Ditemukan 19627 dokumen yang sesuai dengan query
Fakultas Teknik Universitas Indonesia, 2000
TA2795
UI - Tugas Akhir Universitas Indonesia Library
Dian Candra Kusuma
"Tugas akhir ini bertujuan untuk membuat sistem pengenal huruf tulisan tangan dengan menggunakan algoritma Backpropagation Neural Network. Untuk mendapatkan representasi huruf dari bentuk tulisan tangan pada sub-sistem ekstraksi ciri digunakan metode Freeman chain code dan pryeksi sumbu sehingga akan dihasilkan rangkaian kode kerangka citra tulisan huruf. Proses penghalusan dan penipisan citra dilakukan dengan algoritma klasik pada sub-sistem pra_pengolahan. Pengujian menghasilkan tingkat keberhasilan rata-rata 92,31% untuk citra huruf A?Z, 76,92% untuk citra huruf a?z dan 90% untuk citra angka 0-9."
Depok: Fakultas Teknik Universitas Indonesia, 2002
S39079
UI - Skripsi Membership Universitas Indonesia Library
Artikel Jurnal Universitas Indonesia Library
Rahmapuspita
Program Pascasarjana Universitas Indonesia, 2009
T26909
UI - Tesis Open Universitas Indonesia Library
Dudi Heryadi
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38718
UI - Skripsi Membership Universitas Indonesia Library
Achmad Dimyati
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38484
UI - Skripsi Membership Universitas Indonesia Library
Anggoro Gagah Nugroho
"Plat nomor merupakan suatu jenis identifikasi kendaraan bermotor. Setiap kendaraan bermotor yang beroperasi dijalanan diwajibkan untuk melengkapi kendaraannya dengan plat nomor atau Tanda Nomor Kendaraan Bermotor (TNKB) yang sesuai dengan kode wilayah, nomor registrasi dan masa berlaku. Plat nomor di Indonesia terdapat 3 warna yang dipakai yaitu hitam, merah dan kuning dengan masing masing warna untuk fungsi yang berbeda. Dengan jumlah kendaraan di Indonesia, sistem pengenalan plat nomor dibuat secara otomatis bisa di implementasikan untuk memudahkan berbagai hal dalam pendataan plat nomor diantaranya pengecekan plat nomor ketika di area parkir, menemukan kendaraan yang dicuri ataupun mobil yang melanggar lampu merah. Pada penelitian ini terdapat 2 metode yang sering digunakan untuk pengenalan plat nomor otomatis yaitu KNN (K-Nearest Neighbour) dan NN (Neural Network). Setelah dilakukan pengujian menggunakan 3 analisis uji yang sudah dilakukan oleh penulis, akurasi metode neural network berhasil mencapai 88,8% sedangkan pada K-Nearest Neighbor akurasinya mencapai 72,2%. Metode NN lebih baik daripada KNN pada pengujian kali ini disebabkan adanya modifikasi pada variable yang dapat membuat akurasi NN lebih baik daripada KNN. Sedangkan pada metode KNN tidak dapat merubah akurasi yang telah didapatkan.
Number plate is a type of motor vehicle identification. Every motorized vehicle operating on the road is required to complete the vehicle with a license plate or Motor Vehicle Number (TNKB) that matches the area code, registration number and validity period. Number plates in Indonesia there are 3 colors used, namely black, red and yellow with each color for different functions. With the number of vehicles in Indonesia, the number plate recognition system is made automatically can be implemented to facilitate various things in number plate registration including checking license plates when in the parking area, finding stolen vehicles or cars that violate red lights. In this study there are 2 methods that are often used for automatic number plate recognition, namely K-Nearest Neighbor and NN (Neural Network). After testing using 3 test analyzes carried out by the author, the accuracy of the neural network method reached 88.8% while the K-Nearest Neighbor accuracy was 72.2%. The NN method is better than KNN in this test due to a modification in the variable that can make the accuracy of NN better than KNN. While the KNN method cannot change the accuracy that has been obtained."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Rodiatul Adawiyah
"Mengenali burung hanya dengan suara mereka mungkin merupakan tugas yang sulit tetapi tidak berarti itu tidak mungkin. Convolutional Neural Network (CNN) saat ini sangat populer sebagai pendekatan untuk menyelesaikan tugas ini. Kesenjangan antara model berbasis CNN dan pendekatan berbasis fitur cukup jauh. Meskipun banyak dari rekaman itu cukup berisik, CNN bekerja dengan baik tanpa ada penghilangan bising tambahan. Kami mengembangkan aplikasi berbasis mobile bagi pengguna untuk merekam suara burung melalui perekam suara dalam aplikasi, kemudian rekaman tersebut akan dikirim ke back-end dan akan diklasifikasikan menggunakan model CNN untuk menentukan spesies burung tersebut. Dataset yang digunakan untuk penelitian ini dikumpulkan dari basis data kolaboratif Xeno-Canto pada 4 Juni 2020 dengan total 1.163 rekaman suara dari 60 spesies burung berasal dari Taiwan dan beberapa daerah lain. Hasil membuktikan bahwa pengenalan suara burung kami dapat mencapai kinerja yang memuaskan dan stabil. Aplikasi kami membutuhkan sekitar 10 detik untuk keseluruhan proses, termasuk transmisi dari front-end ke back-end, dan sekitar 6 detik untuk proses pengenalan dengan tingkat akurasi mencapai 96,85%. Selain itu, pengenalan suara burung kami mampu mengenali suara burung secara akurat dari rekaman berdurasi minimal 3 detik.
Recognizing birds just by their sound might be a difficult task but it does not mean it is not possible. Convolutional Neural Networks (CNNs) nowadays is really popular as an approach to complete the task. The gap between CNN-based models and shallow, featurebased approaches remained considerably high. Even though many of the recordings were quite noisy, the CNNs worked well without any additional noise removal. We develop a mobile-based application for users to capture a bird sound by the voice recorder in the application, then the input record will be sent to the back-end and will be classified to determine the species of the bird using a CNN model. The dataset used for this research is collected from Xeno-Canto collaborative database on June, 4th 2020 with a total of 1163 sound recordings from 60 species of bird is from Taiwan and some other regions. Results testify that our bird sound recognition can achieve a remarkable and steady performance. It took approximately 10-seconds for the whole process, including transmission between the front-end and the back-end, and about 6-seconds for the recognition process with the accuracy rate being 96.85%. In addition, our bird sound recognition is able to recognize the bird sound accurately from a minimum of 3-seconds length recording."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
TA-Pdf
UI - Tugas Akhir Universitas Indonesia Library
Sitinjak, Hermanto
"Suara denyut jantung memiliki pola khusus yang bersesuaian dengan kondisi jantung seseorang. Jantung yang tidak normal akan menimbulkan suara khas yang disebut murmur. Murmur disebabkan oleh berbagai hal yang menunjukkan kondisi jantung seseorang. Melalui Phonocardiogram (PCG) dapat dilihat gelombang sinyal denyut jantung seseorang. Spektrum denyut jantung abnormal memiliki pola spektrum yang khas. Sehingga melalui pola spektrum tersebut dapat diketahui kelainan jantung apa yang diderita oleh seseorang. Penelitian ini akan membuat suatu program simulasi yang akan mengenali tiga jenis kelainan jantung. Program simulasi ini menggunakan metode Jaringan Syaraf Tiruan dalam mengidentifikasi ketiga jenis kelainan jantung tersebut. Data yang akan digunakan sebagai database yaitu berupa sampel suara denyut jantung dengan format .wav, mono. Metode pelatihan Jaringan Syaraf Tiruan yang dibuat ini menggunakan fungsi traingdx yang terdapat pada Neural Network Toolbox MATLABTM. Adapun penggunaan fungsi traingdx ini karena waktu pelatihannya lebih cepat. Berdasarkan hasil pengujian pengenalan beberapa sampel kelainan jantung diperoleh akurasi rata-rata sebesar 82.2% dalam mengenali tiga jenis kelainan jantung tersebut.
Heartbeat has a unique pattern which corresponding to heart condition. Abnormal heart has a unique sounds which called murmurs. An murmur can be caused by something that indicates heart condition. It can be shown as a signal waveform of heartbeats by Phonocardiogram (PCG). Abnormal heartbeat has a unique spectral pattern. So with that spectral pattern it can be identify what kind of murmur types. This research make a simulation program which will identify 3 kinds of murmur heartbeats. This simulation program use Artificial Neural Network (ANN) to identify that murmurs. ANN database will use some murmurs heartbeats which record in .wav, mono fomat. Training method in this ANN use traingdx function which provided by Neural Network Toolbox MATLABTM. Traingdx function is a faster training method. This simulation program has 82.2% accuracy to detect 3 kinds of heartbeat murmur."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51434
UI - Skripsi Open Universitas Indonesia Library
Universitas Indonesia, 2005
S27401
UI - Skripsi Membership Universitas Indonesia Library