Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 51514 dokumen yang sesuai dengan query
cover
Fakultas Teknik Universitas Indonesia, 1998
TA2557
UI - Tugas Akhir  Universitas Indonesia Library
cover
Mirfan Brainer
Depok: Fakultas Teknik Universitas Indonesia, 1999
S39043
UI - Skripsi Membership  Universitas Indonesia Library
cover
Setio Wibowo
"Perkembangan ilmu dibidang kontrol diiringi pula dengan aplikasinya yang sejalan pada dunia industri. Sehingga, kendala-kendala aplikasi pada industri juga menjadi dasar dioptimasinya sistem-sistem pengendali. Salah satunya adalah sistem logika fuzzy (fuzzy logic) yang secara luas sudah banyak digunakan untuk pengendalian, sebagai salah satu alternatif selain PID kontroler. Fuzzy logic controller sebagai jawaban terhadap sistem yang membutuhkan output dengan ketelitian tinggi, yang tentunya sistem pengendaliannya cukup kompleks. Salah satu penerapan pengendali logika fuzzy di industri adalah untuk pengendalian tangki pengontro! density, yang merupakan sub sistem dalam suatu proses pengolahan bahan pembuatan atap asbes. Aplikasi pengendaliannya dilakukan terhadap target pencapaian set point density dan level kapasitas bahan pada tangki tersebut. Pengendalian sistem ini dapat dikatakan mempunyai multi input-multi output (MIMO), yaitu dengan set point input density dan level kapasitas, output yang diharapkan adalah tercapainya density dan level bahan sesuai yang ditargetkan pada tangki. Pencapaian salah satu set point akan mempengaruhi set point lainnya, dimana ketika pencapaian target density diupayakan maka level bahan juga terpengaruh atau berlaku sebaliknya. Pada tugas akhir ini, dibahas konsep dan rancangan proses dengan simulasi pengendalian pada tangki pengontrol density berbasis fuzzy logic controller dengan menggunakan simulink pada program matlab versi 6.1."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S40188
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siti Romlah
"Pengeringan bahan pangan konvensional umumnya dihamparkan dan dialas anyaman bambu, dijemur di bawah sinar matahari. Arena jemur terbuka, lalat dapat hinggap atau jamur tumbuh akibat kelembaban udara tidak terkontrol. Kebersihan dan higienitas bahan pangan menjadi hal yang penting. Ruang pengering modern berbentuk - inkubator - dengan sistem kontrol suhu dan kelembaban dirancang untuk menggantikan cara pengeringan konvensional. Obyek yang dikeringkan singkong, bahan baku Mocal pengganti tepung terigu yang masih import. Nilai ekonominya lebih tinggi dibandingkan tapioka. Hasil pengeringan singkong dalam inkubator lebih bersih, bebas debu, anti hujan dan higien dibandingkan cara konvensional. Suhu dan kelembaban ruang dikontrol dengan metode Fuzzy Logic Controller (FLC). Temperatur, kelembaban udara dikondisikan agar proses pengeringan optimal.
Fuzzy Logic Controller (FLC) digunakan untuk memproses input Error, E(k) dan Cange in Error dE(k). Karakteristik kering singkong adalah penyusutan ukuran bahan baku (40%). Suhu dan kelembaban udara dideteksi dan diukur oleh ICLM35 dan SHT11. Output sensor akan dibandingkan dengan setting point menggunakan program bahasa C. Proses pengaturan setting point dan tampilan output diberikan dalam dua pilihan yaitu melalui LCD dan Komputer. Tampilan output komputer menggunakan program Visual Basic. Kontrol suhu ruang - inkubator - pada interval 38°C sampai dengan 55°C, kinerja pengeringan mencapai 90%.

In conventional drying, foodstuffs spread on woven bamboo, dried in the sun. In the arena of open drying can fly alighted or fungi grow due to humidity is not controlled. Cleanliness and hygiene of foodstuffs is important thing. Modern drying chamber shaped ""incubator"" with temperature and humidity control system designed to replace conventional drying. The object is dried cassava raw material substitutes Mocal. The dried cassava in the incubator clean, dust free, anti-rain and hygienic compared to conventional way. Temperature and humidity controlled room with a Fuzzy Logic Controller (FLC). Temperature and humidity are conditioned to optimize drying process.
Fuzzy Logic Controller (FLC) is used for processing input Error, E(k) and changing in Error dE(k). Characteristic of dry cassava is shrinkage of size of the raw materials (40%). Temperature and humidity will be detected and measured by ICLM35 and SHT11. Sensor outputs are compared with the setting point. FLC process is done by computer using the program language C. The process of setting point and display output is given in two options, LCD and Computer. View computer output using Visual Basic. Room temperature control ""incubators"" are expected to be at 38°C intervals up to 55°C, drying performance reached 90%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51303
UI - Skripsi Open  Universitas Indonesia Library
cover
Fauzan Aldiansyah
"Pengontrol aliran banyak digunakan di berbagai industri, seperti di industri perminyakan untuk mengalirkan minyak dari minyak lepas pantai ke darat atau digunakan untuk distribusi minyak. Pengontrol aliran yang paling banyak digunakan dalam industri adalah pengontrol berbasis PID konvensional yang diimplementasikan menggunakan PLC. PLC banyak digunakan dalam industri karena kekompakannya, memiliki konektivitas standar dan memiliki keandalan yang tinggi. Dalam penelitian ini, pengontrol non-konvensional, yaitu pengontrol Neuro-Fuzzy, diterapkan pada pabrik prototipe yang mengandung air sebagai agen alirannya. Pabrik prototipe terdiri dari tangki air, pompa air, katup gerbang, katup kontrol, flow meter, dan sistem perpipaan. Kontroler Neuro-Fuzzy dalam penelitian ini dirancang berdasarkan algoritma ANFIS, dengan input berupa kesalahan dan perubahan kesalahan dari variabel proses yang diamati, dalam hal ini aliran air pada pipa keluaran pabrik prototipe. Pengontrol dioperasikan di lingkungan MATLAB/SIMULINK pada PC, yang memperoleh informasi laju aliran berasal dari flow meter yang terhubung ke PLC. PLC berkomunikasi dengan pengendali melalui fasilitas OPC. Output dari pengontrol, yang berupa bukaan katup kontrol, akan dikirim ke PLC melalui OPC, oleh karena itu PLC dapat mengontrol bukaan katup sesuai dengan laju aliran air yang diinginkan. Setelah menjalani proses pelatihan, pengendali berbasis ANFIS yang dikembangkan diuji dengan berbagai titik setel debit air untuk mendapatkan informasi kinerjanya. Dari penelitian ini ditemukan bahwa pengontrol berbasis ANFIS adalah pengontrol dengan kinerja yang baik, yang memiliki waktu naik rata-rata 16,88 detik, waktu penyelesaian 30,68 detik, dan dengan overshoot 0% dan 35,65%, dan memiliki relatif kecil kesalahan 2,59%.

Flow control is widely used in various industries, such as in the oil industry to flow oil from offshore to onshore oil or used for oil distribution. The most widely used flow controller in the industry is conventional PID-based controller which is implemented using PLC. PLCs are widely used in industry because of their compactness, standard connectivity and high reliability. In this study, a non-conventional controller, the Neuro-Fuzzy controller, is applied to a prototype plant that contains water as its flow agent. The prototype plant consists of a water tank, a water pump, a gate valve, a control valve, a flow meter, and a piping system. The Neuro-Fuzzy controller in this study was designed based on the ANFIS algorithm, with input in the form of errors and error changes of the observed process variables, in this case the flow of water in the prototype factory output pipe. The controller is operated in a MATLAB / SIMULINK environment on a PC, which gets flow rate information from a flow meter connected to the PLC. PLC communicates with controllers through OPC facilities. The output from the controller, which is the control valve opening, will be sent to the PLC via OPC, therefore the PLC can control the valve opening according to the desired flow rate. After undergoing the training process, the ANFIS-based controller that was developed was tested with various water discharge set points to obtain performance information. From this study it was found that ANFIS-based controller is a controller with good performance, which has an average rise time of 16.88 seconds, a completion time of 30.68 seconds, and with 0% and 35.65% overshoot, and has relatively small errors 2.59%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jeffry Adityapriatama
"Dengan berkembangnya konstruksi perkotaan dan kebutuhan industri, maka semakin diperlukannya pipa yang panjang. Untuk Kebutuhan industri diperlukannya sistem pengendalian yang kuat, adaptif, efisien, dan ramah lingkungan untuk memenuhi kebutuhan yang sangat besar. Pada penelitian ini telah dirancang suatu sistem kendali berbasis kecerdasan buatan dengan logika fuzzy pada pengendalian debit air berbasis PLC .Dalam penelitian ini sistem logika fuzzy menggunakan 2 input fuzzy set yaitu error dan perubahan error. Setiap Fuzzy set menggunakan 5 fungsi keanggotaan yaitu negatif besar (NB), negatif medium(NM), zero(ZO), positif medium(PM), positif besar(PB). Sistem dapat melakukan pengendalian debit sesuai yang dibutuhkan.
Sistem ini berada pada sebuah komputer yang berfungsi sebagai pusat pengendalian dan mengambil data dari OPC server dimana data tersebut diambil dari PLC menggunakan komunikasi ethernet yang langsung terhubung dengan plant. Sistem pengendalian berbasis logika fuzzy dioperaasikan pada prototype plant dalam skala lab, dan analisis performa diverivikasi secara eksperimental. Data secara langsung dapat diambil dan dilihat menggunakan SIMULINK MATLAB. Berdasarkan hasil eksperimen dapat simpulkan pengendalian menggunakan logika fuzzy lebih baik dibanding pengendalian konvesional PID. Hasil pengendalian menggunakan logika fuzzy lebih cepat mencapai steady state yaitu 24.24 sekon tanpa adanya overshoot dibandingkan dengan menggunakan PID yaitu 48.6 sekon dengan overshoot sebesar 16.2%.

With the development of urban construction and industrial needs, the need for long pipes is increasing. For industrial needs, a control system that is strong, adaptive, efficient, and environmentally friendly is needed to meet huge needs. In this study, a control system based on artificial intelligence has been designed with fuzzy logic for PLC-based water flow control. In this study, the fuzzy logic system uses 2 fuzzy set inputs, namely error and error change. Each Fuzzy set uses 5 membership functions, namely large negative (NB), medium negative (NM), zero (ZO), medium positive (PM), large positive (PB). The system can control the discharge as needed.
This system is located on a computer that functions as a control center and retrieves data from the OPC server where the data is retrieved from the PLC using ethernet communication which is directly connected to the plant. The fuzzy logic-based control system was operated on a prototype plant on a lab scale, and the performance analysis was verified experimentally. Direct data can be retrieved and viewed using SIMULINK MATLAB. Based on the experimental results, it can be concluded that controlling using fuzzy logic is better than conventional PID control. The result of controlling using fuzzy logic reaches a steady state faster, which is 24.24 seconds without overshoot, compared to using PID, which is 48.6 seconds with an overshoot of 16.2%.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jeffrey Adityapriatama
"Dengan berkembangnya pembangunan perkotaan dan kebutuhan industri, semakin pipa panjang diperlukan. Untuk kebutuhan industri diperlukan suatu sistem system pengendalian yang kuat, adaptif, efisien, dan ramah lingkungan untuk memenuhi kebutuhan yang sangat besar. Pada penelitian ini telah dirancang sebuah sistem kendali berdasarkan kecerdasan buatan dengan logika fuzzy pada kontrol aliran air berdasarkan PLC. Pada penelitian ini sistem logika fuzzy menggunakan 2 input himpunan fuzzy yaitu error dan perubahan kesalahan. Setiap himpunan fuzzy menggunakan 5 fungsi keanggotaan yang bernilai negatif besar (NB), negatif sedang (NM), nol (ZO), positif sedang (PM), besar positif (PB). Sistem dapat melakukan kontrol debit sesuai kebutuhan. Sistem ini terletak pada komputer yang berfungsi sebagai pusat kendali dan mengambil data dari server OPC tempat data diambil dari PLC menggunakan komunikasi Ethernet yang terhubung langsung ke plant. Sistem kontrol berbasis logika fuzzy dioperasikan pada pabrik prototipe pada skala lab, dan analisis kinerja diverifikasi secara eksperimental. Data dapat langsung diambil dan dilihat menggunakan MATLAB SIMULINK. Berdasarkan hasil percobaan dapat disimpulkan kontrol menggunakan logika fuzzy lebih baik dari kontrol konvensional PID. Hasil kontrol menggunakan logika fuzzy mencapai kondisi tunak lebih cepat yaitu 24,24 detik tanpa overshoot dibandingkan dengan menggunakan PID yaitu ID 48,6 detik dengan overshoot 16,2%.

With the development of urban development and industrial needs, more and more long pipes are needed. For industrial needs, a strong, adaptive, efficient, and environmentally friendly control system is needed to meet enormous needs. In this research, a control system based on artificial intelligence has been designed with fuzzy logic on water flow control based on PLC. In this study, the fuzzy logic system uses 2 input fuzzy sets, namely error and error change. Each fuzzy set uses 5 membership functions with large negative values ​​(NB), medium negative (NM), zero (ZO), moderate positive (PM), large positive (PB). The system can perform discharge control as needed. This system is located on a computer that functions as a control center and retrieves data from the OPC server where data is retrieved from the PLC using Ethernet communication that is connected directly to the plant. Fuzzy logic based control system is operated in a prototype factory on a lab scale, and performance analysis experimentally verified. Data can be directly retrieved and viewed using MATLAB SIMULINK. Based on the experimental results, it can be concluded that the control using fuzzy logic is better than conventional PID control. The results of the control using fuzzy logic reached steady state faster, namely 24.24 seconds without overshooting compared to using PID, namely ID
48.6 seconds with 16.2% overshoot."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andi Adriansyah
"Behavior-based control architecture has been broadly recognized due to their compentence in mobile robot development. Fuzzy logic system characteristics are appropriate to address the behavior design problems. Nevertheless, there are problems encountered when setting fuzzy variables manually. Consequently, most of the efforts in the field, produce certain works for the study of fuzzy systems with added learning abilities. This paper presents the improvement of fuzzy behavior-based control architecture using Particle Swarm Optimization (PSO). A wall-following behaviors used on Particle Swarm Fuzzy Controller (PSFC) are developed using the modified PSO with two stages of the PSFC process. Several simulations have been accomplished to analyze the algorithm. The promising performance have proved that the proposed control architecture for mobile robot has better capability to accomplish useful task in real office-like environment.
Arsitektur pengendali robot berbasis perilaku telah secara efektif menunjukkan kompetensinya dalam pengembangan teknologi robot bergerak. Karakteristik sistem logika fuzzy adalah salah satu solusi yang dapat diandalkan untuk menyelesaikan beberapa problem pada perancangan perilaku robot. Akan tetapi, terdapat kesulitan untuk dapat menala parameter fuzzy secara manual. Oleh karena itu beberapa studi dilakukan untuk mengintroduksi kemampauan pembelajaran pada sistem logika fuzzy. Tulisan ini membahas pengembangan arsitektur pengendali robot berbasis perilaku dengan memanfaatkan Particle Swarm Optimization (PSO). Perilaku robot mengikuti dinding berbasiskan Particle Swarm Fuzzy Controller (PSFC) dibangun menggunakan PSO yang telah dimodifikasi dengan dua tahap proses PSFC. Beberapa pengujian telah dilakukan untuk menganalisa performansi algoritma tersebut. Hasil pengujian menunjukkan bahwa perancangan tersebut memiliki performansi yang menjanjikan bahwa robot dapat menyelesaikan tugasnya dengan baik pada suatu lingkungan tertentu."
Universitas Mercu Buana, Departement of Electrical Engineering, Faculty of Engineering, 2016
PDF
Artikel Jurnal  Universitas Indonesia Library
cover
"Paper ini memaparkan perancangan pengendali robot berbasis perilaku menggunakan Fuzzy, di mana parameter Fuzzy ditala secara otomatis menggunakan Particle Swarm Optimization (PSO) yang diistilahkan dengan Particle Swarm Fuzzy Controller (PSFC). Suatu fungsi tertentu dirancang untuk meningkatkan performa proses pencarian PSO. Fungsi tersebut mengubah harga bobot inersia menjadi berkurang secara sigmoid (Sigmoid Decreasing Inertia Weight). Empat buah perilaku robot dirancang menggunakan PSFC. Kemudian seluruh perilaku tersebut juga dikoordinasikan menggunakan PSFC. Beberapa simulasi pengendalian pergerakan robot dan percobaan dengan robot MagellanPro telah dilakukan untuk menguji performa algoritma yang dirancang. Algoritma lain, Genetic Fuzzy Controller (GFC) digunakan sebagai pembanding. Dari hasil pengujian dapat dikatakan bahwa pengendali yang dirancang memiliki kemampuan yang baik untuk menyelesaikan tugasnya pada suatu lingkungan nyata.

Abstract
This paper describes the design of robots controllers based on behaviour using Fuzzy, in which the Fuzzy parameters are automatically tuned using the Particle Swarm Optimization (PSO) which is termed the Particle Swarm Fuzzy Controller (PSFC). A particular function is designed to improve the performance of PSO search process. That particular function changes the value of the inertia weight, so it?s decreased in sigmoid (Sigmoid Decreasing Inertia Weight). Four types of robots behaviour are designed and coordinated using the PSFC. Some simulation of the robot movement control and experiments with the robot MagellanPro have been conducted to test the performance of the algorithm that have been designed. Another algorithm, Genetic Fuzzy Controller (GFC) is used as a comparison. From the test results, it can be said that the controllers that have been designed, have a good ability to accomplish its task in a real environment."
[Fakultas Ilmu Komputer Universitas Indonesia, Universitas Mercu Buana. Fakultas Teknologi Industr], 2010
pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Andi Adriansyah
"Paper ini memaparkan perancangan pengendali robot berbasis perilaku menggunakan Fuzzy, di mana parameter Fuzzy ditala secara otomatis menggunakan Particle Swarm Optimization (PSO) yang diistilahkan dengan Particle Swarm Fuzzy Controller (PSFC). Suatu fungsi tertentu dirancang untuk meningkatkan performa proses pencarian PSO. Fungsi tersebut mengubah harga bobot inersia menjadi berkurang secara sigmoid (Sigmoid Decreasing Inertia Weight). Empat buah perilaku robot dirancang menggunakan PSFC. Kemudian seluruh perilaku tersebut juga dikoordinasikan menggunakan PSFC. Beberapa simulasi pengendalian pergerakan robot dan percobaan dengan robot MagellanPro telah dilakukan untuk menguji performa algoritma yang dirancang. Algoritma lain, Genetic Fuzzy Controller (GFC) digunakan sebagai pembanding. Dari hasil pengujian dapat dikatakan bahwa pengendali yang dirancang memiliki kemampuan yang baik untuk menyelesaikan tugasnya pada suatu lingkungan nyata.
This paper describes the design of robots controllers based on behaviour using Fuzzy, in which the Fuzzy parameters are automatically tuned using the Particle Swarm Optimization (PSO) which is termed the Particle Swarm Fuzzy Controller (PSFC). A particular function is designed to improve the performance of PSO search process. That particular function changes the value of the inertia weight, so it‟s decreased in sigmoid (Sigmoid Decreasing Inertia Weight). Four types of robots behaviour are designed and coordinated using the PSFC. Some simulation of the robot movement control and experiments with the robot MagellanPro have been conducted to test the performance of the algorithm that have been designed. Another algorithm, Genetic Fuzzy Controller (GFC) is used as a comparison. From the test results, it can be said that the controllers that have been designed have a good ability to accomplish its task in a real environment.
"
Universitas Mercu Buana, Fakultas Teknologi Industri, Program Studi Teknik Elektro, 2010
PDF
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>