Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 115636 dokumen yang sesuai dengan query
cover
Reid, Robert C.
Jakarta: Gramedia, 1977
660.042 REI pt
Buku Teks SO  Universitas Indonesia Library
cover
Reid, Robert C.
New York: McGraw-Hill, 1977
660.042 REI p
Buku Teks SO  Universitas Indonesia Library
cover
Nadapdap, Huala
"Emisi gas buang kendaraan bermotor khususnya yang berbahan bakar bensin berpotensi meningkatkan kandungan CO di perparkiran bawah tanah dua kali lebih besar dalam empat bulan. Korelasi konsentrasi CO, HC dan Opasitas dari emisi gas buang dengan perparkiran sangat erat dengan nilai r untuk rata-rata kandungan CO mencapai 0.9845. Kandungan CO dan HC dapat terakumulasi di perparkiran tertutup dengan terbatasnya ventilasi, sirkulasi udara dan exhaust. Perancangan sistem perparkiran yang memadai dan memenuhi kaidah Kesehatan dan Keselamatan Kerja menentukan seberapa besar akumulasi CO.
Kandungan CO dalam darah dan Phenol dalam air kemih merupakan indikasi paparan CO emisi gas buang kendaraan dengan udara ruang parlor P2 BEJ. Kandungan CO berdampak negatif langsung terhadap kesehatan manusia. CO dengan cepat dapat menggeser 02 dari dalam darah karena CO dengan Hb membentuk COHb dengan cepat 200 - 300 kali lebih kuat dari oksigen dalam mengikat Hb darah. Dampak CO terhadap pekerja parkir tergantung lamanya pemajanan dan konsentrasi CO nya. Perokok lebih berisiko terhadap pajanan CO di P2. Kondisi pekerja yang terpajan CO di P2 sudah relatif terganggu, potensi hipoksia sudah megganggu sistem kardiovaskuler terlihat dari keluhan-keluhan pekerja seperti nyeri kepala, pusing, mual dan vertigo.
Pengendalian dampak emisi gas buang dapat dilakukan oleh pekerja secara proaktif. Tindakan preventif dengan menekan emisi gas buang melalui penyuluhan pemeliharaan mesin secara teratur, pemiiihan jenis dan tahun produksi kendaraan. Pengelola gedung sebaiknya melakukan tindakan perbaikan yang terpadu mencakup perencanaan system perparkiran, ventilasi, sirkulasi udara dan sistem pengaturan kerja.

Within four month periods the gas emissions from burning gasoline vehicles has the potential to doubling increase of the carbon monoxide (CO) concentration in the underground parking area. The correlation of HC, CO and Opacity of gas emission is very close to the parking indoor air quality, it shows by the r-value of CO about 0.9845. CO and HC content can be accumulated in the indoor parking area due to the poor ventilation, air circulation, number and capacity of exhaust fans. The adequate parking system designs that meet with Health and Safety requirement will effect the CO content accumulation.
The CO content in the blood and phenol in the urine are indicating the employee exposure to CO vehicles gas emission and P2 BET parking indoor air quality. The CO concentration at P2 has direct impact to the parking employee health. Carbon monoxide quickly reduce the oxygen intake from blood stream and by binding carbon monoxide with hemoglobin (Hb) to become a carboxyhemoglobin (COHb) compounds that toxic to human. CO bound Hb rapidly 200 - 300 times stronger than oxygen in the blood. The effect of carbon monoxide to the employee depends on the duration of exposure and CO concentration. Moreover smokers have a higher risk to the CO exposure in the P2. The condition of employee who expose to the CO at P2 has relatively been affected of the gas emission and will suffering from hypoxia with aggravated cardiovascular problem such as head pain, headache, fatigue and vertigo.
The employee can proactively participate in controlling of vehicles gas emission. Preventive action by minimizes the gas emission through awareness program, regular engine maintenance, choosing type of vehicles and year of product are parts of better control_ The building management should concern a continuous improvement through corrective action such as redesign the parking system, ticketing system, ventilation system, and shift work system of the employee.
"
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2003
T12742
UI - Tesis Membership  Universitas Indonesia Library
cover
Tatterson, Gary B.
New York: McGraw-Hill, 1991
660.284 2 TAT f (1);660.284 2 TAT f (2)
Buku Teks SO  Universitas Indonesia Library
cover
Mutiara Pangestika Gunarso
"Pengujian pemisahan gas dilakukan dengan menggunakan membran cair yang telah dimodifikasi dengan nanozeolit Na-Y. Membran cair yang digunakan adalah cairan higroskopik gliserol yang diimpregnasikan ke dalam membran hidrofilik berpori polyvinilidene fluoride (PVDF). Membran PVDF ini berfungsi sebagai support dari gliserol. Membran cair tersebut dimodifikasi dengan nanozeolit Na-Y dan dilakukan pengujian untuk aplikasi pemisahan gas. Nanozeolit yang digunakan disintesis dengan menggunakan metode seeding. Hasil nanozeolit yang terbentuk kemudian dikarakterisasi dengan menggunakan SEM-EDS, XRD, FTIR, BET, serta PSA. Pola XRD menunjukkan nanozeolit yang terbentuk memiliki struktur zeolit Y. Hasil karakterisasi dengan SEM-EDS menunjukkan kristal nanozeolit yang saling bertumpuk dengan struktur berbentuk kubus dengan rasio Si/Al 3,21. Berdasarkan hasil pengukuran dengan menggunakan PSA, didapatkan distribusi terbesar dari ukuran nanozeolit adalah 2 nm. Campuran gas yang digunakan untuk aplikasi pemisahan gas adalah campuran gas yang mengandung CO2, N2, serta O2 dengan rasio perbandingan volume 1:1:1. Pengujian pemisahan gas dilakukan pada suhu 250C dengan variasi tekanan 0,5 bar dan 1,5 bar. Variasi juga dilakukan pada jumlah nanozeolit (5%-20%) yang ditambahkan pada membran cair. Berdasarkan hasil percobaan, pemisahan gas CO2 paling baik terjadi pada tekanan 0,5 bar dengan 20% penambahan jumlah nanozeolit.

Examination of gas separation was carried out by using a Na-Y nanozeolite modified liquid membrane. Liquid of hygroscopic glycerol used as the liquid membrane was impregnated in a porous hydrophilic polyvinilidenen fluoride (PVDF) membrane. The PVDF membrane serves as a support of glycerol. The liquid membrane was modified by nanozeolite Na-Y examined for application of gas separation. Nanozeolite was synthesized by seeding method and then characterized by using SEM-EDS, XRD, FTIR, BET, and PSA. XRD patterns showed that nanozeolite structure was zeolite Y. SEM-EDS result showed that the crystal of nanozeolite grew over one another with cube-shaped structure and the Si/Al ratio is 3,21. Based on the PSA result, the biggest distribution size of nanozeolite obtained was 2 nm. A gas mixture that contains of CO2, N2, and O2 with volume ratio of 1:1:1 was used for gas separation. Examination of gas separation was carried out at 250C with various pressures of 0,5 bar and 1,5 bar. The number of nanozeolite in the liquid membrane was also varied (5%-20%). Based on experimental, the best separation of CO2 gas can be obtained with pressure of 0,5 bar and 20% the number of nanozeolite.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S1228
UI - Skripsi Open  Universitas Indonesia Library
cover
Oki Sugama
"Keunggulan proses pemisahan gas CO2 dengan membran dibandingkan dengan proses pemisahan lalnnya seperti distilasi kriogenik dan proses adsorpsi adalah penggunaan energi yang lebih rendah, tidak menimbulkan pencemaran lingkungan dan biaya operasinya yang relatif lebih rendah. Mekanisme terjadinya pemisahan dalam membran adalah berdasarkan perbedaan permeabilitas dari setiap komponen gas dalam campurannya. Gas CO2 memiliki sifat-sifat fisik yang memungkinkannya mmtuk berpermeasi lebih mudah menembus membran, seperti diameter kinetik molekulnya yang kecil, solubilitasnya yang relatif besar, dan kemampuannya untuk berinteraksi dengan molekul-molekul penyusun membran polimer.
Pada penelitian ini digunakan Polyester Film yang digunakan sebagai membran unmk pemisahan campuran C02 dan Udam P gujian dilakukan dalam dnla iahap yaitu pada kondisi Ideal menggunakan gas murni CO2 , O2 dan N2 dan pada kondisi Aktual menggunakan campuran gas dmgan komposisi 20.045 % CO2, 16.91 % O2 dan 63.045 % N2.
Hasil pengujian menunjukkan bahwa Permeabilitas Ideal O2 dan N2 oenderung konstan dengan kenaikan tekanan. Sedangkan Permeabilitas Ideal CO2 meningkat tajam dengan kenaikan tekanan. Hal ini disebabkan molekul-molekul gas co2. berinteraksi mempengaruhi struktur rantai membran sehingga membuatnya semakin fleksibel, semakin mudah untuk dilewati molekul gas CO2.
Dari perhitungan, pada permodelan maupun Aktual, diperoleh peningkatan fraksi gas CO; yang tertolak terhadap kenaikan fraksi gas yang permeat (stage cut). Sebaliknya terdapat peningkatan & aksi udara yang permeat terhadap kenaikan stage cut. Ini disebabkan meningkatnya permeabilitas membran akibat interaksi struktur membran dengan molekul-molekul gas C02, sehingga membran jadi kurang selektif terhadap gs C02. Sebaliknya gas-gas di dalam campuran yang seharusnya sulit lmtuk permeat, sebagian ikut terpermeasi.
Selektivitas Ideal C02/N2 tertinggi didapat sebesar 26.769 dan Selektivitas Ideal C01/O2 tertinggi didapat sebesar 11.618 pada tekanan 900 kPa. Koudisi optimum untuk pemisahan gas dengan membran Polyester Film berada pada tekanan 900 kPa dan stage cut 0,21 dengan kemurnian udara yang diperoleh sebesar 85% dari udara umpan sebesar 79,9 %. Kemurnian udara ini dapat ditingkatkan sampai dengan 94% dengan stage cut sebesar 161."
Depok: Fakultas Teknik Universitas Indonesia, 1999
S49211
UI - Skripsi Membership  Universitas Indonesia Library
cover
Simpson, Matthew J.
"The first study uses tunable vacuum-ultraviolet radiation from a synchrotron to identify negative ions from twenty four photoexcited polyatomic molecules in the gas phase. From these experiments, Matthew collects a vast amount of data and summarises and reviews ion-pair formation from polyatomic molecules. The second study is on selected ion flow tube mass spectrometry. Matthew investigates the reactions of cations and anions with ethene, monofluoroethene, 1,1-difluoroethene and tetrafluoroethene. In this study Matthew tries to explain why certain products are formed preferentially over other products at a microscopic level of understanding. "
Heidelberg : Springer, 2012
e20406097
eBooks  Universitas Indonesia Library
cover
cover
Smith, Patricia L.
"How does a marble manufacturer know that the color will be consistent throughout the products being made? How can you tell if liquid at the bottom of a container is the same consistency as at the top? How does a pellet manufacturer know if the pellets are consistently the same size? How does a chemical manufacturer know if the percent purity in a sample is representative of the whole batch? These and similar questions are answered in A Primer for Sampling Solids, Liquids, and Gases: Based on the Seven Sampling Errors of Pierre Gy.
Statisticians are well trained in sampling techniques if the sample is well defined. Examples of such samples include industrial parts in manufacturing, invoices in business processes, and people in surveys. However, what if the sampling unit isn't well defined? What if you are sampling bulk material such as a pile of coal? Author Patricia L. Smith illustrates what to look for in sampling devices and procedures to obtain correct samples from bulk materials. She gives sampling guidelines that can be applied immediately and shows how to analyze protocols to uncover sampling problems.
Smith presents the ideas of Pierre Gy in lay terms so that his concepts and principles can be easily grasped and applied. She conveys Gy's intuitive meaning while preserving his original ideas. Synonyms have been used for some technical terms to avoid confusion."
Philadelphia: Society for Industrial and Applied Mathematics, 2001
e20450081
eBooks  Universitas Indonesia Library
cover
Astarita, Giovanni
New York: John Wiley & Sons, 1983
665.7 AST g (1)
Buku Teks SO  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>