Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 161675 dokumen yang sesuai dengan query
cover
cover
Amallia Ashuri
"Air merupakan kebutuhan utama manusia, begitu pula untuk masyarakat terdampak bencana. Mereka harus bisa menjangkau ketersediaan air bersih yang memadai untuk memelihara kesehatannya. Pada tahap awal kejadian bencana, ketersediaan air bersih bagi pengungsi perlu mendapat perhatian karena tanpa air bersih pengungsi akan rentan tertular penyakit seperti diare, tifus, scabies, dan penyakit lainnya. Salah satu solusi untuk mengatasi permasalahan penyediaan air minum di daerah bencana adalah dengan menyediakan air melalui unit Instalasi Pengolahan Air (IPA) dengan sistem mobile. IPA mobile dalam kegiatan ini didesain dengan tetap mempertimbangkan pemenuhan kebutuhan air bagi masyarakat yang memenuhi persyaratan kuantitas, kualitas, dan kontinuitas. Aspek kuantitas dievaluasi dengan pengukuran kapasitas operasi selama uji kinerja IPA mobile. Aspek kualitas dievaluasi dengan perbandingan kualitas air olahan dengan baku mutu air minum Permenkes No. 492/MENKES/PER/IV/2010. Sementara aspek kontinuitas dievaluasi dengan kemampuan IPA beroperasi selama 12 jam. Berdasarkan hasil uji kinerja, IPA mobile telah mampu memenuhi ketiga aspek tersebut. Catatan penting yang didapat selama uji kinerja adalah operasional IPA mobile harus diperhatikan agar kinerja IPA mobile terutama dalam pemenuhan aspek kualitas dapat terjaga."
Bandung: Kementerian Pekerjaan Umum dan Perumahan Rakyat, 2022
728 JUPKIM 17:2 (2022)
Artikel Jurnal  Universitas Indonesia Library
cover
cover
Ghina Aldila Cahyani
"Mengacu pada Rencana Pembangunan Jangka Menengah Daerah (RPJMD) Kabupaten Tangerang yaitu meningkatkan cakupan pelayanan SPAM sebesar 65% pada tahun 2023, salah satu langkah mewujudkan rencana tersebut dengan meningkatkan kapasitas penyerapan IPAM Cikokol sebesar 300 l/s sehingga kapasitas debit IPAM Cikokol dari 1275 l/s menjadi 1575 l/s. Penelitian ditunjukan untuk mengevaluasi kinerja instalasi pengolahan dari segi kuantitas dan kualitas pada kapasitas debit eksisting sebesar 1275 l/s dan pada kapasitas debit setelah peningkatan debit sebesar 1575 l/s. Metode evaluasi yang dilakukan pada penelitian ini terdiri dari proyeksi kebutuhan air, analisis kualitas air baku dan produksi, dan evaluasi unit instalasi. Hasil evaluasi menunjukan bahwa terdapat beberapa kinerja unit instalasi yang belum memenuhi standar/kriteria desain yang ada diantaranya unit flokulasi, sedimentasi, dan filtrasi. Meski begitu dari segi kualitas air produksi, seluruh parameter air minum masih memenuhi peraturan baku mutu yang ada. Berdasarkan proyeksi kebutuhan air wilayah pelayanan IPAM Cikokol pada tahun 2030 dengan debit 1575 l/s hanya memenuhi 21% tingkat pelayanan dari 11 kecamatan yang dilayani oleh IPAM Cikokol.

Refer to the Tangerang Medium-term Development Plan (RPJMD) which is to increase the coverage of SPAM services by 65% in 2023, one of the program to realization those plan is to increase the capacity of Cikokol WTP in the amount of 300 l/s from 1275 l/s to 1575 l/s. This research is purposed to evaluate the performance of installation unit in terms of quantity and quality in the existing capacity of 1275 l/s and the increased capacity of 1575 l/s. Research methods include the water demand projections, analysis of raw and production water quality, and evaluation if installation units. From the evaluation result, known that there are installation units that not eligible with standard criteria including flocculation, sedimentation, and filtration units. Nevertheless the water production quality still comply the existing quality standards. Based on the water demand projection of WTP Cikokol service area with capacity 1575 l/s in 2030 only obtain 21% of the service levels in 11 districts served by WTP Cikokol."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Barus, William Yehezekiel Munaldi
"Penelitian ini bertujuan untuk mengetahui tingkat penyisihan Cryptosporidium serta indikator keberadaannya di air E.coli dan kekeruhan, mengevaluasi desain, dan mengevaluasi operasional unit pengolahan IPA PQR. Sampel pada penelitian ini berasal dari air baku, outlet Unit Prasedimentasi, Unit Pulsator, dan Unit Filtrasi. Tingkat penyisihan Cryptosporodium dan E. Coli dihitung dengan menggunakan metode LVR sedangkan tingkat penyisihan Kekeruhan dengan membandingkan kekeruhan inlet dan outlet unit. Analisa Cryptosporidium mengacu pada metode EPA 1623, pengukuran kekeruhan air menggunakan spektofotometri portabel, dan Analisa E. Coli mengacu pada metode EPA 1604.
Hasil penelitian menunjukkan tingkat penyisihan Cryptosporidium Unit Prasedimentasi sebesar 0,30 log10; Unit Pulsator 2,57 log10 Unit Filter tidak dapat dihitung Air baku hingga outlet filter sebesar IPA 2,57 log10. Tingkat penyisihan Kekeruhan Unit Prasedimentasi adalah 21,75 ; Unit Pulsator 96,96 ; Unit Filter 87,92. Tingkat penyisihan E. Coli Unit Prasedimentasi adalah 0,58 log10; Unit Pulsator 1,24 log10; Unit Filter 2,20 log10. Berdasarkan hasil evaluasi desain dan operasional unit yang sudah sesuai dengan kriteria desain dan standar operasional hanya Unit Prasedimentasi. Dengan kondisi pengoperasian dan mempertahankan desain yang ada saat ini, IPA PQR dapat menyisihkan Cryptosporidium dengan sempurna.

This researche objective was to determine the level of Cryptosporidium removal as well as its presence indicators in water E.coli and turbidity, to evaluate the design, and to evaluate the operation of the PQR IPA processing unit. The sample in this study was from raw water, Predimentation Unit outlet, Pulsator Unit outlet, and Filtration Unit outlet. Cryptosporodium and E. Coli removal rates were calculated using the LVR method while the Turbidity removal rate by comparing turbidity inlets and unit outlets. The Cryptosporidium analysis refers to the EPA 1623 method, E. Coli analysis refers to EPA 1604 method and the measurement of turbidity of water using portable specekto photometry.
The results showed the removal rate of Cryptosporidium Presedimentation Unit is 0.30 log10 Unit Pulsator 2.57 log10 Filter Units can not be calculated Overall WTP PQR 2.57 log10. Presedimentation Unit Turbidity removal rate is 21.75 Unit Pulsator 96.96 Filter Unit 87.92. Elimination rate of E. Coli Presedimentation unit is 0.58 log10 Unit Pulsator 1.24 log10 Filter Unit 2.20 log10. Based on the results of design and operational evaluation of units that are in accordance with design criteria and operational standards only Predimentation Units. Under the operating conditions and maintaining the current design, the PQR IPA can completely exclude Cryptosporidium.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Niswatul Choiriah
"Salah satu fungsi panting air dalam kehidupan manusia adalah untuk minum. Air yang kita minum harus mengandung mineral-mineral yang dibutuhkan oieh tubuh serta bebas dari mikroorganisme yang dapat menyebabkan penyakit. Oleh karcna itu, air yang kita minum harus diolah terlebih dahulu. Pengolahan air dilakukan dengan menggunakan unit pengolahan air dan unit penginjeksian ozon. Unit pengolahan air ini terdiri atas sebuah mikrofiltcr dan kolom-kolom unggun tetap campuran dengan media pengisi kolom pasir aktif, karbon aktifl dan zeolit. Ozon diinjeksikan dengan menggunakan injektorjenis venturi.
Penelitian ini dilakukan untuk mengetahui laju alir optimum dari unit pengolahan air minum, mengetahui pengaruh penginjeksian ozon terhadap kandungan kalsium dan magnesium dalam air. serta mengetahui Iama penginjeksian ozon yang efektif untuk menghilangkan pengotor-pcngotor biologis. Air sumber yang digunakan adaiah air sumur Departemcn Teknik Gas dan Petrokimia FTUI, Depok. Variasi yang dilakukan adalah variasi laju alir dan lamanya penginjeksian ozon. Laju alir yang digunakan adalah 10, 20, 30, 40, dan 50 Lljam. Sedangkan lama penginjeksian ozon yang dilakukan adaiah 15 menit dan 30 mcnit. Kandungan kalsium dan magnesium diuji dcngan menggunakan AAS. Pengujian mikrobiologi dilakukan dcngan metotlc tabung lhnnenlasi.
Dari penelitian didapat laju alir optimum dari unit pengolahan air ini adalah 10 L/jam. Penginjeksian ozon tidak mempengaruhi jumlah kalsium dan magnesium yang ada dalam air. Lama penginjeksian ozon yang optimum untuk menghilangkan bakteri koli total dan bakteri koli tinja adalah 15 menit."
Depok: Fakultas Teknik Universitas Indonesia, 2004
S49408
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hamid Dewa Saputra
"Slow sand filter merupakan salah satu jenis pengolahan air sederhana yang efektif untuk diaplikasikan pada skala pelayanan yang kecil, khususnya pada area dengan populasi di bawah 30000 orang. Salah satu alternatif media yang banyak diteliti untuk digunakan sebagai media tambahan pada slow sand filter adalah geotekstil non-woven, di mana dalam beberapa penelitian penambahan media ini terbukti mampu menunjang performa slow sand filter, khususnya dalam penyisihan parameter kekeruhan dan total koliform, serta mampu meningkatkan efisiensi pemeliharaan terhadap instalasi unit. Pada penelitian ini, disusun rancangan pengolahan slow sand filter dengan tambahan media geotekstil untuk digunakan sebagai alternatif pengolahan air bersih untuk mendukung kebutuhan air bersih harian di Fakultas Teknik Universitas Indonesia (FTUI) yang terus meningkat akibat bertambahnya jumlah sivitas akademik setiap tahunnya. Berdasarkan perhitungan proyeksi menggunakan metode regresi linear dan decreasing rate of increase (DRI), jumlah sivitas akademik FTUI mencapai 10735 orang pada tahun 2042 dengan proyeksi kebutuhan air sebesar 6,8 L/detik. Melalui tahapan perancangan, ditetapkan rangkaian instalasi yang terdiri dari bangunan submerged intake, roughing filter, slow sand filter geotekstil, dan unit klorinasi untuk mengolah air Danau Mahoni UI untuk dapat digunakan sebagai sumber air bersih di FTUI. Perhitungan desain untuk masing-masing unit mengacu pada buku pedoman teknis desain pengolahan air dan penelitian yang telah ada sebelumnya. Berdasarkan hasil perhitungan desain, dapat dicapai kualitas air hasil olahan dengan nilai kekeruhan 1,75 NTU dan total koliform 0 CFU/100 mL. Kedua parameter tersebut telah memenuhi persyaratan kualitas air minum berdasarkan Permenkes RI Nomor 492/MENKES/PER/IV/2010.

A slow sand filter is one type of simple water treatment method that is effective to be applied to a small community, especially in areas with under 30000 population. One alternative media that has been widely studied for use as an additional media in slow sand filters is non-woven geotextiles, wherein some studies the addition of this media has proven to be able to support the performance of slow sand filters, especially in the removal of turbidity and total coliform, as well as being able to increase maintenance efficiency of the installation. In this research, a geotextile aided slow sand filter was designed to be used as an alternative water treatment method to supports the daily clean water needs at the Faculty of Engineering, Universitas Indonesia (FTUI) which continues to increase due to the increasing number of students each year. Through population forecasting using the linear regression and decreasing rate of increase (DRI) methods, the number of FTUI academicians reached 10735 people in 2042 with a projected water requirement of 6.8 L/s. Through design, a series of installations were set up consisting of submerged intake building, roughing filter, geotextile aided slow sand filter, and chlorination unit to treat water from Lake Mahoni UI to be used as a source of clean water in FTUI. Design calculations for each unit are based on water treatment building technical guideline books and existing studies. Based on the results of design calculations, it can be achieved the quality of treated water with a turbidity value of 1.75 NTU and a total coliform of 0 CFU/100 mL. Both of these parameters have met the drinking water quality requirements based on Permenkes RI No. 492/MENKES/PER/IV/2010."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Komalasari
"Peraturan Menkes Rl No.416 tahun 1990 dalam standar kualitas Air Minum
menyatakan bahwa air minum tidak boleh terdapat bakteri Eschericia coli dalam 100 ml contoh air. Adanya bakteri Coliform merupakan indikasi air tercemar kuman pathogen, sehingga bakteri Coliform merupakan indikator pencemaran air secara mikrobiologis.
Bakteri E. Coli dapat menyebabkan Gastroenteristis. Salah satu cara mengurangi bakteri bakteri E. coli pada proses pengolahan air adalah dengan proses koagulasi (penggumpalan) yang diikuti proses flokulasi (pembentukan flok) dan sedìmentasi (pengendapan flok). Salah satu faktor yang menentukan keberhasilan koagulan adalah penggunaan koagulan yang tepat untuk tingkat kekeruhan air baku yang sudah ditentukan (dalam hal ini kekeruhan tinggi). Koagulan yang umum digunakan adalah
AI2(SO4)3 yang biasa disebut tawas atau alum, karena cukup murah dan mudah didapat dipasaran. Kenyataan menunjukkan tingkat kekeruhan air baku (dalam hal ini sungai Ciliwung) semakin tinggi sehingga diperlukan koagulan alternatif yang lebih efektif. Penggunaan koagulan PAC (Poly Aluminum Chiorida) sebagai koagulan alternatif yang lebih efektif untuk air baku kekeruhan tinggi.
Metode penelitian ini adalah true eksperimental. Sebagai kelompok eksperimen adalah sampel air baku yang diberi koagulan PAC, sedangkan kelompok pembanding adalah sampel air baku yang diberi koagulan Alum atau Tawas. Penelitian ini dilakukan dalam skala taboratorium, yaitu melalui analisa jartes untuk menentukan dosis optimum koagulan. Percobaan dilakukan di laboratonum pusat PAM Jaya dengan mengambil sampel air baku kekenihan tinggi (100 - 500 NTU) dan melakukan lima kali percobaan
dengan total sampel 30. Dosis koagulan yang digunakan adalah 20, 25, 30, 35, 40, 45
ppm.
Hasil yang diperoleh adalah Reduksi Eschericia coli rata-rata oleh PAC adalah 88.3166 dengari reduksi maksimum 99.97 % dan oleh Alum adalah 73.30 % dengan reduksi maksimum 96.67%. Secara statistik beda reduksi PAC terhadap Mum adalah perbedaan bermakna dengan nilai p <0,05. Dosis optimum rata-rata PAC adalah 20 ppmdengan rata-rata reduksi 89.01 %. Dosis optimum rata-rata Alum adalah 30 ppm dengan
rata-rata reduksi 81.60 %. Melihat kualitas air yang dihasilkan terhadap parameter pH,
kekeruhan, dan E. coil Iebih baik menggunakan PAC. Nilai rata-rata kualitas air pada
pemberian dosis optimum PAC adalah : kekeruhan 7,2 NTU, pH akhir 7.08 dan reduksi
E. coil 97.29%. Nilai rata-rata kualitas air pada pemberian dosis optimum Alum adalah:
kekeruhan 16.2 NTU, pH 6.8 dan reduksi E. coil 95.06%.
Secara ekonomis didapat penghematan yang cukup besar, yaitu dengan
pemakaian PAC dapat dihemat biaya Rp 47.740.400 / bulan untuk Instalasi I PAM DKI
Jaya. Perhitungan ini diambil dan penghematan penggunaan dosis koagulan dan dosis
kapur tohor, dimana dengan PAC tidak diperlukan pemakaian kapur tohor untuk
menaikkan pH.
Dari hasil ini disarankan untuk air baku kekeruhan tinggì PAC dapat dijadikan
koagulan pengganti Alum, karena dari segi teknis Iebih menguntungkan, yaitu tidak
perlu penambahan kapur tohor untuk menetralkan pH dan mengurangi dosis Kaponit
pada proses desinfeksi serta waktu digunakan lebih pendek, dari segi biaya lebih hemat,
dan dari segi kualitas air yang dihasilkan lebih baik.

In general, raw water which comes from the river has been contaminated by
human or animal feces which is shown by the existing of an organism society called
Coliform such as Bacterium coli, Bacilus coil or Eschericia coli which are the ones of
microbiologie parameter. The existent of Coliform bacteria is an indicator of pathogenic
bacteria, so the Coliform bacteria is an indicator of microbiological water
contamination. Ministry of health regulation no.416 1990 for standardization of drinking
water states that the drinking water mustn’t contain the Eschericia coil bacteria in 100
ml the sample of water.
The E. coil bacteria may cause Gastroenterist. One way of reducing E. coli
bacteri in the water treatment is by coagulation process which is followed by floculation
and sedimentation, One factor which determined the succes of coagulation is the use of
the right coagulant for determined standard turbid raw water (in high tu bid level
matter). The most commonly used coagulant is the AI2(SO4)3 called “Tawas” or “Alum”,
it is quite cheap and can be found easily. The fact shows that the high turbid level of raw
water (in Ciliwung river matter) is getting higher, so an alternative of more effective
coagulant is needed. Lise of the PAC (Poly Aluminum Chloride) coagulant is more
effective for high turbid level raw water.
Method used in this research is true experimental. The experiment group consists
of samples of raw water with the PAC coagulant, compared with samples of raw water
with Tawas or Alum coagulant Research was done in an laboratory scale, through
jartest analysis to decide the optimum dose of coagulant. The experiment was done at
the PAM Jaya Laboratory by taking samples of high turbid of raw water (100-500 NTU)
and doing 5 times experiment with total samples of 30. The coagulant doses used of are
20, 25, 30, 35, 40, 45 ppm.
Average reduction of E. coli by the PAC is 88,32%, with maximum reduction of
99.97%, and by the Alum is 73.3% with the maximum reduction of 96.67%.
Statistically, the reduction difference between PAC and Alum is (15.02 ± 5.33)% With P
<0.05 in CI 95% of significant difference. The avarage optimum dose of PAC is 20 ppm
with average reduction of 89 %. The average optimum dose of Alum is 30 ppm with
average reduction of 81.6%. If we see the produced water quality the parameters Like:
pH, turbidity, and E.coli, it would be better for us to use the PAC. The average values of
water quality with PAC optimum dose given are : the turbidity is 7.2 NTU, the last pH is
7.08 and the E. coli reduction is 97.29%. Condition with Alum are: the turbidity is 16.2
NTU, the PH is 6.8 and the E.coli reduction is 95.06%.
Economically, by using the PAC we can save costs for about Rp
47.740.000/month. This calculation was done by savings in coagulant dose and in quick
lime dose, which by using the PAC we do not need the quick-lime to increase the pH
anymore.
Using the results obtained, it’s recomended , for the high level turbidity of the
raw water, to use the PAC as a substitution of Alum. Technically, it gives more revenues
by not using the quick-lime addition to neutralize the pH, reduces the “Kaporit” dose in
the dissinfection process, and shortens the process time. We can also reduce costs,
because it’s cheaper, and we can get better water quality than before.
"
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 1996
T3644
UI - Tesis Open  Universitas Indonesia Library
cover
Erdwin Hendriyanto Saputra
"Air merupakan unsur alam yang sangat penting untuk setiap makhluk hidup. Berdasarkan sumbernya saat ini banyak sumber air permukaan yang telah tercemari maka dari itu perlu adanya pengolahan sebelum menggunakan air permukaan dan salah satu metodenya yaitu filtrasi dengan jenis saringan pasir lambat dikarena berdasarkan beberapa literatur saringan pasir lambat cocok digunakan dengan nilai kekeruhan dibawah 50 NTU. Penelitian ini bertujuan memberikan referensi kepada UI terutama Fakultas Teknik UI terkait dengan unit-unit pengolahan air dan desainnya berdasarkan kualitas sumber air baku yaitu Danau Mahoni UI. Pengolahan air baku berfokus pada unit filtrasi dengan jenis saringan pasir lambat yang bermediakan zeolit dan pasir silika untuk menghilangkan besi dan mangan dengan komposisi 1,2 mg/L dan 1,3 mg/L. Filtrasi diharapkan dapat melayani Fakultas Teknik UI sampai dengan 2042 dan setelah dilakukan proyeksi kebutuhan air bersih pada tahun 2042 dibutuhkan air bersih sebanyak 19,67 L/detik. Pada perancangan unit ini data yang digunakan untuk berasal dari beberapa jurnal seperti nilai ketebalan zeolit 30 cm, silika 60 cm, kecepatan filtrasi 0,2 m/jam, dan efisiensi 95% serta waktu detensi 24 jam dan hasil perhitungan, penulis mendapatkan luas setiap unit yaitu bangunan intake 10,8 m2, bak penghubung 5,4 m2, suction well 7,9 m2, roughing filter 142,56 m2, slow sand filter 532 m2, bak pencuci media 361 m2, desinfeksi 12,96 m2, reservoir 141,12 m2, dan rumah pompa distribusi 9 m2. Berdasarkan hasil studi literatur dan perhitungan yang dilakukan diharapkan air hasil pengolahan dapat memenuhi kualitas air menurut Permenkes RI No 492 tahun 2010.

Water is one of the natural elements that is very important for every living thing. Based on the current sources, many surface water sources have been contaminated and therefore need further treatment before using it. Theres many possible way to treatment surface water and one of the methods is filtration using a slow sand filter because based on some literature, slow sand filters are suitable for use with turbidity values below 50 NTU. This study aims to provide a reference to the University of Indonesia, especially the Faculty of Engineering related to water treatment units and design based on the quality of raw water sources located on Lake Mahoni University of Indonesia. Raw water treatment focuses on filtration units with a type of slow sand filter that provides zeolite and silica sand to remove iron and manganese with a composition of 1.2 mg/L and 1.3 mg/L. This filtration is expected to serve the Faculty of Engineering until 2042 and after projecting, 19,67 L/s of clean water is needed until 2042. In this study, the design of the unit that will be used are intake building, suction well, centrifugal pump, closed transmission line, slow sand filter, disinfection, reservoir, and distribution pump housing. The data used for this design come from several journals such as media thickness, filtration speed, and removal efficiency values ​​with a thickness value of 30 cm zeolite, silica 60 cm, filtration speed 0.2 m/hour, and 95% efficiency and detention time 24 hours. The calculation results show that the area of each unit needed are 10,8 m2 for intake building 5,4 m2 for connecting rods, suction well around 7.9 m2, roughing filter 142,56 m2, slow sand filter around 532 m2, media washing basin around 361 m2, disinfection around 12,96 m2, reservoir around 141,12 m2, and 9 m2 for distribution pump house; and by that the treated water can comply with water quality standards according to the PERMENKES No 492 in 2010."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andryansya Putra Abinda
"Pengoperasian IPA Legong menimbulkan residu/limbah yang berupa lumpur yang tidak sesuai dengan baku mutu air limbah. Hingga saat ini IPA legong masih belum memiliki sistem pengolahan lumpur sehingga lumpur dialirkan kembali ke Sungai Ciliwung. Tujuan dari penelitian ini adalah untuk Menganalisis karakteristik dan kuantitas lumpur IPA Legong dan merencanakan sistem pengolahan lumpur yang akan diterapkan di IPA Legong. Metode penelitian yang dilakukan adalah dengan melakukan pengujian karakteristik lumpur dan melakukan pemilihan alternatif teknologi dengan menggunakan tools berupa pairwise comparison chart dan decision matrix. Hasil dari penelitian ini adalah konsentrasi COD untuk Lumpur sedimentasi Kedasih, sedimentasi Konvensional, filtrasi Kedasih, dan filtrasi Konvensional sebesar 545,2 mg/L, 649,6 mg/L, 112,5 mg/L, dan 119 mg/L. % total solid untuk lumpur sedimentasi Kedasih, filtrasi Kedasih, sedimentasi Konvensional, dan filtrasi Konvensional berurut sebesar 1,89%, 1,06%, 1,39%, dan 0,65%. Dengan debit yang dihasilkan berurut sebesar 77,78 m3 /hari, 517 m3 /hari, 259,28 m3 /hari, dan 1723,33 m3 /hari. Untuk teknologi pengolahan yang terpilih adalah proses Thickening dengan unit Dissolved Air Flotation (DAF), Conditioning dengan Polymer Conditioning, dan proses Dewatering dengan unit Centrifuge Decanter. Terdapat juga Recovery Basin sebagai unit pelengkap untuk lumpur filter backwash. Sistem ini dengan % solid influent sebesar 3,4% dapat diproses hingga menjadi 40% total solid untuk Cake dan 0,43% total solid untuk effluent resirkulasi serta total reduksi volume lumpur sebesar 98,5%.

The operation of Legong Wastewater Treatment Plant (WTP Legong) generates residues/wastes in the form of sludge that do not comply with the wastewater quality standards. Currently, IPA Legong lacks a sludge treatment system, leading to the discharge of sludge back into the Ciliwung River. The objective of this research is to analyze the characteristics and quantity of IPA Legong sludge and to design a sludge treatment system for implementation at IPA Legong. The research method involves testing the sludge characteristics and selecting alternative technologies using tools such as pairwise comparison charts and decision matrices. The research findings indicate that the COD concentrations for Kedasih sedimentation sludge, Conventional sedimentation, Kedasih filtration, and Conventional filtration are 545.2 mg/L, 649.6 mg/L, 112.5 mg/L, and 119 mg/L, respectively. The % Total Solids for Kedasih sedimentation sludge, Kedasih filtration, Conventional sedimentation, and Conventional filtration are 1.89%, 1.06%, 1.39%, and 0.65%, respectively. The generated flow rates are 77.78 m3 /day, 517 m3 /day, 259.28 m3 /day, and 1723.33 m3 /day in sequence. The selected treatment technology comprises the Thickening process with Dissolved Air Flotation (DAF) unit, Conditioning with Polymer Conditioning, and Dewatering process with Centrifuge Decanter unit. Additionally, a Recovery Basin serves as a complementary unit for filter backwash sludge. This system, with an influent % solid of 3.4%, can process sludge to achieve 40% total solids for Cake and 0.43% total solids for effluent recirculation, resulting in a total sludge volume reduction of 98.5%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>