Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 83052 dokumen yang sesuai dengan query
cover
Mario Yudha
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
TA1047
UI - Tugas Akhir  Universitas Indonesia Library
cover
Bari Krisna
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Subandi
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
TA1035
UI - Tugas Akhir  Universitas Indonesia Library
cover
Sihombing, Roland
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
TA1075
UI - Tugas Akhir  Universitas Indonesia Library
cover
Anak Agung Krisna Ananda Kusuma
"Proses kontrol canggih telah ada sejak tahun 1960-an dan digunakan untuk menyelesaikan berbagai macam masalah kontrol. Sebagian besar algoritma kontrol canggih pada tahun 1960-an adalah turunan dari algoritma kontrol Proportional-Integral-Derivative (PID). Meskipun 90% dari seluruh masalah kontrol dapat diselesaikan dengan menggunakan algoritma kontrol PID, algoritma tersebut memiliki beberapa kekurangan dalam penanganan batasan nilai variabel kontrol, proses non-minimum phase, perubahan parameter sistem, dan kemudahan penerapan dalam proses multi-variabel yang besar. Penggunaan algoritma kontrol yang lebih canggih dari algoritma kontrol PID tertahan oleh daya komputasi yang dapat ditawarkan oleh komputer digital pada saat itu.
Salah satu algoritma kontrol canggih yang dikenal karena kemampuannya menangani kekurangan yang dimiliki oleh algoritma kontrol PID adalah Model Predictive Control (MPC). MPC bekerja dengan menghitung perilaku sistem selama interval waktu yang terbatas ke masa depan dengan menggunakan model yang dimiliki oleh sistem untuk memprediksi perilaku sistem di masa depan. MPC lebih banyak digunakan untuk menyelesaikan masalah kontrol tertentu karena kemampuannya dalam menambahkan hard state (state yang tidak dapat dilanggar), batasan input, dan kriteria kinerja yang sesuai dalam perancangan sistem kontrol. Namun, karena MPC mengandalkan model sistem untuk memprediksi perilaku masa depan dari sistem yang dikontrol, penggunaan MPC untuk mengontrol sistem terbatas karena sistem tertentu memiliki model yang sangat kompleks untuk diformulasikan.
Terlepas dari kekurangan yang dimiliki MPC, penulisan skripsi ini diperuntukkan untuk melihat kelebihan dan kemudahan penerapannya dalam menyelesaikan masalah kontrol optimum. Untuk itu, evaluasi MPC sebagai sistem perencanaan lintasan lokal dan penghindaran tabrakan akan dilakukan. Evaluasi dalam skripsi ini akan menggunakan program simulasi berbasis ROS yang disebut Gazebo dan Rviz dengan Python sebagai bahasa pemrogramannya agar memudahkan bagi siapa saja yang ingin mengimplementasikan MPC sebagai pengontrol sistem dan memberikan media pembelajaran bagi yang ingin belajar mengenai MPC. Kesimpulan yang didapatkan dari hasil skripsi ini adalah MPC memiliki potensi yang sangat tinggi dalam menyelesaikan masalah kontrol optimum karena kemampuannya dalam memberikan kontrol yang optimal untuk sistem, walaupun diperlukan proses komputasi yang cukup besar sehingga waktu pemrosesan menjadi lambat dengan konfigurasi yang dilakukan pada skripsi ini.

Advanced process control has been around since 1960s and is used to solve numerous control problems. Most advance control algorithms in 1960s were the derivation of the classical Proportional-Integral-Derivative (PID) controller algorithm. Although 90% of all control problems can be solved using PID control, it has several drawbacks when it comes to handling constraints, non-minimum phase processes, changes in system parameters, and its straightforward applicability to large, multi-variable processes. The usage for a more advanced control algorithm that is able to tackle those drawbacks was held back by the computational power that the digital computer can offer at that time.
One of the advance control algorithms that is known for its ability to handle these drawbacks is called Model Predictive Control (MPC). MPC works by calculating the system behavior over a finite time interval into the future using the system model to predict the future system behavior. It is favorable to solve certain control problems because of its ability to explicitly add hard states (states that cannot be violated), input constraints, and suitable performance criterion into the controller design. However, because MPC relies the system model to predict the future behavior of the controlled system, the ability to implement MPC for system control is decreased because certain system has very complex model to formulate.
Apart from the disadvantages of MPC, this thesis explores the advantage and its applicability in solving optimal control problem. For that, the use of MPC for a differential drive robot local planner and obstacle avoidance is evaluated. The evaluation in this thesis will use ROS based simulation environment called Gazebo and Rviz with Python as its programming language so that it is easier for anyone who wants to implement MPC as their system controller and to provide learning case for beginners who wants to start with MPC. At the end of this thesis, it is shown that MPC has a very high potential in solving optimal control problem because of its ability to give optimal control to the system, although it requires quite amount of computational power that makes the processing time slow with the configurations that is done in this thesis.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ristianto
"Teknologi robobka mengalami perkembangan pesat. Dengan digunakannya Soujoumer sebagai robot beroda enam dalam misi penjelajah tanpa awak Path Finder di planit Mars (Kompas, 43uli 1997) maka penggunaan robot beroda di mass yang akan datang akan semakln bertambah. Sebenarnya robot terbagi menjadi robot staffs (static robot) clan robot berpinclah (mobile robot). Salah satu jenis robot berpindah adalah Wheeled Mobile Robot (WMR) atau dikenal sebagai robot beroda. WMR sendid terbagi menjadi single dove clan differential drive. Single dove menggunakan roda depan sebagai arah acuan gerak sedang differentia/ dove menggunakan selisih beda putar roda-roda penggerak sebagai pemicu clan pengubah arah gerak. Perencanaan gerak robot beroda melibatkan modul perencanaan lintasan dan modul perencanaan hindar rintangan. Kedua modul tersebut sating berkaitan terutama dalam menentukan lintasan yang feasible dan bergerak disepanjang lintasan tersebut. Salah satu yang menjadi permasalahan dalam kedua perencanaan tersebut adalah mengurangi kesalahan pelacakan yang diakibatkan oleh adanya slip pada coda clan ketidaklinearan keluaran akibat pembatasan gerak sistem non-holonomic Sebagai solusinya digunakan sistem kendali pelacak jejak untuk meminimumkan kesalahan pelacakan selama pergerakan. Skripsi ini bertujuan untuk membuat program simulasi perencanaan gerak WMR (khususnya differential drive). Perencanaan gerak yang dimaksud adalah bergerak Bari posisi awal menuju suatu posisi akhir dengan mengurangi kesalahan pelacakan terhadap lintasan referensi berdasarkan fungsi waktu. Pembahasan akan ditekankan pada kesesuaian bentuk dan sintesis kontroler pelacak jejak dengan bentuk model. Kontroler pelacak yang digunakan adalah tipe PID dengan pendekatan sintesis gain optimal. Hasil simulasi dapat dilihat sebagai animasi gerak robot beroda yang ditampllkan sebagai suatu gerakan image. Analisa ujicoba adalah grafik steady state untuk kecepatan linier dan kecepatan angular robot beroda."
Depok: Fakultas Teknik Universitas Indonesia, 1997
S39509
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ridwansyah
"
Penelitian ini bertujuan untuk merancang dan mengembangkan sistem pengunci rem yang efektif pada persendian robot finger yang menggunakan sistem cable driven. Metode yang digunakan dalam penelitian ini adalah eksperimen, di mana locking brake system diuji pada prototipe robot finger untuk mengevaluasi kinerjanya. Penelitian ini dilakukan di Manufacturing Research Center FTUI dan laboratorium di Fakultas Teknik Universitas Indonesia. Objek penelitian yang diteliti adalah locking brake system yang akan dipasang pada robot finger with varible stiffness. Hasil penelitian menunjukkan bahwa mekanisme locking brake system berfungsi dengan baik. Dalam pengujian, locking brake system mampu menahan beban hingga 6,086 N dengan elongasi sebesar 2,791 mm. Selain itu, hasil integrasi antara locking brake system, robot finger, dan sistem kontrol juga menunjukkan kinerja yang baik. Dengan demikian, mekanisme ini dapat diaplikasikan dan berfungsi dengan efektif.

This study aims to design and develop an effective locking brake system for the joint of a cable-driven robot finger. The research adopts an experimental approach by testing the locking brake system on a prototype robot finger to evaluate its effectiveness in maintaining the performance of the finger. The study will be conducted at the Manufacturing Research Center of FTUI and laboratories in the Faculty of Engineering, Universitas Indonesia. The research object utilized in this study is the locking brake system to be embedded in a robot finger with flexure hinges. The research findings indicate that the locking brake system mechanism operates effectively. The testing results demonstrate that the locking brake system can withstand a load of 6,086 N with an elongation of 2,791 mm. Furthermore, the integration of the locking brake system, robotic finger, and control system yields successful application and performance. Thus, the mechanism can be effectively applied and function well.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Haris Kasminto Aji
"Akhir-akhir ini kemajuan teknologi robot sangat pesat. Salah satunya adalah robot yang mempunyai kemampuan berinteraksi dengan manusia dan lingkungan secara langsung, tidak membahayakan, dan lebih bersahabat. Pada penelitian ini, akan diimplemetasikan compliance control pada tangan robot dengan mendapatkan informasi force yang diatur dari compliance strategy yang memberikan robot sebuah real intelligent sehingga robot dapat compliance terhadap lingkungan.
Pada penelitian ini dimanfaatkan force/torsi (F/T) feedback dari dynamixel rx-24, dan current feedback dari motor DC. Dengan menerapkan Resolved Motion Rate Control (RMRC), trajectory planning dapat dibuat dan setiap waktu, posisi, kecepatan, serta gaya aktual pada setiap joint dapat terekam melalui sensor yang ada pada dynamixel. Untuk memperoleh dinamika sistem digunakan Newton-Euler equation. Hasilnya, Implementasi compliance control pada tangan robot telah berhasil walaupun masih kaku dan kurang presisi.

Nowdays, technology of robotic increase rapidly. One of them is robot which have ability to interact with human and environment directly, not dangerous, and more friendly. In this research, designed robot hand using dynamixel as actuator robot arm and DC gearmotor as actuator hand fingers. In this research, implemented compliance control with get force information from compliance strategy which give robot real intelligent to solve the task well.
In this research is used torque feedback from dynamixel rx-24 and current feedback from DC gearmotor. With implement Resolved Motion Rate Control (RMRC), robot hand can move follow instruction given and every time, position, velocity, and actual force every joint can be recorded by dynamixel's sensors. With using Newton-Euler equation about dynamic, so can be gotten force equation in every moving. The result, implementation of compliance control in hand robot is successful although still rough and bad presision.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42702
UI - Skripsi Open  Universitas Indonesia Library
cover
Anom Tejo Pratomo
"Penelitian ini merancang sebuah sistem yang mampu mengontrol sebuah robot artikulasi dengan lima derajat kebebasan dari jarak jauh melalui media internet yang berbasiskan aplikasi web. Dalam penelitian ini digunakan sebuah komputer yang bertindak sebagai server yang dilengkapi dengan dua buah web camera untuk memantau kondisi dan pergerakan robot dan juga sebuah mikrokontroler pengontrol robot sebagai pemroses dan pengontrol masukan untuk menggerakkan robot. Melalui sebuah web browser pada komputer yang bertindak sebagai client, sistem pada komputer server diakses oleh pengguna dan menampilkan sebuah interface yang dirancang sebagai panel kontrol robot. Melalui interface ini pengguna dapat memberi masukan berupa perintah untuk menggerakkan robot yang dapat diberikan dalam dua pilihan mode basis kontrol, yaitu cursor-based/inverse kinematics dan manual/forward kinematics. Berdasarkan hasil pengujian, sistem mampu menanggapi perintah yang diberikan kemudian memroses dan mengeksekusinya dalam bentuk pergerakan robot sesuai dengan mode dan perintah dari masukan yang diberikan.

This research is aimed to design and develop a system capable of remotely controlling a five-degree-of-freedom articulated robot through internet platform on a web based application. The research was built with single computer act as a server coupled with a pair of web camera to monitor the status and movement of the robot and also coupled with a robot-controller microcontroller as a processor and controller of inputs to move the robot. Through the web browser on user's computer acting as client, the system is accessed by the user and displays an interface designed to be a robot's control panel. Through this interface, user can input command to move the robot which can be given in two different control modes, cursor-based/inverse kinematics and manual/forward kinematics. Based on the result of the experiment, system is able to respond the command then processes and executes it in form of robot movement based on control mode and command of the given input."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S50804
UI - Skripsi Open  Universitas Indonesia Library
cover
Indah Ramadhani
"Tujuan dari penciptaan robot sangat luas aplikasinya. Salah satu diantaranya adalah menciptakan robot yang dapat menirukan aktivitas manusia. Pada proyek akhir ini dibuat robot pembersih jalan. Robot ini menggunakan sensor ultrasonik sebagai mata yang berfungsi sebagai pendeteksi agar si robot tidak tertabrak benda didepannya. Sensor ultrasonik mengukur jarak objek dengan menghitung selisih waktu saat gelombang ultrasonik dikirimkan dengan gelombang pantul yang diterima kembali. Metode yang digunakan adalah dengan membandingkan jarak pantul yang diterima kedua sensor ultrasonik. Sebagai otaknya digunakan mikrokontroller sebagai pusat pengendali sistem secara keseluruhan, sedangkan untuk penggeraknya digunakan motor DC. Seperti halnya manusia, robot juga mempunyai keterbatasan seperti keterbatasan pandangan sensor dari robot ini mempunyai batasan tentang jarak deteksi sejauh 100 cm. Dengan sudut elevasi yang dapat diamati sebesar 400.

The objective of the creation of a robot is very wide application. One of them is to create a robot that can simulate human activity. At the end of the project made this street cleaning robot. This robot uses ultrasonic sensors that act as the eyes as detection sensor so that the robot does not accidentally crashed into objects straight ahead. Ultrasonic distance sensor to measure the object with the time difference when the ultrasonic waves are sent with the received wave again. Method used is to compare the distance of the received second ultrasonic sensor. Microcontroller as the brain used as the central control system as a whole, while for driving DC motor is used. Like humans, robots also have limitations such as the limited view from the robot sensors have detection limits of the distance as far as 100 cm. ELEVATION the corner that can be observed at 400. At the end of the making of this project can be concluded that the method compares the distance to the reflection object second sensor can be integrated on the robot so that the Sumo can maximize the performance of the robot Sumo."
Depok: Universitas Indonesia, 2009
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>