Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 9299 dokumen yang sesuai dengan query
cover
Parsa Mozaffari
"With the growth of utilizing natural gas all over the world, Liquefied Natural Gas (LNG) has been widely used in the modern era due to its advantages of storage and transportation. When LNG is unloaded in import terminal, in the time of need, the process of returning natural gas into its gaseous form is being done in the regasification unit with different technologies in order to process the gas and then distribute it by pipeline networks to the end users. Choosing the appropriate LNG vaporizer which is both cost effective and suitable to conditions of the location and environment is intended to be evaluated.
The framework of this paper is studying of some of the different LNG vaporization methods and comparing their features and properties that each of them has. The goal of this paper is in the first step, comparison of technologies which are Open Rack Vaporizer (ORV), Shell and Tube Vaporizer (STV), and Intermediate Fluid Vaporizer (IFV) and defining the suitable vaporizer to do the simulation as the second step as well as evaluating the economical features of the project. While the Shell and Tube Vaporizer has been chosen, the regasification plant using three different heating medium, propane, steam, and 50/50 mixture of water and glycol has been designed.
At the end, the economic evaluation has been done with total capital investment of 62 million dollars in the service life of 10 years. The NPV is calculated 11.33 million dollars and the salvage value is calculated to be 5.2 million dollars. Each heating medium is considered to be effective depending on the locations and conditions."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54788
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tarigan, Efransyah Putra
"Tesis ini bertujuan untuk mengkaji kelayakan secara teknis maupun komersial dari pembangunan mini LNG receiving and regasification terminal di Benoa Bali serta untuk mengetahui angka ketidakpastian/uji sensitivitas dari proyek pembangunan fasilitas terminal LNG tersebut.
Dari hasil analisa teknik untuk kebutuhan pembangkit listrik kapasitas 200 MW dibutuhkan gas sebesar 35 MMSCFD dengan kapasitas penampungan LNG sebesar 24.000 m3. Tipe terminal yang sesuai dengan kondisi lokasi adalah onshore mini terminal dan barge FSRU.
Hasil analisis keekonomian pembangunan mini LNG receiving and regasification terminal menunjukkan bahwa proyek ini layak dijalankan. Untuk tipe onshore NPVsebesar USD 58.748.482, IRR 17,44%, B/C Ratio 1,7 dan PBP selama 9 tahun, 1 Bulan. Sedangkan untuk tipe onshore sebesar USD 9.662.306, IRR sebesar 158%, B/C Ratio 9,9 dan PBP selama 1 tahun, 9 bulan.
Hasil uji sensitivitas keekonomian pembangunan LNG receiving and regasification terminal tipe onshore menunjukkan faktor yang paling berpengaruh terhadap terjadinya perubahan keekonomian adalah ketidakpastian CAPEX sedangkan untuk tipe offshore ialah ketidakpastian volume gas, regasification, dan OPEX.

This thesis aims to assess the technical and commercial feasibility of the mini LNG receiving and regasification terminal project in Benoa Bali as well as to determine the numbers of uncertainty/sensitivity testing of the LNG plant facilities project.
From the analysis techniques for the needs of power generation capacity of 200 MW is required by 35 MMSCFD gas with LNG storage capacity of 24,000 m3 . Terminal mode in accordance with the site conditions are mini onshore terminal and barge FSRU.
The results of the economic analysis of the development of mini LNG receiving and regasification terminal indicates that the project is feasible. For the type of onshore NPV is USD 58,748,482, IRR 17.44 %, B/C ratio of 1.7 and PBP for 9 years, 1 month. As for the type of offshore USD 9,662,306, IRR of 158%, B/C ratio of 9.9 and PBP for 1 year, 9 months.
The results of the sensitivity test the economic development of LNG receiving and regasification terminal onshore type indicates the factors that most influence on changes in the economics is the uncertainty CAPEX while for the type of offshore uncertainty is the volume of gas, regasification, and OPEX.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45694
UI - Tesis Membership  Universitas Indonesia Library
cover
Siti Agrisylva Shalihati
"Gas alam diubah menjadi LNG (Liquefied Natural Gas) untuk memudahkan dalam pendistribusian gas alam jarak jauh. LNG ini memiliki volume sekitar 1/600 dari volume gas alam sehingga dapat mengangkut jauh lebih banyak dibandingkan pada saat berbentuk gas alam. Sebelum pendistibusiannya ke konsumen, LNG tersebut akan diubah kembali menjadi gas. Proses diubahnya LNG kembali ke bentuk gas disebut sebagai regasifikasi. Pada proses regasifikasi dibutuhkan alat penukar kalor sebagai alat penukar kalor. Penelitian ini bertujuan untuk mendapatkan hasil sebuah rancangan alat penukar kalor pada proses regasifikasi LNG dengan mempertimbangkan aspek termal dan mekanik. Metode yang digunakan untuk aspek termal adalah metode kern sedangkan untuk aspek mekanik menggunakan TEMA (Turbular Exchanger Manufacturer Association) sebagai standar. Pada metode kern akan didapat diameter sebesar 2.03 m dengan panjang dari tube sebesar 6 m, diameter dalam tube 0.037 m dan diameter luar tube 0.04 m berdasarkan standarnya. Selain itu, didapatkan juga besar diameter shell yang akan menjadi acuan pada bagian mekanik menggunakan TEMA sehingga mendapatkan dimensi pada bagian shell seperti ketebalan shell sebesar 2.43 x 10-2 m, ketebalan tube sheet sebesar 0.112 m, diameter nozzle 0.254 m, dan diameter luar shell 2.08 m. Untuk hasil akhir merupakan sebuah design dari alat penukar kalor sesuai dengan metode yang digunakan dengan kapasitas 7 kg/s. "
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Luthfi Kamal Bangkit Setyawan
"Masalah yang dihadapi pada terminal regasifikasi skala kecil ini adalah kondisi operasi yang unsteady. Dikarenakan terdapat 2 kondisi, yaitu pada saat unloading LNG dari kapal LNG dan juga pada saat holding karena operasi on-off dari vaporizer berjenis AAV (Ambient Air Vaporizer) yang disebabkan terjadinya frosting. Dalam penelitian ini, dilakukan simulasi dinamik dari terminal regasifikasi skala kecil dengan pengendalian dalam perangkat lunak UniSim. Jika simulasi dilakukan tanpa pengendalian, menghasilkan laju alir yang menyimpang 14% dari seharusnya, dan setelah 6 jam suhu gas keluaran kurang dari 2,5°C yang artinya output tidak dapat memenuhi requirement pembangkit. Pengendali yang digunakan adalah pengendali tipe digital on-off  untuk unloading dan switch AAV dan PI untuk pengendalian laju alir LNG. Pengendali digital on-off pompa diatur untuk menghentikan unloading saat LNG di carrier bersisa 10%, sementara AAV akan diset untuk melakukan aksi switch AAV saat suhu gas keluaran mencapai 3°C. Untuk pengendali PI didapat parameter pengendali dengan nilai Kc = 0,00638 dan Ti = 0,00043. Waktu maksimal operasi 1 buah AAV adalah 7 jam 30 menit sebelum akhirnya akan dilakukan switch. Setelah pengendalian, spesifikasi gas keluaran terminal mampu untuk memenuhi requirement pembangkit yaitu laju alir molar 6,53 MMSCFD dan suhu gas minimum 2,5°C.

The problem encountered at this regasification terminal is unsteady operating conditions. Because of unloading LNG from a carrier and holding that involve on-off operation from AAV (Ambient Air Vaporizer) caused by frosting. In this study, a dynamic simulation of small-scale regasification terminal with controls UniSim carried out. If the simulation carries without control, it produces a flow rate that deviates 14% from what it should be, and after 6 hours of operation, the output temperature less than 2,5°C, which means cannot meet generator requirements. The controllers used in this case is digital on-off type controller for unloading and switch AAV and PI type controller to control LNG flowrate. For digital on-off controller, the controller is set to stop unloading when remaining LNG in the carrier is 10%, meanwhile AAV will be set to act on the switch when output temperature reach 3°C . For PI controllers, the control parameters with Kc = 0,00638 and Ti = 0,00043. The maximum operating time for 1 AAV is 7 hours 30 minutes before it will be switched. After controlling, the gas specifications from terminal able to meet the generator requirements, molar flow rate 6,53 MMSCFD and minimum gas temperature 2,5°C."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ferdi Fajrian Adicandra
"Optimalisasi pabrik regasifikasi liqufied natural gas LNG penting dilakukan untuk meminimilasi biaya, khususnya biaya operasional. Oleh karena itu penting untuk memilih desain pabrik regasifikasi LNG dan mendapatkan kondisi operasi yang optimum serta mempertahankan kondisi operasi yang optimum tersebut melalui implementasi model predictive control MPC. Kriteria optimalnya adalah minimumnya jumlah energi yang digunakan dan atau integral of square error ISE.
Hasilnya, disain yang optimum adalah menggunakan skema 2 dengan penghematan energi sebesar 40. Sedangkan kondisi operasi yang optimum terjadi jika suhu keluaran vaporizer sebesar 6oC. Untuk mempertahankan kondisi optimum tersebut diperlukan MPC dengan setelan parameter P prediction horizon , M control horizon dan T sampling time sebagai berikut: pengendali tekanan tangki penyimpanan: 90, 2, 1; tekanan produk: 95, 2, 1; suhu vaporizer: 65, 2, 2; dan suhu heater: 35, 6, 5, dengan nilai ISE pada set point tracking masing-masing 0,99, 1792,78, 34,89 dan 7,54, atau peningkatan kinerja pengendalian masing-masing sebesar 4,6 , 63,5 , 3,1 dan 58,2 dibandingkan kinerja pengendali PI.
Penghematan energi yang dapat dilakukan pengendali MPC saat terjadi gangguan pada kenaikan suhu air laut 1oC adalah 0,02 MW dan pengendali MPC juga mengurangi error terhadap kualitas produk sebesar 34,25 dibandingkan dengan menggunakan pengendali PI.

Optimization of liquified natural gas LNG regasification plant is important to minimize costs, especially operational costs. Therefore, it is important to select the LNG regasification plant design and obtain optimum operating conditions while maintaining the optimum operating conditions through the implementation of model predictive control MPC. The optimal criterion is the minimum amount of energy used and or the integral of square error ISE.
As a result, the optimum design is to use scheme 2 with an energy savings of 40 . While the optimum operating conditions occur if the vaporizer output temperature is 6oC. In order to maintain the optimum conditions, MPC is required with parameter setting P prediction horizon, M control horizon and T sampling time as follows tank storage pressure controller 90, 2, 1 product pressure 95, 2, 1 temperature vaporizer 65, 2, 2 and temperature heater 35, 6, 5, with ISE value at set point tracking respectively 0.99, 1792.78, 34.89 and 7.54, or improvement of control performance respectively 4.6, 63.5 , 3.1 and 58.2 compared to PI controller performance.
The energy savings that MPC controllers can make when there is a disturbance in sea temperature rise of 1oC is 0.02 MW and MPC controller also reduces error to product quality by 34.25 compared to the PI controller.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68639
UI - Skripsi Membership  Universitas Indonesia Library
cover
Emapatria Chandrayani
"LNG memiliki potensi untuk menjadi pemasok energi untuk menjangkau kepulauan di Indonesia dan telah direncanakan untuk memasok pembangkit listrik di pulau-pulau terpencil. Analisis tekno-ekonomi pembangkit listrik turbin gas terintegrasi dengan unit regasifikasi LNG skala kecil telah dilakukan untuk meningkatkan efisiensi pembangkit listrik dan mengurangi biaya pembangkitan listrik. Analisis dimulai dengan membuat simulasi proses dari sistem yang divalidasi untuk menggambarkan kinerja turbin gas aktual menggunakan simulator proses Aspen Hysys. Kemudian, dilakukan beberapa integrasi seperti penerapan pembangkit uap dalam combined cycle sebagai pembangkit listrik sekunder, pemanfaatan energi dingin dari regasifikasi LNG untuk pendinginan udara masukan kompresor turbin gas, dan pemanasan kembali bahan bakar gas oleh sebagian uap yang dihasilkan. Hasil simulasi memberikan akurasi yang baik dan memungkinkan untuk diintegrasikan dengan proses-proses tersebut. Integrasi gabungan memberikan keuntungan yang lebih tinggi, memberikan kenaikan daya listrik hingga 49,4% serta meningkatkan efisiensi sebesar 44,6% dan menurunkan emisi spesifik CO2 sebanyak 30,9% dibandingkan dengan simple cycle turbin gas. Berdasarkan analisis LCOE, integrasi gabungan memberikan biaya produksi listrik 20,89% lebih rendah daripada simple cycle turbin gas sekitar 14,56 sen/kWh pada faktor kapasitas 80%. Terlebih lagi, integrasi gabungan pembangkit listrik turbin gas selalu memberikan LCOE lebih rendah dibandingkan simple cycle turbin gas dalam berbagai faktor kapasitas, yaitu 21,64% lebih rendah untuk faktor kapasitas tinggi dan setidaknya 7,96% lebih rendah untuk faktor kapasitas kecil. Nilai ini dianggap lebih ekonomis dibandingkan pembangkit listrik berbahan bakar diesel. Optimalisasi upaya integrasi untuk peningkatan efisiensi sistem pembangkit listrik turbin gas dapat meningkatkan kinerja dan menurunkan total biaya pokok pembangkitan listrik.

LNG has a potential to become energy supply across Indonesian archipelago and has been planned to supply power plant in remote islands. A techno-economic analysis of integrated small scale gas turbine power plant and LNG regasification unit has been conducted to increase power plant efficiency and reduce electricity generation cost. The analysis begins with creating process simulation of the system that is validated to represent actual gas turbine performance using Aspen Hysys process simulator. Then several integrations are introduced: combined cycle steam generation as secondary power generation, cold energy utilization from LNG regasification to chill intake air compressor of gas turbine, and fuel gas reheating by a small portion of generated steam. The simulation result provides a good accuracy and enable integration to such processes. The combined integration provides higher advantages, providing extra power output up to 49.4% as well as increasing efficiency up to 44.6% and lowering as much as 30.9% specific CO2 emission than simple cycle gas turbine. Based on LCOE analysis, combined integration provides 20.89% lower cost of electricity production than gas turbine simple cycle around 14.56 cent/kWh at 80% capacity factor. The combined integration of gas turbine power plant always delivers LCOE lower than gas turbine simple cycle in any capacity factors which are 21.64% lower for high-capacity factors and at least 7.96% lower for low-capacity factors. This is considered more economically viable than diesel-fueled power plant. The higher efficiency of integrated power plant-LNG regasification system could better improve performance and further reduce generation cost."
Jakarta: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Teuku Riefky Harsya
"Pengembangan kilang LNG Arun yang masa pengoperasiannya akan berakhir pada 2014 menjadi terminal penerima gas dapat membantu memenuhi kebutuhan gas di daerah Aceh dan Sumatera Utara. Kilang ini dapat dimodifikasi mejadi terminal penerimaan dan regasifikasi LNG karena sejumlah fasilitas yang tersedia masih baik dan layak untuk digunakan. Untuk mengetahui kelayakan proyek ini, dilakukan kajian keekonomian serta sensitivitas dengan masa pembangunan dan perbaikan selama 2 tahun, operasional selama 20 tahun serta pasokan LNG sebesar 400MMSCFD untuk tahun pertama dan meningkat sebesar 50 MMSCFD setiap tahunnya hingga mencapai 350 MMSCFD sebagai kapasitas produksi maksimum.
Langkah-langkah yang dilakukan untuk mengkaji kelayakan proyek ini antara lain menganalisa kebutuhan peralatan tambahan untuk proses regasifikasi, menghitung kelayakan keekonomian melalui 4 parameter NPV, IRR, PBP, dan BC Ratio, serta uji sensitivitas dengan menggunakan random number generation simulator untuk mengetahui komponen yang paling sensitif terhadap perubahan.
Adapun hasil analisis keekonomian pemanfaatan kilang Arun menjadi receiving gas terminal menunjukkan bahwa proyek ini layak dijalankan dengan NPV sebesar 454.097.000 USD, IRR 15,4% terhadap MARR 15%, BC ratio sebesar 4, dan payback period jatuh pada tahun ke-6 bulan ke-2 pengoperasian. Hasil uji sensitivitas menunjukkan bahwa tax merupakan faktor yang paling mempengaruhi perubahan.

Utilization of LNG Arun refinery plant, which it’s operational contract will end on 2014, as a receiving gas terminal can help meet the needs of gas in Aceh and North Sumatera. This plant can be modified into a receiving gas terminal and LNG regasification because of some of the existing facilities are still in a good condition and ready to use. Economic analysis should be done to know the feasibility of this project with the construction time for 2 years, 20 years of operational, and 150MMSCFD of LNG supply for start up and increased as much as 50 MMSCFD each year until reach 350 MMSCFD as maximum production capacity.
The steps done to know the feasibility of the project are additional equipment for regasification process study, calculate the economic feasibility through 4 parameter of NPV, IRR, PBP and BC ratio, as well as sensitivity analysis using random number generation simulator to determine the component that is most sensitive to change.
The economic analysis result shows that this project is feasible with NPV of 454.097.000USD, 15,4% of IRR with MARR as much as 15%, BC ratio of 4, and the payback period falls on 2nd month of the 5th year of operational. Sensitivtiy analysis result shows that tax is the most influencing factor to change.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T32520
UI - Tesis Membership  Universitas Indonesia Library
cover
Gunawan Setiadi
"Dalam rangka memenuhi kebutuhan listrik di Sulawesi Utara, Sulawesi Tengah dan Gorontalo, PT X dihadapkan pada tantangan dalam memenuhi kebutuhan listrik proyek pengembangan Kawasan Ekonomi Khusus (KEK) di Bitung dan Palu. Tidak terjangkaunya jaringan pipa gas yang bersumber di sekitar Kota Luwuk dan kecilnya kebutuhan gas menjadi kendala. Gas alam dalam bentuk cair (LNG) menjadi alternatif untuk pasokan gas ke pembangkit listrik di Minahasa (150 MW), Tahuna (30 MW), Donggala (60 MW) dan Gorontalo (100 MW) menggunakan sumber LNG dari Bontang maupun Sengkang dengan kebutuhan gas total sebesar 26,41 MMSCFD. Optimasi Logistik LNG perlu dilakukan untuk mendapatkan biaya transportasi minimum. Dengan membandingkan lima kapal LNG yang akan digunakan yaitu kapal berkapasitas 10.000 m3 sampai dengan 22.500 m3 yang ada di pasaran. Metode penelitian menggunakan Solver Add-In yang ada pada Microsoft Excel dengan objective function meminimalkan biaya Distribusi LNG. Hasil optimasi berdasarkan tiga skenario dan dua sumber LNG terhadap jarak sumber LNG ke tujuan pengiriman dalam periode satu tahun didapatkan bahwa, metode transportasi LNG yang menghasilkan biaya distribusi minimum adalah menggunakan skenario Milk-Run dari sumber LNG Bontang dengan total biaya transportasi diperoleh sebesar USD 17.207.897 atau setara dengan 1,53 USD/MMBTU dengan satu buah kapal LNG berkapasitas 12.000 m3.

In the framework of fulfilling the electricity needs in North Sulawesi, Central Sulawesi and Gorontalo, PT X is faced with challenges in fulfilling the electricity needs of the Special Economic Zone (KEK) development project in Bitung and Palu. The inaccessibility of gas pipelines sourced in and around Luwuk City and the small gas requirement becomes an obstacle. Liquefied Natural Gas (LNG) becomes an alternative to supply gas to a power plant in Minahasa (150 MW), Tahuna (30 MW), Donggala (60 MW) and Gorontalo (100 MW) using LNG sources from Bontang and Sengkang with total gas requirements of 26.41 MMSCFD. LNG Logistics Optimization is necessary to obtain minimum transportation costs. By comparing five LNG vessels that will be used, with a capacity of 10,000 m3 up to 22,500 m3 on the market. The research method uses a Solver Add-In in Microsoft Excel with an objective function minimizing the cost of LNG distribution. The optimization results based on three scenarios and two sources of LNG on the distance of the LNG source to the delivery destination in a one-year period found that the LNG transportation method that produces minimum distribution costs using the Milk-Run scenario from the Bontang LNG source with total transportation costs of USD 17,207,897 or equivalent with 1.53 USD/MMBTU with one 12,000 m3 LNG capacity vessel."
Depok: Fakultas Teknik Universitas Indonesia, 2019
T54361
UI - Tesis Membership  Universitas Indonesia Library
cover
Fadillah Nurrani
"Proses regasifikasi LNG umumnya terjadi pada terminal penerimaan LNG dimana gas alam yang telah dicairkan hingga temperatur cryogenic akan diubah kembali dalam wujud gas. Salah satu terminal penerimaan LNG berbasis laut (offshore) di Indonesia adalah FSRU yang dikelola oleh PT. PGN Lampung, dimana masih belum di-utilisasi dengan baik. Perancangan sistem pembangkit energi cryogenic yang memanfaatkan cold energy dari proses regasifikasi LNG dapat menjadi salah satu pilihan. Metode yang digunakan adalah direct expansion dengan Organic Rankine Cycle (ORC) sebagai sistem pembangkitnya. Sistem ORC akan menggunakan dua working fluid yakni Propane (R-290) dan Propylene (R-1270) serta komponen sistem meliputi pompa, CFOH (Closed Feed Organic Heater), mixer, evaporator, expander, heater LNG, dan kondensor yang terintegrasi dengan LNG Vaporizer. Kapasitas regasifikasi LNG di FSRU PGN Lampung sebesar 240 MMSCFD (juta kubik kaki per hari) dan work power output dari expander fluida kerja sebesar 3 MW. Hasil penelitian menunjukan sistem regasifikasi LNG yang terintegrasi dengan sistem ORC menggunakan fluida Propane mampu menghasilkan total energi sebesar 14 MW, sedangkan fluida Propylene menghasilkan total energi sebesar 10 MW. Sistem ORC dengan fluida Propane menghasilkan efisiensi thermal sebesar 14.48% dan fluida Propylene sebesar 15.71%

The LNG regasification process generally occurs at the LNG receiving terminal where natural gas that has been liquefied to a cryogenic temperature will be converted back into gas form. One of the offshore LNG receiving terminals in Indonesia is the FSRU which is managed by PT. PGN Lampung, which is still not properly utilized. The design of a cryogenic energy generation system that utilizes cold energy from the LNG regasification process can be an option. The method used is direct expansion with Organic Rankine Cycle (ORC) as the generating system. The ORC system will use two working fluids, namely Propane (R-290) and Propylene (R-1270) and system components include a pump, CFOH (Closed Feed Organic Heater), mixer, evaporator, expander, LNG heater, and a condenser integrated with LNG. Vaporizers. The LNG regasification capacity at the PGN Lampung FSRU is 240 MMSCFD (million cubic feet per day) and the work power output from the working fluid expander is 3 MW. The results showed that the LNG regasification system integrated with the ORC system using Propane fluid was able to produce a total energy of 14 MW, while the Propylene fluid produced a total energy of 10 MW. The ORC system with Propane fluid produces a thermal efficiency of 14.48% and Propylene fluid of 15.71%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jesslyn Phenica
"ABSTRAK
MMPC (Multivariable Model Predictive Control) digunakan untuk mengontrol suhu dan tekanan di kilang regasifikasi LNG untuk mengatasi masalah yang saling mempengaruhi variabel dan mengurangi jumlah pengontrol. Ada empat variabel yang dikontrol (variabel terkontrol, CV) dan empat variabel yang dimanipulasi variabel, MV). CV yang dikontrol adalah tekanan di tangki penyimpanan LNG yaitu tekanan keluaran vaporizer, suhu keluaran vaporizer, dan suhu gas ke pipa. MV dimanipulasi, yang masing-masing berpasangan dengan CV tersebut, adalah laju aliran produk tank top, laju aliran gas pipa, laju aliran air laut, dan pemanas tugas. Identifikasi Model empiris FOPDT (First Order Plus Dead-Time) akan dilakukan terhadap keempatnya pasang CV dan MV untuk menggambarkan interaksi antar variabel. FOPDT diperoleh digunakan sebagai pengontrol di MMPC dan menentukan pengaturan kinerja kontrol Parameter MMPC yaitu P (prediction horizon), M (control horizon), T (waktu sampling). Kinerja kontrol diukur dengan menggunakan metode ISE (Integral Square Error). Hasilnya, parameter MMPC (P, M, T) untuk kondisi regasifikasi LNG adalah optimum masing-masing adalah 330, 1, 1. Ukuran ISE dari pengontrol MMPC dalam setpoint pelacakan: 2.12 × 10-4; 23.834; 0,763; 0,085, dengan perkembangan kinerja pengontrol masing-masing 31.262%, 17%, 175%, 757% dibandingkan kinerja MPC.

ABSTRACT
MMPC (Multivariable Model Predictive Control) is used to control temperature and pressure in the LNG regasification plant to overcome the problem of interplaying variables and reducing the number of controllers. There are four controlled variables (controlled variable, CV) and four manipulated variables
variable, MV). CV that is controlled is the pressure in the LNG storage tank, namely the vaporizer output pressure, the vaporizer output temperature, and the gas temperature to the pipe. MV manipulated, each of which is paired with the CV, is the tank top product flow rate, the pipeline gas flow rate, the seawater flow rate, and the heating duty. Identification of the FOPDT (First Order Plus Dead-Time) empirical model will be carried out on the four CV and MV pairs to describe the interactions between variables. The obtained FOPDT is used as a controller in the MMPC and determines the control performance settings for the MMPC parameters, namely P (prediction horizon), M (control horizon), T (sampling time). Control performance is measured using the ISE (Integral Square Error) method. As a result, the MMPC parameters (P, M, T) for the optimum LNG regasification conditions were 330, 1, 1. ISE size of the MMPC controller in the tracking setpoint: 2.12 × 10-4; 23,834; 0.763; 0.085, with the development of the controller performance respectively 31,262%, 17%, 175%, 757% compared to the performance of MPC."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>