Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 56877 dokumen yang sesuai dengan query
cover
Wiryandaru Restiawan
Depok: Fakultas Teknik Universitas Indonesia, 1996
TA3399
UI - Tugas Akhir  Universitas Indonesia Library
cover
Didik Sukasdi
"Kemajuan yang pesat di bidang telekomunikasi dewasa ini menyebabkan timbulnya berbagai jenis teknik kompresi yang dimanfaatkan dalam berbagai aplikasi. Teknik kompresi yang sangat dikenal saat ini adalah teknik kompresi DCT (discrete cosine transform) dengan metode scanning zig-zagnya.
Teknik kompresi yang sedang dikembangkan saat ini adalah teknik kompresi dengan menggunakan transformasi wavelet. Dari perhitungan lama proses, nilai PSNR dan SNR, ternyata teknik kompresi transformasi wavelet memberikan hasil yang lebih bagus dibanding teknik kompresi dengan menggunakan DCT.
Sampai saat ini belum ada pembakuan metode scanning yang cocok untuk diterapkan pada transformasi wavelet. Tesis ini membahas simufasi penerapan metode scanning vertikal, horisontal, zig-zag, dan diagonal pada kompresi gambar diam dengan menggunakan transformasi wavelet.
Dengan membandingkan kinerja rasing-masing metode scanning, dalam hal ini parameter yang diperbandingkan adalah lama proses, jumlah koefisien yang di-scan, perhitungan RMSE temyata diperoleh bahwa metode scanning yang cocok untuk transformasi Wavelet adalah metode scanning zig-zag.

Image compression is a process to reduce bit information of an image. The purpose of image compression is to obtain fewer amount of data and it can be reconstructed as a new image without decreasing its quality significantly. Image compression could be done in spatial domain or transformation domain.
Wavelet transform is the effective methods for image compression process since its ability to localize the bit information contained of the image. One of the important steps in transformation image using wavelet transform is scanning step.
To increase performance wavelet transform, choosing scanning method i.e. vertical, horizontal, zig-zag, and diagonal will be done. From analysis view depends on the composition of coefficient and time processing, it can be said that scanning method zig-zag give the best performance. ;Image compression is a process to reduce bit information of an image. The purpose of image compression is to obtain fewer amount of data and it can be reconstructed as a new image without decreasing its quality significantly. Image compression could be done in spatial domain or transformation domain.
Wavelet transform is the effective methods for image compression process since its ability to localize the bit information contained of the image. One of the important steps in transformation image using wavelet transform is scanning step.
To increase performance wavelet transform, choosing scanning method i.e. vertical, horizontal, zig-zag, and diagonal will be done. From analysis view depends on the composition of coefficient and time processing, it can be said that scanning method zig-zag give the best performance."
Depok: Fakultas Teknik Universitas Indonesia, 1998
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Sitepu, Malemta
"Permasalahan utama dalam kompresi gambar adalah bagaimana mendapatkan PSNR (Peak Signal to Noise Ratio) dan Rasio Kompresi (RK) yang baik (tinggi) secara bersamaan serta gambar hasil kompresi yang masih dikenali oleh manusia serta waktu pemrosesan yang relatif cepat. Rasio kompresi yang tinggi menunjukkan penurunan nilai derajat keabuan (grayscale) dalam bit per piksel dan PSNR yang tinggi berhubungan dengan kwalitas gambar rekonstruksi yang diperoleh pada penerima. Proses kompresi dilakukan dengan mengkuantisasi koefisien-koefisien wavelet yang sangat beragam menjadi nilai dan tingkat tertentu. Nilai ini ditentukan oleh proses iterasi untuk mendapatkan distorsi minimal. Pemrosesan dengan ukuran sel yang sering digunakan yaitu 4x4 walaupun mempunyai PSNR yang tinggi namun mempunyai kelemahan rasio kompresi yang rendah serta waktu pengalahan yang relatif lama. Untuk itu digunakn ukuran sel (N) lain yaitu 8x8, 16x16 dan 32x32 kemudian dilakukan proses iterasi (k) untuk mencari distorsi minimum dan penambahan jumlah tingkat kwantisasi (M). Kedua hal terakhir ini adalah untuk menaikkan PSNR, sehingga walaupun ukuran sel diperbesar namun PSNRnya masih dapat dipertahankan. Dari nilai PSNR dan rasio kompresi yang diperoleh serta karakteristiknya diperoleh titik optimal yaitu pada ukuran sel ditambah proses iterasi don jumlah tingkat kwantisasi. Hasilnya adalah sel ukuran 32x32 dapat digunakan untuk mendapatkan rasio kompresi tertinggi dengan M=4, k=0 atau M=2, k=0 atau sel ukuran 16x16 untuk mendapatkan PSNR yang baik.

The main problem on image compression is how to achieve value both Compression Ratio (CR) and Peak Signal to Noise Ratio (PSNR) simultaneously high, a recognized reconstructed image and relatively small time processing. Compression ratio deals with decreasing grayscale value of an original image and PSNR deals with the quality of an image. In short word, the compression process is conducted by quantizing the various values to certain values and levels of wavelet coefficients. These values are determined by adding on iteration process to get minimum distortion in a cell. The cell size used is usually 4x4 that has the high PSNR, low compression ratio and high time processing. To dissolve such things, 8x8, 16x16 and 32x32 (N) of cell sizes are in use, iterate (k) and add of quantization level (M). The last two things are to enhance PSNR but to decrease compression ratio in contrast as well. From value of PSNR and CR as well as the characteristic, the optimum point is then to find out. The result is that 32x32 cell size is suitable to achieve the highest compression ratio with combining M=4 with k=O or M=2, k=O or 16x16 cell size to achieve good PSNR.
"
Depok: Fakultas Teknik Universitas Indonesia, 2000
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Tandililing, Tony
"Pada dasarnya, tujuan kompresi gambar adalah bagaimana mendapatkan nilai rasio kompresi rasio yang tinggi, tepat dan gambar rekonstruksi masih dapat dikenali oleh visual manusia. Penentuan rasio kompresi secara tepat adalah hal yang penting dilakukan karena nilai rasio kompresi berhubungan dengan media penyimpanan serta waktu pengiriman gambar. Dengan menggunakan metoda klasifikasi kuantisasi vektor, nilai rasio kompresi yang diinginkan mempunyai range (sebaran) yang besar dan dapat diperkirakan sehingga dijadikan masukan simulasi.
Metoda klasifikasi kuantisasi vektor adalah metoda kuantisasi vektor dengan membagi data kedalam blok-blok (sel) ukuran tertentu dan menghasilkan kode yang mewakili blok-blok tersebut dengan cara mengambil data dengan jarak atau distorsi terkecil menurut klasifikasi orientasi subband horizontal, vertikal dan diagonal. Kode itu disebut dengan codebook.
Dengan menggunakan metoda klasifikasi kuantisasi vektor, sebagai masukan simulasi adalah nilai variabel rasio kompresi 4,8,16,32 dan 64 maka diperoleh hasilnya adalah gambar rekonstruksi masih dapat dikenali dengan baik pada nilai rasio kompresi 4, 8, 16 dan 32 dimana nilai PSNR masih > 30 dB. Sedangkan nilai rasio kompresi 64, gambar rekonstruksi sudah tidak dapat dikenali lagi karena nilai PSNR sudah < 30 dB sehingga gambar rekonstruksinya mengalami penurunan kontras yang menyebabkan kabur dan bertambahnya efek blocking.

Basically, the image compression is to achieve high compression ratio, accurate and recognized image reconstruction. Achieving compression ratio accurately is somewhat important to accomplish. Normally, compression ratio is defined by determining PSNR. By using classification of quantization vector method, getting the compression ratio is likely to do. The unique of this method is that this method can be arranged from 4 up to 64 of compression ratio.
The classification of quantization vector method is one of vector quantization methods that classify image data to specified block and process the blocks to produce the representative block by taking minimum distance or distortion according to horizontal, vertical and diagonal energy. Those codes are codebooks.
By using the classification of quantization vector method combining with the compression ratio value as an input variable of 4,8,16,32 and 64, the outcome is that reconstructed images of the compression ratio ranged 4, 8,16 and 32 is good with PSNR > 30 dB whereas the compression ratio of 64 is not recommended (PSNR value < 30 dB) for any images particularly for textures images."
Depok: Fakultas Teknik Universitas Indonesia, 2000
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ismail
"Pemampatan citra merupakan proses mereduksi jumlah bit yang digunakan dalam representasi suatu citra dan bertujuan untuk memperoleh suatu kumpulan data yang lebih kecil dan dapat direkonstruksi menjadi citra baru tanpa penurunan kualitas citra yang berarti. Pemampatan citra sangat bermanfaat dalam efisiensi media penyimpanan dan transmisi citra tersebut.
Salah satu metode pemampatan citra yang cukup efektif adalah metode Human Visual System (HVS) yaitu pemampatan citra dengan menghilangkan redudansi psikovisual yang dikandung pada suatu citra dengan mengikuti karakteistik sistem visual mata manusia. Untuk memperoleh unjuk kerja sistem pemampatan citra yang optimal dilaksanakan analisis dan simulasi terhadap sistem pemapatan citra metode HVS Thresholding dan kuantisasi Subyektif dengan menggunakan transformasi wavelet Orthogonal (Daubechies-12) dan Biorthogonal (Spline) dengan beberapa model persamaan HVS (Ngan, Mannos, Nill dan Bowan) melalui variasi norm (p).
Dari hasil simulasi dan analisis menggunakan citra diam dengan ukuran 256 x 256 pixel dipero!eh unjuk kerja sistem optimal yaitu rasio pemampatan 20.03 dan PSNR 25.88 dB dengan wavelet Biorthogonal, 3 level dekomposisi, model HVS Ngan pada norm 3, harga K = 0.005 dan q =0.0075.
Selain itu Penggunaan metode kuantisasi subyektif juga terbukti dapat meningkatkan rasio pemampatan rata-rata sebesar 24 % untuk wavelet orthogonal dan sebesar 43 % untuk wavelet biorthogonal
Pemampatan citra menggunakan wavelet Biorthogonal menunjukkan hasil yang lebih baik daripada wavelet Orthogonal karena pada nilai rasio pemampatan yang sama wavelet Biorthogonal meghasilkan nilai PSNR yang lebih baik dari wavelet orthogonal untuk parameter sistem yang sama.

Image compression is a process to reduce bit information used in representation an image. The purpose is to obtain fewer amounts of data and can be reconstructed as a new image without significant decreasing the quality. Image compression is very profitable in efficiency of storage media and transmission of the image.
One of the effective methods is Human Visual System (HVS) method. The HVS image compression can decrease pshycovisual redundancy contained of an image following the characteristic human visual. To obtain an optimal performance image compression system, analysis and simulation HVS image compression system were done by using Orthogonal Wavelets (Daubechies-12) and Biorthogonal Wavelets (Spline) transform. Several models of HVS such as Ngan, Mannos, Nill and Bowon HVS models were done before threshold and quantization process through variation of norm.
Simulation and Analysis of still image 256 x 256 pixel show that the optimal performance (compression ratio 20.03 and PSNR 25.88 dB) occurred on wavelet Biorthogonal, 3 level decomposition, Ngan HVS model, norm 3, K = 0.005 and q = 0.0075.
Subjective quantization method also proved that its can increase average compression ratio 24 % for orthogonal wavelets and 43 % for biorthogonal wavelets.
Image compression system using Biorthogonal wavelets shows better than Orthogonal wavelets since in the same compression ratio, PSNR of Biorthogonal Wavelets is greater than Orthogonal Wavelets.
"
Depok: Fakultas Teknik Universitas Indonesia, 1998
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Febriliyan Samopa
"ABSTRAK
Untuk mengkompresi data menggunakan teknik kuantisasi vektor, dibutuhkan sebuah codebook yang dibentuk dari vektor-vektor yang dihasilkan dari data asal. Banyak metode-metode untuk membentuk codebook ini, yang bersifat deterministik maupun yang bersifat non-deterministik. Salah satu metode deterministik yang paling sering digunakan adalah Algoritma Lloyd. Sayang sekali Algoritma Lloyd ini memiliki kompleksitas n2 sehingga tidak cocok digunakan pada data yang menghasilkan jumlah vektor yang sangat besar. Pendekatan non-deterministik pun (neural network, aproksimasi) bukan merupakan pilihan yang baik untuk jumlah vektor yang besar, karena sifat non-deterministik tersebut menyebabkan waktu eksekusinya tidak dapat diperkirakan dan memiliki rentang yang besar pula seiring dengan membesarnya jumlah vektor.
Metode Fair-Share Amount ini dibuat khusus untuk men-generate codebook dari jumlah vektor yang besar. Dengan waktu eksekusi yang relatif singkat dan hasil yang cukup baik (error yang cukup kecil) metode ini cocok dipergunakan untuk jumlah vektor data yang besar karena kompleksitasnya hanyalah n 2log n. Tetapi metode ini bukannya tanpa kelemahan, karena metode ini sangat tidak cocok untuk diterapkan pada jumlah data yang kecil. Pada jumlah data yang kecil error yang dihasilkan relatif lebih besar dibanding dengan metode-metode lain yang ada pada saat ini."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2001
T40517
UI - Tesis Membership  Universitas Indonesia Library
cover
Sunardi
Depok: Fakultas Teknik Universitas Indonesia, 1998
S39417
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
"Pada era teknologi informasi saat ini permintaan akan keutuhan komunikasi multimedia terus meningkat. Situs web di internet dibuat semenarik mungkin dengan menyertakan visualisasi berupa gambar atau video yang dapat diputar. Citra (image) sebagai salah satu komponen multimedia memegang satu peranan sangat penting sebagai bentuk informasi visual. File citra memiliki kapasitas yang cukup besar, dan untuk mengaksesnya dibutuhkan waktu yang lama, sehingga dibutuhkan sebuah teknik kompresi data, dengan tujuan untuk mengurangi redudansi dari data-data yang terdapat dalam file citra, sehingga file citra dapat disimpan atau ditransmisikan secara efisien. Dalam hal ini file citra akan dikompresi dengan menggunakan algoritma SPIHT (Set Partitioning In Hierarchical Trees), SPIHT merupakan algoritma kompresi citra yang mampu mencapai rasio kompresi yang tinggi. Dengan cara mengkodekan koefisien hasil transformasi wavelet secara bertahap. Dikarenakan aliran data terkompresi sangat rentan terhadap gangguan kanal. Pada proses transmisi digunakan teknik Direct Sequence Spread Spektrum (DS-SS). Hasil yang didapat setelah simulasi, berupa citra-citra rekonstruksi yang diukur dengan parameter penilaian obyektif yang berdasarkan nilai Peak Signal to Noise Ratio. Penilaian obyektif kualitas citra rekonstruksi yang efisien dengan rate 2bpp diperoleh nilai PSNR 46.834 dB."
MULTI 1:1 (2015)
Artikel Jurnal  Universitas Indonesia Library
cover
Lovenly Greise Aendwi
"Alkalinitas memegang peranan penting dalam keseimbangan pH dalam air. Strip uji air sebagai instrumen pengukuran kadar alkalinitas total yang murah dan praktis digunakan tidak dapat memberikan hasil yang optimal karena perubahan warna dilihat dengan mata telanjang. Pada penelitian ini, dikembangkan sistem pembacaan perubahan warna barcode uji menggunakan analisis citra berbasis kamera ponsel pintar. Barcode uji merupakan pengembangan strip uji air yang terdiri dari tiga bagian sehingga berbentuk kotak menyerupai barcode. Pengaruh kompresi citra terhadap kualitasnya beserta tipe file citra sebagai input sistem yang dibangun juga akan dibahas lebih dalam pada penelitian ini. Barcode uji diambil menggunakan kamera ponsel pintar Samsung Galaxy A72, Huawei Nova 5T, dan RealMe 3Pro. Kompresi kualitas citra dilakukan dengan metode DCT dari kualitas 10% – 100% untuk memperkecil ukuran file citra tanpa mereduksi banyaknya informasi serta mempermudah proses transmisi data. Citra disegmentasi dan dikoreksi warnanya menggunakan metode Polynomial Color Correction (PCC) untuk kemudian dijadikan input dalam membangun sistem pengklasifikasi dan pengukuran kadar alkalinitas total air dengan arsitektur AlexNet. Metode segmentasi dan koreksi warna yang dibangun berhasil dilakukan pada tipe file citra JPG, PNG, BMP, dan TIF, namun dengan memerhatikan ukuran file dan nilai koreksi warna (Delta E), maka tipe file JPG dipilih sebagai tipe file input citra. Kinerja metode kompresi DCT dievaluasi menggunakan parameter PSNR, dimana kualitas maksimum yang masih mampu dijadikan sebagai input sistem yang dibangun adalah kualitas 80%. Arsitektur AlexNet sebagai model klasifikasi memiliki akurasi sebesar 99,5% dan model regresi memiliki nilai R2 = 0,995 dan RMSE = 4,249. Validasi model menggunakan air minum, air PAM sebagai air kebutuhan sanitasi, dan air kolam renang dengan arsitektur AlexNet menghasilkan nilai R2 = 0,906 dan RMSE = 8,861 untuk model regresi dan akurasi sebesar 90,8% untuk model klasifikasi.

Alkalinity plays important role in pH balance in the water. Water test strips an instrument for measuring total alkalinity levels, which are less expensive and easy to use, unfortunately cannot provide the optimal results because the color changes seen with the naked eye. In this study, a test barcode color change reading system was developed using a smartphone-based image analysis. The test barcode is the development of water test strip that consisting of three parts so that it is in the form of a square looks like barcode. The effect of image compression quality and the type of image file as input on system will be discussed. The test barcode image was taken using smartphone Samsung Galaxy A72, Huawei Nova 5T, and RealMe 3Pro. Image quality compression using DCT method from quality 10% – 100% to reduce image file size without reducing more of information and simplifying the data transmission process. The image will be segmented and color corrected applied using the Polynomial Color Correction (PCC) method to then be used as input on total alkalinity classification system and measurement system in water using AlexNet architecture. The segmentation and color correction methods has been successfully tested on JPG, PNG, BMP, and TIF image type files, but based on the file size and corrected value (Delta E), the JPG type file is chosen as the image input type file. The performance of DCT compression method is evaluated using PSNR, where the maximum quality that can still be used as input of system is 80%. AlexNet architecture as a classification model has an accuracy of 99,5% and the regression model has value of R2 = 0,995 and RMSE = 4,249. Model validation using drinking water, pool water, and PAM water as hygiene and sanitation water with AlexNet architecture resulted value of R2 = 0,906 and RMSE = 8,861 for the regression model and an accuracy of 90,8% for the classification model. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>