Ditemukan 3517 dokumen yang sesuai dengan query
Dharmawan Harsokoesoemo
Bandung: ITB Press, 1979
621.803 DAR d
Buku Teks Universitas Indonesia Library
"This paper discuss regarding the study usage of acoustic emission technology in determining the damage at motorbike engine. Study conducted to perceive trouble at motor engine one cylinder due to imperfect condition of opening combustion valve. deeply investigation is conducted to perceive the damage that happened at rocker arm shaft..."
Artikel Jurnal Universitas Indonesia Library
Doni Pradana
"Customer churn merupakan masalah serius di banyak sektor, termasuk sektor telekomunikasi. Pengertian costumer churn adalah berhentinya penggunaan suatu layanan dan beralih ke penyedia lain atau tidak memperbarui kontrak. Untuk mengatasi risiko churn, perusahaan telekomunikasi perlu menggunakan model prediksi dengan bantuan metode machine learning. Terdapat beberapa model prediksi churn yang telah diajukan oleh para peneliti, termasuk pemilihan algoritma yang sesuai dan dataset untuk studi kasus. Pada tesis ini menggunakan dataset IBM Telco Customer Churn sebagai data pelatihan dan pengujian. Tantangan umum dalam klasifikasi adalah ketidakseimbangan data, yang dapat menyebabkan kegagalan dalam memprediksi kelas minoritas. Oleh karena itu, tesis ini menggunakan beberapa teknik augmentasi data seperti SMOTE, HAT, dan CVAE, sebagai teknik dalam menyeimbangkan data. Pembelajaran ensembel khususnya metode CART (Classification and Regression Tree) sering digunakan untuk menyelesaikan permasalahan klasifikasi dan regresi. Model Adaboost adalah algoritma pembelajaran ensemble yang menggunakan pohon keputusan sebagai dasar pembelajaran. Dalam pelatihan model Adaboost, Bayesian Optimization (BO) digunakan sebagai metode pencarian hyperparameter terbaik. Dari hasil percobaan dan pengujian yang diajukan, model Adaboost dapat memberikan nilai testing f1-score dan recall sebesar 0,661 dan 0,653 pada pelatihan dengan dataset tidak seimbang. Model Adaboost-SMOTE mempunyai nilai testing f1-score dan recall sebesar 0,646 dan 0,826. Penggunaan optimasi Bayesian Optimization pada model Adaboost-SMOTE dapat menaikkan testing f1-score dan recall menjadi 0,649 dan 0,849. Tes ANOVA dan Tukey HSD mengungkapkan variasi yang signifikan dalam hasil pelatihan dari model machine learning, dan menyoroti dampak penggunaan data seimbang dalam pelatihan model yang signifikan.
Customer churn is a severe problem in various sectors, including telecommunications. Customer churn refers to discontinuing the service, switching to another provider, or not renewing the contract. To deal with churn risk, telecommunication companies need to use predictive models with the help of machine learning methods. Several churn prediction models have been proposed by researchers, including the selection of suitable algorithms and data sets for case studies. In this thesis, research is conducted using the IBM Telco Customer Churn dataset. A common challenge in classification is data imbalance, which can lead to failure in predicting minority classes. Therefore, this thesis using several data augmentation techniques, such as SMOTE, HAT, and CVAE, for balancing data technique. Ensemble learning, especially the CART (Classification and Regression Tree) method, is often used to solve classification and regression problems. Adaboost is an ensemble learning algorithm that uses decision trees as the basis for learning. In the Adaboost model training, Bayesian Optimization (BO) is used to find the best hyperparameters. From the trials and tests carried out, Adaboost achieved an f1-score and recall test of 0.661 and 0.653, respectively, in training with an unbalanced dataset. The Adaboost SMOTE model achieved f1 and memory test scores of 0.646 and 0.826, respectively. Using Bayesian Optimization in the Adaboost SMOTE model increased the testing f1-score and recall scores to 0.649 and 0.849, respectively. ANOVA and Tukey HSD tests reveal significant variation in machine learning model training results and highlight the considerable impact of using balanced data in model training."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership Universitas Indonesia Library
Bella Septina Ika Hartanti
"Bencana banjir merupakan salah satu peristiwa alam yang sering terjadi di dunia, termasuk Indonesia, dan terjadi ketika aliran air yang berlebihan menggenangi daratan dalam jangka waktu tertentu. Perubahan iklim, cuaca ekstrem, urbanisasi yang tidak terkendali, dan kondisi geografis yang kompleks telah berkontribusi terhadap peningkatan frekuensi dan intensitas banjir, terutama di daerah perkotaan. Analisis banjir otomatis dan deteksi citra dapat memberikan panduan dan informasi yang berguna dalam membuat keputusan untuk mengurangi dampak destruktif seperti korban jiwa dan ekonomi, salah satunya dengan melakukan segmentasi untuk membantu proses pembuatan peta kerawanan banjir. Namun, sejumlah kecil data beresolusi tinggi dan berlabel yang tersedia membuat proses segmentasi sulit untuk dilakukan. Oleh karena itu, penulis mengusulkan pendekatan semi-supervised yaitu mean teacher dengan memanfaatkan teknik deep learning. Adapun dataset yang digunakan adalah citra SAR Sentinel-1 C-band yang telah diolah sebelumnya. Hasil penelitian menunjukkan bahwa model usulan memberikan kenaikan performa yang cukup signifikan pada metrik IoU sebesar 5% terhadap baseline yang mengimplementasikan teknik pseudo-labeling.
Floods are one of the natural disaster events that occur in the world. Floods happen when excessive water flows and submerges land for a certain period of time. Climate change, extreme weather, uncontrolled urbanization, and complex geographical conditions have contributed to the increase in the frequency and intensity of floods, especially in urban areas. Automatic flood analysis and detection of imagery can provide useful guidance and information in making decisions to reduce destructive impacts such as loss of life and economy. However, the small amount of high-resolution and labeled data available makes the segmentation process difficult for flood detection. Therefore, the author proposes a semi-supervised approach, namely mean teacher by utilizing the deep learning architecture. The dataset used is the SAR image of Sentinel-1 C-band which has been processed. The results show that the proposed model provides a significant increase in performance on the IoU metric by 5% against the baseline that implements the pseudo-labeling technique."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership Universitas Indonesia Library
Shigley, Joseph Edward
Jakarta: Erlangga, 1986
621.815 SHI p
Buku Teks Universitas Indonesia Library
Shigley, Joseph Edward
Jakarta: Erlangga, 1986
621.815 SHI p
Buku Teks Universitas Indonesia Library
Surbakty, Bun
Jakarta: Sinar Harapan Madiun, 1984
621.945 SUR k
Buku Teks Universitas Indonesia Library
"We have been successfully synthesized YAG :Ce3+nanoparticle (60 nm in sized) having High crystalinity by using low tenperature sol gel mwthod....."
IPTEKAB
Artikel Jurnal Universitas Indonesia Library
"Retail sores or departement stores have hundreds sales transaction everyday,transactions usually are made by men,which are calculating and recording many of invoices number....."
004 CJTK 1:1 (2008)
Artikel Jurnal Universitas Indonesia Library
"Datasets with heterogeneous features can affect feature selection results that are not appropriate because it is difficult to evaluate heterogeneous features concurrently. Feature transformation (FT) is another way to handle heterogeneous features subset selection. The results of transformation from non-numerical into numerical features may produce redundancy to the original numerical features. In this paper, we propose a method to select feature subset based on mutual information (MI) for classifying heterogeneous features. We use unsupervised feature transformation (UFT) methods and joint mutual information maximation (JMIM) methods. UFT methods is used to transform non-numerical features into numerical features. JMIM methods is used to select feature subset with a consideration of the class label. The transformed and the original features are combined entirely, then determine features subset by using JMIM methods, and classify them using support vector machine (SVM) algorithm. The classification accuracy are measured for any number of selected feature subset and compared between UFT-JMIM methods and Dummy-JMIM methods. The average classification accuracy for all experiments in this study that can be achieved by UFT-JMIM methods is about 84.47% and Dummy-JMIM methods is about 84.24%. This result shows that UFT-JMIM methods can minimize information loss between transformed and original features, and select feature subset to avoid redundant and irrelevant features.
Dataset dengan fitur heterogen dapat mempengaruhi hasil seleksi fitur yang tidak tepat karena sulit untuk mengevaluasi fitur heterogen secara bersamaan. Transformasi fitur adalah cara untuk mengatasi seleksi subset fitur yang heterogen. Hasil transformasi fitur non-numerik menjadi numerik mungkin menghasilkan redundansi terhadap fitur numerik original. Dalam tulisan ini, peneliti mengusulkan sebuah metode untuk seleksi subset fitur berdasarkan mutual information (MI) untuk klasifikasi fitur heterogen. Peneliti menggunakan metode unsupervised feature transformation (UFT) dan metode joint mutual information maximation (JMIM). Metode UFT digunakan untuk transformasi fitur non-numerik menjadi fitur numerik. Metode JMIM digunakan untuk seleksi subset fitur dengan pertimbangan label kelas. Fitur hasil transformasi dan fitur original disatukan seluruhnya, kemudian menentukan subset fitur menggunakan metode JMIM, dan melakukan klasifikasi terhadap subset fitur tersebut menggunakan algoritma support vector machine (SVM). Akurasi klasifikasi diukur untuk sejumlah subset fitur terpilih dan dibandingkan antara metode UFT-JMIM dan Dummy-JMIM. Akurasi klasifikasi rata-rata dari keseluruhan percobaan yang dapat dicapai oleh metode UFT-JMIM sekitar 84.47% dan metode Dummy-JMIM sekitar 84.24%. Hasil ini menunjukkan bahwa metode UFT-JMIM dapat meminimalkan informasi yang hilang diantara fitur hasil transformasi dan fitur original, dan menyeleksi subset fitur untuk menghindari fitur redundansi dan tidak relevan"
Paiton: STT Nurul Jadid Paiton, Department of Informatics, 2016
AJ-Pdf
Artikel Jurnal Universitas Indonesia Library