Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 115626 dokumen yang sesuai dengan query
cover
Qlea Roskiando
"Peramalan penjualan merupakan salah satu kunci keberhasilan manajemen rantai pasok sebuah perusahaan. Hal tersebut tidak hanya berlaku untuk perusahaan manufaktur, namun juga pada industry ritel. Untuk itu, peramalan terhadap penjualan merupakan hal yang sangat penting.. Untuk melakukan peramalan tersebut, metode peramalan ARIMA dan Neural network mampu melakukan prediksi berdasarkan data historis permintaan time series. ARIMA mampu melakukan regresi data dengan sangat baik, sedangkan NN mampu memprediksi data dengan pelatihan terhadap data historis. Selain itu, optimasi Neural network dengan Genetic Algorithm mampu memnentukan jumlah neuron tersembunyi yang optimal sehingga mampu mempersingkat waktu training pada pelatihan NN. Objek dalam penelitian kali ini menggunakan produk dengan 3 karakteristik berbeda yaitu penjualan pada telur ayam, mie instan, dan wadah kontainer plastik. Pada penelitian ini, GA-NN menghasilkan tingkat akurasi peramalan yang lebih baik disbanding model lain.

Sales forecasting is one of the requirements the company should do to meet a successful supply chain management. It applied not only in manufacturing companies, but also in retail industries. Therefore, sales forecasting is a very important thing. To do sales forecasting, forecasting methods such as ARIMA and Neural network can do prediction based on time series demand historical data. ARIMA is able to perform data regression very well, while NN is able to predict data with training based on historical data. Moreover, Neural network optimization with Genetic Algorithm is able to determine quantity of optimal hidden neuron so NN training time can be shortened and the result should be more accurate. Objects used in this research are products with 3 different characteristics; there are chicken egg, instant noodle, and plastic container. This research shows that GA-NN generates better forecast compared to the other model."
Depok: Universitas Indonesia, 2014
S53847
UI - Skripsi Membership  Universitas Indonesia Library
cover
Almushfi Saputra
"Metode artificial neural network digunakan dalam penghitungan nilai kapasitansi pada problem maju dari sistem ECVT untuk proses rekonstruksi semi non linear. Nilai kapasitansi hasil prediksi neural network didapatkan dari input distribusi permitivitas yang menunjukkan hasil citra yang diinginkan. Metode training neural network yang digunakan adalah training backpropagation. Pasangan input dan output data training didapatkan dari hasil simulasi menggunakan software COMSOL Multiphysics 3.4 yang kemudian ditraining menggunakan software Toolbox Neural Network pada Matlab R2007b. Hasil rekonstruksi citra semi nonlinear dibandingkan dengan hasil rekonstruksi linear.

Methods of artificial neural network used in the calculation value of capacitance in the forward problem of the system for the semi non-linear reconstruction of ECVT. Capacitance value of neural network predicted results obtained from the input distribution of permitivitty results indicate that the desired image. Training method used by neural network is backpropagation training. Pair input and output data obtained from the training results of the simulation using COMSOL Multiphysics 3.4 software, which then use the software Neural Network Toolbox in Matlab R2007b to train neural network. Results semi nonlinear image reconstruction compared with the results of the linear reconstruction."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S29395
UI - Skripsi Open  Universitas Indonesia Library
cover
Ruth Palupi Widya Handari
"Durasi pemeliharaan merupakan hal yang penting dalam kegiatan dry docking kapal. Estimasi durasi pemeliharaan diperlukan untuk membuat jadwal pemeliharaan kapal pada suatu galangan. Sayangnya saat ini pihak galangan belum mempunyai standar yang baku dalam mengestimasi durasi pemeliharaan kapal. Penelitian ini bertujuan untuk memperoleh model matematis estimasi durasi pemeliharaan kapal dry docking menggunakan Artificial Neural Network dan Genetic Algorithm. Dengan melihat volume dan jenis pekerjaan dry docking sebagai input, diperoleh model estimasi durasi dengan nilai rata-rata error 5.12 hari. Hasil estimasi kemudian dibandingkan dengan metode Neural Network standar dan metode Decision Tree-Genetic Algorithm-Neural network. Hasil penelitian menunjukkan bahwa metode Decision Tree-Genetic Algorithm-Neural network mempunyai nilai estimasi yang lebih akurat dibandingkan dengan kedua metode lainnya.

Maintenance time duration is an important things in ship dry docking activities. Estimating the time duration is necessary for ship schedule arranging in dock. Unfortunately, the dock company doesn’t have a standard procedure in estimating ship maintenance duration. The purpose of this research is to get mathematic model of dry docking maintenance duration estimation using Artificial Neural Network and Genetic Algorithm. By considering the job volume and type as input variable, the research get estimation model with root mean square error (RMSE) 5.12 day. Then, the estimation result is compared with traditional Neural network and Decision Tree-Genetic Algorithm-Neural network method. The result shows that Decision Tree-Genetic Algorithm-Neural network is more accurate in estimating the ship maintenance duration than the other two methods."
Depok: Fakultas Teknik Universitas Indonesia, 2014
T39301
UI - Tesis Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 2003
TA3320
UI - Tugas Akhir  Universitas Indonesia Library
cover
Hadi Purwanto
"Analisa multi atribut adalah salah satu metode statistik menggunakan lebih dari satu atribut untuk memprediksi properti fisik dari batuan. Tujuan analisa ini adalah adalah mencari hubungan antara log dengan data seismik. Hubungan ini digunakan untuk memprediksi Volome dari properti log pada semua volume seismik Pada penelitian ini analisa multiatribut diaplikasikan pada lapangan X daerah cekungan sumatera selatan dengan menggunakan 5 data sumur. Target dari penelitian ini adalah memprediksi penyebaran porositas di lapangan X. Sumursumur yang dipilih adalah sumur yang tersebar merata dan mewakili area yang akan diprediksi penyebaran porositasnya. Jumlah atribut yang digunakan di tentukan oleh proses step wise regression. Metode multiatribut yang linier transformasinya terdiri dari deret bobot yang diperoleh dari minimalisasi least square. Pada metoda non linier, neural network di gunakan dalam proses training dengan menggunakan atribut yang sudah ditentukan sebelumnya.Tipe neural network yang digunakan adalah PNN ( Probabilistic Neural Network ),tipe ini dipilih karena mempunyai hasil korelasi yang paling baik dibandingkan dengan tipe neural network yang lain. Untuk mengetahui tingkat kepercayaan dari transformasi multiatribut dilakukan proses crossvalidasi. Hasilnya multiatribut menunjukan korelasi sebesar 0.65 dan neural network 0.69.

Multi-attribute analysis is a statistic method using more than one attribute to predict physical properties of rocks. The aim of this analysis is to find a relationship between log and seismic data. The relationship is used for predicting volume of log property at all seismic volumes. In this study the multi-attribute analysis is applied to area X, which is a cavity region in South Sumatera, using five well data. The aim of the study is to predict porosity distribution at area X. The wells that were chosen were those that were spread evenly and represented areas where the distribution of porosity will be predicted. The quantity of attributes used is determined by a step wise regression process. A linear multiattribute method comprises of a series that is achieved by a minimised least square. In a non-linear method, neural network is used in the training process with predetermined attributes. The neural network type used was PNN (Probabilistic Neural Network ), this type was chosen because of the best correlation result. To verify the validity of the multi-attribute transformation, a crossvalidation was conducted. The result shows a 0.65 correlation and a 0.69 neural network."
Depok: Universitas Indonesia, 2009
S29414
UI - Skripsi Open  Universitas Indonesia Library
cover
Herno Permana
"Pada tesis ini dibahas mengenai pengendalian sistem multivariabel kolom fraksinator dengan tiga pasangan masukan dan keluaran dengan pengendali Instantaneous Linierization berbasis Neural Network. Tiga masukan pada sistem yaitu top draw (U1 ), side draw (U2), bottoms reflex (U3) dan tiga keluarannya yaitu top end point (Yl), side end point (Y2), bottoms reflux (Y3). Pemodelan sistem kolom fraksinator mengacu pada tabel model heavy oil fractionator yang diambil dari Nett dan Garcia [Pret'88]. Setiap masukan pada sistem mempengaruhi ketiga keluarannya. Interaksi yang terjadi pada sistem dapat diperkecil dengan perancangan dekopling. Simulasi sistem pengendalian dengan pengendali instantaneous linieriration akan dibandingkan dengan pengendali proportional integrator (PI) menggunakan Matlab Versi 6.1 dengan Toolbox Neural Network yang dikembangkan oleh Magnus Noorgard dan Technical University of Denmark. Sistem yang telah dikendalikan diberi gangguan berupa perubahan dinamik dari intermediate reflux duty (IRD), upper reflex duty (URD) dan gangguan random yang bertujuan untuk melihat kemampuan pengendali terhadap gangguan-gangguan tersebut. Dan hasil pengujian, pengendali instantaneous linierization mempunyai settling time, peak time, rise time lebih cepat dibandingkan dengan pengendali PI.

This thesis discusses the control of multivariable fractionators column with three pairs of input and output using Instantaneous Linierization controller based on Neural Network The input systems are top draw (U1), side draw (U2), and bottoms reflux duty (U3). The output systems are top end point (Y1), side end point (Y2), and bottoms reflux temperature (Y3). The model system fractionators column related to table model heavy oil fractionators which taken from Prett and Garcia [Pret'88]. Every system inputs are influencing outputs one another. The interactions can be minimized by decoupling scheme. The simulation of control system with instantaneous. linierization controller will be compared to proportional integral (PI), using Matlab Version 6.1 with neural network toolbox that was developed by Magnus Noorgard from Technical University of Denmark. The controlled system will be given a dynamic change disturbance form intermediate reflux duty (IRD), upper reflux duty (URD), and random disturbance. The aim is to test the controller behavior to handle the disturbances. The result shows that the instantaneous linierization controller has shown faster settling time, faster peak time, faster rise time than that of the PI controller."
Depok: Fakultas Teknik Universitas Indonesia, 2003
T14604
UI - Tesis Membership  Universitas Indonesia Library
cover
Suherman
Depok: Fakultas Teknik Universitas Indonesia, 1998
S39384
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faris Abdurrahman Pabe
"Backpropagation neural network backpropagation adalah salah satu algoritma machine learning yang dapat digunakan untuk melakukan klasifikasi data. Klasifikasi data dilakukan dalan serangkaian proses training dan testing. Pada akhir proses testing yang juga merupakan akhir dari proses backpropagation, akan didapatkan nilai recognition rate. Nilai recognition rate merupakan nilai yang menandakan banyaknya data yang berhasil diklasifikasi dengan benar pada proses testing terhadap seluruh testing dataset. Recognition rate erat kaitannya dengan masalah underfitting, overfitting, local minima, dan local maxima. Keempat masalah ini menyebabkan nilai recognition rate yang didapatkan kurang optimal. Namun biasanya untuk menangani keempat masalah ini dilakukan pengaturan pada beberapa paramter, misalnya learning rate, momentum, jumlah layer, jumlah nodes, weights, dan lain-lain. Pada tulisan ini akan dijelaskan program optimasi yang melakukan pengaturan pada nilai inisialisasi weights untuk menangani keempat tersebut. Program ini melakukan inisialisasi weights menggunakan genetic algorithm pada backpropagation yang mengimplementasikan k-fold crossvalidation. Untuk menguji dan membandingkan program optimasi terhadap program implementasi backpropagation yang tidak dioptimasi program non-optimasi, digunakan empat dataset, yaitu iris flower dataset, seeds dataset, wine dataset, dan EEG dataset buatan. Pada akhir pengujian didapatkan hasil bahwa program optimasi berhasil mendapatkan nilai recognition rate lebih tinggi pada iris flower dataset, yaitu 97.33 pada program optimasi dan 96.67 pada program non-optimasi. Kemudian didapatkan pula nilai recognition rate yang lebih tinggi pada seeds dataset, yaitu 93.33 pada program optimasi dan 92.86 pada program non-optimasi. Lalu didapatkan pula nilai recognition rate yang lebih tinggi pada EEG dataset buatan, yaitu 37.5 pada program optimasi dan 35.94 pada program non-optimasi. Sedangkan pada wine dataset didapatkan nilai recognition rate yang sama antara program optimasi dan program non-optimasi, yaitu 99.44.

Backpropagation neural network backpropagation is one of machine learning algorithms that can be used to classify data. The data classification is done in a series of trainig and testing processes. At the end of testing process that is also the end of backpropagation process, the algorithm will produce recognition rate value. Recognition rate value indicates the total of correctly classified data in testing process againts all data in testing dataset. Recognition rate value related to underfitting, overfitting, local minima, and local maxima problems. However, to handle these problems adjusting some parameters are necessary to be done. These parameters are learning rate, momentum, number of layers, number of nodes, weights, etc. In this writting will be explained an optimization program that adjusts the initialization values of weights to handle those four problems. This program initializes weights using genetic algorithm on backpropagation implementing k fold crossvalidation. To test and compare the optimization program with a program that implements backpropagation without optimization non optimzation program four datasets will be used, those are iris flower dataset, seeds dataset, wine dataset, and artificial EEG dataset. At the end of the test, the results show that optimization program obtained higher recognition rate value on iris flower dataset, that is 97.33 on optimization program againts 96.67 on non optimization program. Other than that, optimization program obtained higher recognition rate value on seeds dataset, that is 93.33 on optimization program againts 92.86 on non optimization program. Also, optimization program obtained higher recognition rate value on artificial EEG dataset, that is 37.5 on optimization program againts 35.94 on non optimization program. However, the optimization program obtained an equal recognition rate value on wine dataset, that is 99.44."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hangganis Septiastuti Puspitasari
"Saat ini banyak bermunculan jasa pengiriman paket barang. Hal ini memicu perusahaan pengiriman paket barang memberikan kualitas layanan yang baik kepada para konsumennya. PT Pos Indonesia merupakan BUMN yang bergerak di bidang jasa pengiriman surat dan paket. PT Pos Indonesia sedang berusaha meningkatkan kualitas layanannya untuk mengambil kembali pangsa pasar pengiriman paket barang.
Dalam upaya meningkatkan kualitas layanannya diperlukan sebuah metode pengukuran kualitas layanan yang bisa memberikan gambaran secara akurat penilaian kualitas menurut persepsi pelanggan. Artificial Neural Network (ANN) merupakan salah satu bagian dari data mining yang dapat digunakan untuk pengukuran kualitas. Namun, ANN memiliki keterbatasan dalam penentuan nilai parameter yang digunakan.
Penelitian ini bertujuan mengintegrasikan Genetic Algortihm dan ANN untuk mengoptimasi nilai paramater sehingga diperoleh hasil pengukuran kualitas yang akurat. Data penilaian kualitas menurut persepsi pelanggan diperoleh melalui survey menggunakan kuesioner.
Hasil pengukuran kualitas menggunakan integrasi ANN-GA menunjukkan bahwa nilai kualitas layanan paket barang PT Pos Indonesia secara keseluruhan sudah baik. Selain itu, performa hasil pengukuran menggunakan integrasi ANN-GA lebih bagus daripada menggunakan metode ANN.

Today many emerging parcel delivery services. This triggers the parcel delivery company provide good quality service to its customers. PT Pos Indonesia is a state-owned enterprise engaged in mail and parcel delivery services. PT Pos Indonesia is trying to improve the quality of its services to take back market share package delivery goods.
In an effort to improve service quality required a method of measuring the quality of service that can give an accurate quality assessment according to customer perceptions. Artificial Neural Network (ANN) is one part of data mining that can be used to measure quality. However, ANN has limitations in determining value of the parameters used.
This research aims to integrate Genetic algorithm and ANN to optimize value of parameters in order to obtain an accurate quality measurement results. Data quality assessment according to customers' perceptions obtained through surveys using questionnaires.
Quality measurement results using ANN-GA integration shows that service quality of parcel delivery PT Pos Indonesia as a whole has been good. In addition, the performance measurement results using the integration ANN-GA better than using ANN.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T41483
UI - Tesis Membership  Universitas Indonesia Library
cover
Yoan Elviralita
"Dalam beberapa tahun ini, telah banyak penelitian yang berhubungan dengan pengenalan pola dilakukan untuk mengindentifikasi berbagai macam bentuk pola. Tesis ini membahas pengembangan jaringan saraf tiruan fungsi basis radial fuzzy. Dalam penelitian ini dilakukan dua percobaan, yaitu jaringan saraf fungsi basis radial fuzzy menggunakan SOM dan jaringan saraf fungsi basis radial fuzzy tanpa SOM.
Hasil yang dicapai dari recognition rate menunjukkan jaringan saraf fungsi basis radial fuzzy menggunakan SOM memberikan performa yang baik. Jaringan saraf ini diharapkan dapat dikembangkan oleh peneliti-peneliti yang lain untuk kemajuan keilmuan dalam segala bidang.

In recent years, has been much research related to pattern recognition performed to identify various forms of patterns. This thesis discusses the development of artificial neural networks fuzzy radial basis functions. In this study conducted two experiments, namely radial basis function neural network fuzzy neural network using the SOM and fuzzy radial basis function without SOM.
The result of recognition rate shows the radial basis function neural networks using a fuzzy SOM gives a good performance. Neural network is expected to be developed by other researchers for the advancement of knowledge in all fields.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
T29631
UI - Tesis Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>