Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 177151 dokumen yang sesuai dengan query
cover
Theodorus Ramando Revandika
"Zeolit alam yang dimodifikasi dengan HDTMA-Br dan polistirena dapat digunakan sebagai adsorben minyak solar. Pembuatan adsorben melalui mekanisme polimerisasi admisel terdiri dari pembentukan admisel, adsolubilisasi monomer, polimerisasi, dan pencucian lapisan atas surfaktan. Admisel terbentuk pada penambahan HDTMA-Br pada zeolit dengan konsentrasi 70 mM. Konsentrasi optimum adsolubilisasi monomer stirena yang dapat diukur dengan spektrofotometer UV-Vis adalah 1,6x10-3 M. Polimerisasi stirena menggunakan inisiator kalium persulfat dengan konsentrasi 1,6 x 10-3 M. Karakterisasi FTIR menunjukkan bahwa polimer stirena telah terbentuk pada zeolit termodifikasi surfaktan. Dispersi solar-air dibuat dengan sonikasi dan diperoleh kondisi paling stabil pada perbandingan volume solar-air 1:90 selama 5 menit sonikasi pada suhu 30oC. Pengukuran dengan turbidimeter menunjukkan nilai turbiditas sebesar 370 NTU dan pengukuran dengan PSA menunjukkan ukuran partikel homogen dengan ukuran 89 nm yang mengindikasikan bahwa dispersi minyak-air tersebut stabil. Berdasarkan massa solar yang teradsorpsi, zeolit admisel polistirena yang telah dicuci memiliki daya adsorpsi yang paling baik dibandingkan zeolit-Na dan zeolit admisel dengan massa solar teradsorpsi 182,5 mg/g adsorben pada massa adsorben 0,2 g. Optimasi pada zeolit admisel polistirena yang telah dicuci dilakukan untuk memperoleh kondisi paling optimum untuk mengadsorpsi solar yaitu pada dosis 0,3 g dengan waktu pengadukan 5 menit pada suhu 29oC yaitu sebesar 165 mg/g adsorben.

Natural zeolite which modified by HDTMA-Br and polystyrene can be used as an adsorbent of diesel oil. Fabrication of the adsorbent through admicellar polymerization consists of admicelle formation, monomer adsolubilization, polymerization, and removal the top layer of surfactant. Admicelle formed with addition of HDTMA-Br at zeolite by 1,6x10-3 M. The optimum concentration for adsolubilization of the styrene monomer which can measured by UV-Vis spectrophotometer is 1,6x10-3 M. Styrene polymerization use potassium persulfate as an initiator by 1,6x10-3 M. FTIR characterization showed that styrene polymer formed at surfactant modified zeolite. Dispersion of diesel oil-water made by sonication and formed the most stable at diesel oil : water volume ratio 1 : 90 with 5 min sonication time at 30 oC. The turbidity measurement showed the turbidity point of 370 NTU and PSA measurement showed the homogenous particles with 89 nm which indicates that the oil-water dispersion is stable. The mass ratio of adsorbed diesel oil showed that washed polystyrene admicelle zeolite has better adsorption capability than Na-zeolite and admicelle zeolite with adsorbed diesel oil mass of 182,5 mg/g adsorbents at 0,2 grams dosage. Optimation of washed polystyrene admicelle zeolites treated at the optimum state with 0,3 grams dosage during 5 min stirring time at 29oC with 165 mg/g adsorbents."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54413
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yeshinta Risky Priasmara Putri
"Limbah zat warna memberikan dampak negatif dengan semakin bertambahnya industri tekstil. Congo red adalah zat warna sintetis yang beracun dan stabil di lingkungan. Salah satu solusi untuk mengurangi limbah zat warna adalah adsorpsi. Penelitian ini menggunakan zeolit alam Bayah yang berpotensi sebagai adsorben zat warna. Dilakukan pula modifikasi menggunakan kitosan nanopartikel untuk meningkatkan kapasitas adsorpsi, kemudian dilakukan karakterisasi dengan FTIR. Diantara Nazeolit@chit (Na-zeolit modifikasi nanokitosan), ZeolitA@chit (zeolit aktif modifikasi nanokitosan) dan ZeolitA (zeolit aktif), Nazeolit@chit memiliki daya adsorpsi tertinggi. Modifikasi dengan performa terbaik ditunjukkan pada pelapisan nanokitosan sebanyak 3 kali dari percobaan sampai 7 kali pelapisan. Kemampuan NaZeolit@chit untuk mengadsorpsi zat warna congo red pada larutan cair telah dilakukan dengan memvariasikan waktu kontak (5-60 menit), pH (3,5-6,5), dan konsentrasi (200- 1200 ppm). Kondisi optimum adsorpsi congo red pada konsentrasi 800 ppm, waktu 5 menit dan pH 5 sebagai waktu kontak dan pH optimum dengan kapasitas adsorpsi sebesar 3,98 mg/g. Konsentrasi congo red ditentukan dengan UV-Vis. Hasil pengujian isotherm adsorpsi menunjukkan bahwa adsorpsi congo red pada Nazeolit@chit mengikuti isotherm adsorpsi Freundlich. Studi kinetika adsorpsi mengikuti persamaan orde dua semu.

Waste dyes adversely impact with the growing textile industry. Congo red is a synthetic dyes are toxic and stable in the environment. One solution to reducing waste is dye adsorption. This study uses the Bayah natural zeolite as adsorbent dyes. Also conducted using a modification of chitosan nanoparticles to enhance the adsorption capacity, and characterization by FTIR. Among Nazeolit @ chit (Na-zeolite modification nanokitosan), ZeolitA @ chit (activated zeolite modification nanokitosan) and ZeolitA (active zeolite), Nazeolit @ chit has the highest adsorption capacity. Modifications to the best performance shown in coating nanokitosan 3 times of trial to 7 times coating. Ability NaZeolit @ chit to adsorb dye congo red in aqueous solution has been carried out by varying the contact time (5-60 minutes), pH (3.5 to 6.5), and concentration (200-1200 ppm). Optimum conditions congo red adsorption at a concentration 800 ppm, 5 minutes and pH 5 as contact time and pH optimum adsorption capacity of 3.98 mg / g. Congo red concentration was determined by UV-Vis. The test results showed that the adsorption isotherm adsorption congo red on Nazeolit @ chit Freundlich adsorption isotherm follows. Study of adsorption kinetics followed the pseudo- second-order equation."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S44649
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hasibuan, Rendi Akbar
"Pada penelitian ini dilakukan reduksi gas NO2 dari kendaraan bermotor. Peningkatan jumlah kendaraan bermotor menimbulkan tingginya tingkat pencemaran udara terutama nitrogendioksida (NO2). Untuk menanggulanginya dapat dilakukan pemasangan adsorben pada saluran gas buang kendaraan bermotor. Penelitian ini menggunakan zeolit alam yang termodifikasi TiO2 sebagai adsorben. Zeolit terlebih dahulu diaktivasi dengan larutan HF 2 %, HCl 6M, NH4Cl 0,1M, dikalsinasi, kemudian dilakukan modifikasi dengan TiO2 melalui metode sol-gel.
Pada penelitian ini, berbagai fenomena terkait adsorpsi NO2 dijelaskan, seperti pengaruh konsentrasi awal gas, waktu kontak, loading TiO2, dan aplikasi pada kendaraan bermotor. Hasil penelitian menunjukkan bahwa penggunaan ZA/TiO2-20% sebagai adsorben pada kendaraan bermotor mampu mengurangi emisi gas NO2 sekitar 45-49%.

In this study carried out the reduction of NO2 gas from motor vehicles. The increase number of motor vehicle produce high level of air poluting gas, particularly nitrogen dioxide (NO2). Instalation of adsorbent at the exhaust line can overcome this problem. This study use natural zeolite modified with TiO2 as adsorbent. Zeolite was activated with HF 1%, HCl 6M, and NH4Cl 0,1M solution. Next, it was calcinated and modified with TiO2 using sol-gel method.
In this study, some phenomenons related with NO2 adsorption is explained, such as influence of initial gas concentration, duration of contact, loading of TiO2, and application at motor vehicle. The result of the study shows the use of ZA/TiO2 as adsorbent at motor vehicle can reduce NO2 gas emision about 45-49%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42560
UI - Skripsi Open  Universitas Indonesia Library
cover
Lulus Ridho Pangudi
"Adsorpsi menggunakan unggun tetap zeolit dapat menjadi salah satu metode purifikasi bioetanol yang cukup menjanjikan dikarenakan biayanya yang relatif murah dengan efisiensi tinggi. Dalam penelitian ini, operasi adsorpsi etanol-air menggunakan unggun tetap zeolit diinvestigasi dengan membuat model matematika untuk memperoleh kurva terobosan menggunakan metode perhitungan Finite Difference. Model adsorpsi didapatkan dengan menyelesaikan persamaan neraca massa fasa cair, difusi fasa film, difusi intrapartikel menggunakan model Linear Driving Force (LDF), serta kesetimbangan adsorpsi desorpsi yang menggunakan persamaan isoterm adsorpsi Langmuir. Model disimulasikan untuk mengetahui pengaruh variasi parameter proses yaitu variasi nilai laju alir (8, 10, 12 ml/menit), konsentrasi awal larutan etanol-air (10%, 50%,  90% v/vair), porositas unggun (0,56; 0,7), dan tinggi unggun (0,6; 0,8; 1,0 meter). Peningkatan laju alir umpan menyebabkan terjadinya percepatan waktu breakpoint dan peningkatan keterjalan kurva terobosan secara signifikan. Peningkatan konsentrasi air sebagai adsorbat pada umpan menyebabkan terjadinya peningkatan keterjalan kurva terobosan secara signifikan dan percepatan waktu breakpoint meskipun tidak signifikan. Peningkatan porositas unggun menyebabkan terjadinya penundaan waktu breakpoint tanpa adanya perubahan signifikan pada keterjalan kurva terobosan. Peningkatan ketinggian unggun zeolit menyebabkan terjadinya penundaan waktu breakpoint tanpa adanya perubahan signifikan pada keterjalan kurva terobosan.

Utilization of adsorption in a fixed bed column with zeolite as the adsorbent can be a promising solution to purify the ethanol until it reaches the fuel-grade criteria, due to its relatively lower cost and higher efficiency. In this study, ethanol-water adsorption in the zeolite fixed-bed column was investigated by creating a mathematical model to obtain a breakthrough curve using the Finite-Difference calculation method with the aid of computational software (Microsoft ExcelTM add-in), OpenSolverTM. The fixed bed adsorption process is modelled by the liquid phase mass balance equations complemented by an approach to the adsorption and diffusion processes in the adsorbent particles using the Linear Driving Force (LDF) model and Langmuir extended mixture adsorption isotherm equation. The variations of several operation parameters (flow rate, initial concentration of water, porosity, and column length of adsorption) significantly affect the breakthrough curve. Breakthrough points occur faster with a higher flow rate, and higher initial concentration. While the effect of porosity and column length is similar, breakthrough and exhaustion times are slower with increasing porosity and column length."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Katili, Sari
"Pemanfaatan Zeolit alam sebagai katalis proses hidrokarbon, memerlukan serangkaian modifikasi dari keadaan alamnya. Karena, disamping berupa mineral kristalin yang tersusun atas satuan-satuan Al203 dan Si02, zeolit alam mengandung juga bahan-bahan pengotor, serta satuan-satuan yang belum stabil. Dalam penelitian ini dilakukan modifikasi terhadap kristal zeolit, berupa pengasaman dengan Fluoride ([c] =0,75% ; 1.5% ; 2,25% dan waktu 10mnt ; 15mnt ; 20mnt) serta kalsinasi (400°; 450° ; 500°C). Dari hasil pengujian terhadap "luas permukaan" dan kristalinitas zeolit, diketahui bahwa proses pengasaman yang optimal adalah pada konsentrasi HF = 2,25% dengan waktu pengasaman 20 menit. Adapun kalsinasi yang menghasilkan "luas permukaan" optimal adalah pada 500°C, sedangkan kristalinitas yang optimal dicapai pada 400°C."
Depok: Fakultas Teknik Universitas Indonesia, 1993
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Nizar Yamani
"Zeolit merupakan salah satu mineral yang banyak terdapat di Indonesia dan mempunyai banyak fungsi seperti untuk penyerapan, katalis, penyaring molekul, dsb. Pada penelitian ini dikhususkan kepada fungsi zeolit sebagai desiccant yang mampu menyerap kelembaban. Zeolit serbuk dibentuk menjadi pellet melalui tahap pengayakan, aktivasi, pencampuran, kompaksi, dan kalsinasi. Tekanan kompaksi dan waktu kalsinasi menjadi dua parameter dalam penelitian ini. Karakterisasi yang dilakukan pada penelitian ini yaitu XRD, SEM dan sorptionisotherm. Zeolit yang memiliki kapasitas penyerapan air paling besar yaitu pada kondisi serbuk. Sedangkan dalam bentuk pellet, zeolit yang memiliki kapasitas penyerapan air paling besar yaitu pellet pada kondisi tekanan kompaksi 20 bar dan waktu kalsinasi 1 jam.

Zeoliteis available in abundant amount in Indonesia. It can be used for many functions such as adsorbent, catalyst, molecular sieve, etc. This research specifically tries to optimize the use of zeolite as a desiccant to adsorb moistures. Zeolite powders are formed into pellets by sieveing, activation, mixing, compaction and calcination with variations in compaction pressure and calcination time. The characterization are done using XRD, SEM and sorption-isotherm. Zeolite powder shows the best water adsorption capacity. As for pellet shape, the best water adsorption capacity is achieved by compaction pressure 20 bar and calcination time 1 hour."
Depok: Universitas Indonesia, 2012
S42640
UI - Skripsi Open  Universitas Indonesia Library
cover
Zulfikar Noer
"Zeolit alam formasi Bayah yang terdapat di daerah Nanggung, Jawa Barat, mengandung zeolit klinoptilolit atau jenis keluarga heulandit lainnya dalam jumlah yang relatif besar (35-55 %). Zeolit jenis ini memiliki karakteristik yang khas sehingga dapat dimanfaatkan sebagai bahan penyerap (adsorbent), penukar kation (calion exchanger), penyaring molekular (molecular sieve), dan penyeleksi reaksi kimia (catalyst).
Salah satu penggunaan zeolit klinoptilolit Nanggung yang akan ditinjau dalam penelitian ini adalah pemanfaatannya sebagai adsorben limbah cair yang mengandung gas arnonia dan/atau turunannya. Sebagai bahan adsorben, zeolit hams memilild karakteristik khusus yang sesuai dengan kebutuhan kerja adsorpsi. Penggunaan zeolit alam asli secara langsung sebagai adsorben kimiawi belum menunjukkan kinerja yang optimal, karena hadirnya beberapa senyawaan atau pengotor-pengotor tertentu yang terperangkap dan menutupi permukaan pori dan inti aktifnya. Selain itu, keasaman zeolit alam juga kurang memenuhi syarat untuk diterapkan langsung sebagai bahan adsorben.
Untuk mendapatkan bahan adsorben yang berdaya guna, zeolit alam harus dari perlakuan khusus (modifikasi). Terdapat sejumlah metode modifikasi untuk zeolit alam. Dalam penelitian ini, zeolit alarn akan dimodifikasi dengan suatu prosedur yang melibatkan penanganan awal (pre rrearmenr) dan pertukaran kation. Sebagai penanganan awal, zeolit alam akan diaktivasi dengan tiga cara yaitu dengan menggunakan larutan NaOH 0,5 N, H2SO4 0,2 N, dan HF 3 % yang masing-masing diikuti pemanasan Ketiga sampel zeolit hasil penanganan awal akan diperiksa dengan metode difraksi sinar-X (XRD) dan spektroskopi serapan atom (AAS) untuk mendapatkan karakteristik khusus masing-masing sampel. Hasil terbaik dari ketiga sampel ini akan dilakukan pertukaran kation dengan menggunakan dua macam larutan penukar ion: NH4NO3 dan (NH4)2SO4 pada kondisi waktu dan konsentrasi optimum. Hasil pertukaran kation akan dianalisa dengan metode AAS untuk mendapatkan kuaniitas pertukaran ion optimum (kapasitas pertukanan ion terbanyak).
Aktivasi zeolit alam dengan NaOH 0,5 N memberikan hasil terbaik di mana hilangnya puncak-puncak pengotor tidak disertai perusakan struktur kristal yang lebih besar (analisa XRD). Sementara untuk aktivasi lain, pengusiran pengotor juga diikuti penikisan struktur klinoptilolit yang cukup besar. Di sarnping itu, kandungan logam alkali dan alkali tanah dalam zeolit alam relatif tidak banyak yang berkurang setelah diaktivasi dengan NaOH 0,5 N (analisa AAS).
Pada konsentrasi yang relatif pekat (1 M), pertukaran ion antara zeolit dengan Iarutan NH4NO3 adalah lebih besar dari pada yang teijadi dalam larutan (NH4)2SO4. Sementara pada konsentrasi rendah (O,1 M), persen pertukaran ion terbesar terjadi dalam larutan (NH4)2SO4. Dengan demikian pemilihan (NH4)2SO4 sebagai larutan penukar ion memberi hasil yang lebih optimum karena pemakaiannya yang lebih sedikit (konsentrasi rendah). Di samping itu amonium sulfat lebih mudah diperoleh, harganya Iebih murah, dan pemakaiannya yang aman."
Depok: Fakultas Teknik Universitas Indonesia, 1997
S49072
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anhytia Aliza
"Produk isomer, nafta, aromat dan olefin adalah merupakan senyawa-senyawa yang berpengaruh terhadap peningkatan angka oktan bensin. Pada kenyalaatmya masih dimungkinkan memperoleh senyawa-senyawa tersebut yang berasal dari n-Parafin, termasuk juga senyawa C3+/ C4 yang digunakan sebagai komponen utama LPG.
N-Heptana termasuk senyawa hidrokarbon rantai jenuh yang relatif cukup besar dijumpai dalam fraksi hidrokarbon. Tetapi senyawa ini memiliki angka oktan yang paling rendah. Untuk meningkatkan nilai ekonomisnya dilakukan proses cracking dan dehidrogenasi agar dapat menghasilkan senyawa isomer ataupun hidrokarbon rantai pendek.
Selama ini reaksi dekomposisi di kilang-kilang minyak, menggunakan katalis zeolit sintesis hasil impor yang berharga sangat mahal. Untuk itu dilakukan modifikasi terhadap zeolit alam jenis klinoptilolit dari Lampung yang tersedia dalam jumlah yang cukup besar, agar dapat digunakan sebagai bahan dasar katalis reaksi dekomposisi n- Heptana, dengan cara memperbaiki sifat-sifatnya sehingga zeolit alam ini dapat menggantikan fungsi zeolit sintesis.
Proses pengaktifan zeolit dilakukan dengam cara pertukaran ion, kalsinasi, delauminasi menggunakan Asam Fluorida serta kopresipitasi."
Depok: Fakultas Teknik Universitas Indonesia, 1996
S48862
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dessy Yoediartiny
"Indonesia kaya akan potensi sumber daya alam zeolite. Sedikitnya telah ditemukan 18 lokasi kandungan zeolite galian industry, sementara diperkirakan masih terdapat 19 lokasi lainnya di wilayah Indonesia yang juga mengandung zeolite (LIPI, 1994). Zeolite alam Indonesia belum dimanfaatkan secara maksimal untuk kepentingan komersial. Padahal harganya jauh lebih murah daripada zeolite sintetis, dan sifat-sifat dasarnya dengan seolit sintetis komersial, misalnya kemapuan zeolite alam dalam menyeleksi gas polar seperti H2O, CO2, dan H2S. tetapi, kemampuan dan kapasitas zeolite alam dalam mengadsporsi gas polar tersebut perlu ditingkatkan. Untuk meningkatkan kapasitas adsorpsinya, diperluas tempat terjadinya adsorpsi pada zeolite alam, salah satunya dengan memodifikasi zeolite alam secara kimiawi.
Tujuan dari penelitian ini adalah memodifikasi zeolite alam Malamng (ZAM) dan Lampung (ZAL) secara kimiawi dengan pertukaran kation. Pertukaran kation berlangsung dengan merefluks campuran serbuk zeolite dengan larutan NaCl dan CaCl2, masing-masing berkonsentrasi 3 M, pada temperature konstan 100℃, selama 4 jam. Proses refluks diulang-ulang hingga diperleh sampel zeolite alam termodifikasi 1, 2, 3, 4, dan 5 x 4 jam. ZAL mewakili jenis klinoptilolit sedangakan ZAM jenis mordenit.
Selanjutnya sampel ZAL dan ZAM termodifikasi dikarakterisasi komposisi kimia dan luas permukaannya. Karakterisasi komposisi kimia bertujuan untuk mengetahui komposisi kimia zeolite alam tersebut setelah mengalami pertukaran kation dengan Na+ dan Ca2+. Karakterisasi luas permukaan untuk mengetahui pengaruh frekuensi (total waktu) refluks dan perubahan kandungan kation pemakar (Na+ dan Ca+) terhadap luas permukaan total (BET area) ZAL dan ZAM. Karakterisasi yang sama juga dilakukan terhadap ZAL dan ZAM mentah (raw material) serta zeolite sintesis (ZS/Mol. Sleve milik PT. Arum Co. NCL), sebagai perbandingan.
Hasil karakterisasi luas permukaan menunjukkan bahwa, ZAL dan ZAM mentah sudah memiliki luas permukaan total (BET area) yang lebih besar dari ZS. Namun dengan modifikasi yang dilakukan dapat meningkatkan luas permukaan totalnya. ZAL dengan luas permukaan total tertinggi diperoleh setelah refluks dengan CaCl2 3M selama 1x4 jam, yaitu sebesar 50.369 m2/g, dan ZAM setelah refluks dengan NaCl 3 M 30.162 m2/g. sementara hasil karakterisasi komposisi kimia menunjukkan, kandungan Ca untuk ZAL dengan BET area tertinggi adalah 4% (5 berat CaO), dan kandungan Na untuk ZAM dengan BET area tertinggi adalah 4% (% berat Na2O). sedangkan ZS komposisi kimianya didominasi oleh Na (9.5% berat Na2O).
Berdasarkan hasil karakterisasi tersebut, disimpulkan bahwa ZAL dan ZAM termodifikasi memiliki peluang yang besar untuk menggantikan penggunakan ZS, yang sehari-hari digunakan sebagai adsorban H2O pada proses separasi gas alam. Untuk mengetahui kemampuan ZAL dan ZAM termodifikasi dalam adsorpsi skala laboratorium. Juga disarankan suatu uji karakterisasi yang dapat mengetahui interaksi antara kation-kation penukar (Na+ dan Ca2+) dengan molekul-molekul adsorbat (H2O)."
Depok: Fakultas Teknik Universitas Indonesia, 1996
S48915
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nuklindana Darma Kusumah
"Limbah cair laboratorium terdiri dari limbah pekat dan limbah encer. Air buangan yang keluar melalui saluran pembuangan akhir merupakan saiah satu bentuk Iimbah encer yang dihasilkan oleh lab.DPK Walaupun konsentrasinya kecil tetapi karena adanya fluktuasi konsentrasi, maka kemungkinan konsentrasi logam berat dapat melampaui baku mutu pada air buangan Lab.DPK, sehingga perlu dipikirkan altematif penanganannya.
Air buangan Lab-DPK ditampung dari hasil cucian alat selama praktikum Kimia Dasar. Untuk mengamisipasi flukluasi konsentrasi logam berat, maka dalam melakukan peniiekatan terhadap konsentrasi air buangan Lab.DPK, dilakukan pula pengenceran terhadap limbah pekat Lab.DPK. Pengenceran didasarkan pada komposisi volume limbah cair Lab.DPK yang telah disegregasi. Air buangan Lab.DPK dan hasil pengenceran dianalisa kandungan logam beratnya. Ternyata pada beberapa sampel konsentrasi Cu dan Fe masih di aras baku mutu.
Air cucian alat Lab.DPK masuk ke dalam kolom adsorpsi dengan laju aiiran dari bawah keatas dengan kecepatan 0,1834 L/menit. Adsorpsi dilakukan selama 90 menit. Dengan wakm pengambilan sampel pada menit ke-5,l5,30,60 dan 90. Limbah cair hasil pengenceran masuk ke dalam kolom adsorpsi dengan laju aliran dari bawah keatas dengan kecepatan 0,1834 L/mcnit. Adsorpsi berlangsung seiama 240 menit. Dengan pengambilan sampel etiuent pada menit ke 2,5;1S;30;60;l20 dan 240.
Untuk mengadsorpsi logam berat secara batch, maka diiakukan perendaman zeolit dalam Iarutan biner Fe dan Cu, dengan konsentrasi sesuai dengan pengenceran limbah pckat pada berbagai variasi rasio padatan dengan cairan, yakni :3 ml../g, 5 mL/g, 10 mL/g dan 25 mL/g. Pengambilan sampel ini dilakukan dengan cara mengambil larutan sebanyak 10 mL masing-masing pada periode waklu 10, 30, 60 dan 120 menit. Pada adsorpsi kontinu maupun batch dilakukan regenerasi dengan NaCl secara batch. Rasio cairan dan padatan (C/P) 6,5 mL/g dengan konsentrasi NaCl 11 g/L. Suhu regenerasi pada penelitian ini adalah 25° C (suhu kamar).
Pada adsorpsi kontinu, rentang waktu adsorpsi yang efektifnya sangat pendek sekitar 2,5- 77 menit, sehingga tidak efisien jika diterapkan. Sedangkan pada adsorpsi batch, waktu adsorpsi yang optimum adalah 60 menit dengan rasio cairan cairan-padaian (C/P) 5 mL/g. Adsorpsi batch menunjukkan kinerja yang Iebih baik dalam mengadsorpsi Cu dan Fc daripadu ndsorpsi konlinu pada konsenuasi influen yang beragam. Baik pada adsorpsi kontinu dan batch siklus adsorpsi yang efektif adalah sebanyak 1 % siklus (2 kali adsorpsi dan I kali regenerasi). Untuk diterapkan dalam penanganan Iogam beral pada Lab.DPK, penerapan sistem adsorpsi-regenermi kurang efisien karena ada potensi masalah dalam pembuangan regeneén NaCl hasil adsorpsi, yang memiliki bcban limbah yang cukup signifikan.
Jika sistem adsorpsi-regenerasi ingin diterapkan maka sehelum masuk ke dalam aliran yang menuju unggun zcolit, sebaiknya adsorbat melewati suatu bak pengendapan. Hal ini karena pada air buangan Lab.DPK yang keluar dari saluran pembuangan maslh keruh, sehingga dengan adanya bak pengendapan, TDS (Toral Dissolved Solid) dapat diendapkan.
Untuk mengatasi kandungan logam berat dalam air buangan Lab.DPK, yang kebanyakan berasal dari air cucian, harus dilakukan segregasi yang baik. Artinya limbah pekat hasil praktikum hams dipisahkan secara ketat yang nantinya akan dilakukan pengolahan lebih lanjut. Dan dalam pencucian alat hams dikontrol, sehingga tidak terdapat lagi limbah pekat yang dibuang Iangsung ke saluran pembuangan akhir."
Depok: Fakultas Teknik Universitas Indonesia, 2004
S49431
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>