixing materials, carbon film electro-conductive and etc. To obtain a strong fiber material required special treatment, namely by adding other materials such as nanoparticles of SiO2, Al2O3, and clay, then combined with various types of resin, so that the composite fiber materials have properties that are stronger than metal alloy and other material high strength.
In this study has been carried out making nata de coco fiber and composite fiber-resin-filler, in which variations of nutrients and pH is the best concentration variation of sugar 2.0% w/v; urea 0.5% w/v and acetate acid 0.3% v/v (pH 3.8), this variation produces a thick fiber of about 14.57 mm and wet mass fiber of approximately 595 grams for 700 ml medium of coconut water. From the XRD pattern is known that the structure of pure nata de coco fiber is cellulose fiber material with the main peak intensity located 2θ positions around 26º ? 26,5º. While for the examination by using SEM-EDX is known that the filler material has been distributed uniformly in the fiber. And from mechanical tests using The Ultimate Tensile Strength is shown that pure nata de coco fiber has tensile strength of 390.39 MPa and young modulus around 11,198 GPa."
Depok: Fakultas Teknik Universitas Indonesia, 2010
T27911
UI - Tesis Open  Universitas Indonesia Library
cover
Nahdalea Bisansa Putri
"

Plastik konvensional merupakan plastik yang terbuat dari senyawa polimer yang sulit untuk terdegradasi. Bioplastik menjadi alternatif bagi plastik konvensional saat ini karena sifatnya yang dapat terdegradasi. Bioplastik umumnya disintesis dari polimer alami, salah satunya adalah polisakarida. Tujuan dari penelitian ini adalah untuk mensintesis bioplastik dari pati tapioka dan PVA yang diikat silang menggunakan agen pengikat silang glutaraldehida dan selulosa palmitat sebagai filler. Warna dari produk selulosa palmitat yang didapat adalah jingga atau kuning kecoklatan. Bioplastik disintesis dengan lima modifikasi yaitu PVA, PVA/Pati, PVA/Pati diikat silang dengan glutaraldehida, PVA/Pati diikat silang dengan selulosa dan PVA/Pati diikat silang dengan selulosa palmitat. Bioplastik PVA memiliki nilai transparansi yang paling dekat dengan plastik konvensional, namun bioplastik PVA/pati/glutaraldehid/selulosa palmitat memiliki nilai transparasi yang tidak berbeda jauh dengan plastik konvensional. Selulosa palmitat dan bioplastik dikarakterisasi dengan FTIR. Hasil uji swelling dan kelarutan menunjukkan bahwa bioplastik PVA memiliki DS (Degree of Swelling) dan kelarutan yang paling tinggi, sedangkan bioplastik PVA/pati/glutaraldehid/selulosa palmitat memiliki DS dan kelarutan yang paling rendah. Pada uji kuat tarik, didapatkan hasil bahwa PVA/pati yang diikat silang dengan glutaraldehid dan diperkuat oleh selulosa palmitat memiliki kuat tarik yang paling tinggi.

 


Conventional plastics are plastics made from polymer compounds that are difficult to degrade. Bioplastics are an alternative to conventional plastics today because they are degradable. Bioplastics are generally synthesized from natural polymers, one of them is polysaccharides. The purpose of this study is to synthesize bioplastics from tapioca starch and PVA which are crosslinked using glutaraldehyde as the crosslinking agent and palmitate cellulose as fillers. The color of the cellulose palmitate product obtained is orange or brownish yellow. Bioplastics were synthesized with five modifications, PVA, PVA/Starch, PVA/Starch crosslinked with glutaraldehyde, PVA/Starch crosslinked and cellulose added and PVA / Starch crosslinked and cellulose palmitate added. PVA bioplastics have the closest transparency values to conventional plastics, but PVA/starch/glutaraldehyde/cellulose palmitate bioplastics dont have transparency values with much differences from conventional plastics. Cellulose palmitate and bioplastics were characterized by FTIR. Swelling and solubility test results showed that PVA bioplastics had the highest DS (Degree of Swelling) and solubility, whereas PVA/starch/glutaraldehyde/cellulose palmitate bioplastics had the lowest DS and solubility. Tensile strength test results proved that PVA / starch which was crosslinked with glutaraldehyde and reinforced by cellulose palmitate had the highest tensile strength.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pranandha Daffa Aditya
"Plastik konvensional berbahan dasar petroleum yang kerap digunakan secara luas menimbulkan permasalahan serius terkait dengan penimbunan limbah plastik akibat tidak terdegradasinya plastik. Dari data ditemukan, plastik menduduki angka kedua terbanyak setelah sisa makanan sebagai komposisi sampah berdasarkan jenis sampahnya, yaitu sebanyak 18%. Sampah yang tertimbun menyebabkan pencemaran lingkungan. Untuk mengatasi masalah ini, pengembangan alternatif plastik yang dapat terdegradasi pada waktunya dimiliki bioplastik, yaitu plastik dari bahan dasar ramah lingkungan seperti pati. Pada penelitian ini, bioplastik dari pati disintesis menggunakan metode ikat silang dengan asam maleat melalui reaksi esterifikasi untuk menurunkan kemampuan penyerapan air dan swelling. Film bioplastik tersebut ditambah mikrokristalin selulosa sebagai penguat untuk memperbaiki sifat mekanis dengan meningkatkan kekuatan tarik dan integritas struktur dari bioplastik. Selain itu, ditambah juga gliserol sebagai plasticizer untuk meningkatkan fleksibilitas dan menghaluskan permukaan dari bioplastik. Bioplastik ini kemudian dikarakterisasi menggunakan FTIR untuk mengetahui keberadaan gugus fungsi, TGA untuk mengetahui ketahanan termal dan diuji kekuatan tarik, derajat kelarutan serta kemampuan swelling-nya.

Conventional petroleum-based plastics which are often widely used cause serious problems related to the accumulation of plastic waste due to non-degradation of plastic. From the data found, plastic is in the second highest number after food waste as a waste composition based on the type of waste, namely 18%. Piled up rubbish causes environmental pollution. To overcome this problem, bioplastics are developing alternative plastics that can be degraded over time, namely plastics made from environmentally friendly basic materials such as starch. In this research, bioplastics from starch were synthesized using a cross-linking method with maleic acid through an esterification reaction to reduce air absorption and swelling ability. The bioplastic film is added with microcrystalline cellulose as reinforcement to improve the mechanical properties by increasing the tensile strength and structural integrity of the bioplastic. Apart from that, glycerol is also added as a plasticizer to increase the crispness and smooth the surface of the bioplastic. This bioplastic was then characterized using FTIR to determine the presence of functional groups, TGA to determine its thermal resistance and tested for tensile strength, degree of solubility and swelling ability."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ratih Azsarinka
"Salah satu jenis polimer alam, selulosa yang terkandung dalam kulit jagung, dapat digunakan sebagai bahan dasar bioplastik. Tepung pati jagung maizena dengan penguat kulit jagung berukuran butir tertentu disintesis bersama kitosan dan gliserol. Bioplastik yang dihasilkan berbentuk lembaran tipis berwarna cokelat keruh. Perubahan ukuran butir dari 150 mesh menjadi 200 mesh mengubah sifat bioplastik, khususnya sifat mekanik.
Diperoleh bioplastik terbaik dengan ukuran butir 200 mesh dan komposisi kitosan 0,04 dengan kuat tarik sebesar 286,31 N/cm2, elongasi sebesar 10,19 , modulus Young sebesar 28,11 N/cm2, dan ketahanan sobek sebesar 705,61 mN. Terjadi pergeseran bilangan gelombang dan perubahan gugus fungsi pada bioplastik. Terhadap lingkungan, bioplastik mengalami degradasi sebesar 35 selama 21 hari di dalam tanah dan mulai berjamur setelah 10 hari berada dalam udara terbuka, serta mampu bertahan pada suhu 100°C selama satu jam.

One kind of biopolymer that can be used as primary materials for bioplastics is cellulose in corn husk. Corn starch powder maize with corn husk filler in different grain size is then synthesized with chitosan and glycerol. The resulting bioplastics is thin film in form with muddy brown color. Alterating the powder grain size from 150 mesh to 200 mesh modifies the physical characteristics, especially mechanical properties.
The most optimal bioplastics were obtained with 200 mesh grain size and 0.04 wt chitosan composition with tensile strength of 286.31 N cm2, elongation of 10.19, Young modulus of 28.11 N cm2 and tear resistance of 705.61 mN. There are shifts in peak absorbance wavenumber and changes in some functional groups. To the environment, bioplastics were degraded 35 for 21 days in soil and started moldy after 10 days in open air, as well as endured for one hour in temperature 100°C.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S68532
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>